
Towards effective collaborative design and engineering

Stephan Lukosch
Delft University of Technology

Faculty of Technology, Policy, and Management
Jaffalaan 5, 2628 BX Delft, The Netherlands

s.g.lukosch@tudelft.nl

Gwendolyn Kolfschoten
Delft University of Technology

Faculty of Technology, Policy, and Management
Jaffalaan 5, 2628 BX Delft, The Netherlands

g.l.kolfschoten@tudelft.nl

ABSTRACT
Effective collaborative design and engineering has to deal with var-
ious challenges. It is essential to create a shared understanding and
facilitate interaction in such a way that effective collaboration be-
comes possible. Free riding, group think or hidden agendas need
to be addressed by rarely available process facilitators. Available
tools are not regularly used, are not intuitive and often are difficult
to adapt to the changing group needs. In order to tackle the above
issues, we want to enable effective collaborative design and engi-
neering by offering intelligent collaboration support that supports
facilitators of collaboration processes when monitoring collabora-
tion processes and planning process interventions or tool adapta-
tions.

Categories and Subject Descriptors
H.4.1 [Office Automation]: Groupware; H.5.3 [Group and Or-
ganization Interfaces]: Computer-supported cooperative work;
K.4.3 [Organizational Impacts]: Computer-supported collabora-
tive work

General Terms
Design, Human Factors

Keywords
Collaboration support systems, intelligent collaboration support,
facilitation, group support systems

1. INTRODUCTION
Collaboration has become a critical skill as products and services
are becoming increasingly complex, no individual has the skills to
design, develop and deliver these alone. Collaboration is however,
not without challenges. On a group level, it is essential to create a
shared understanding, define rules for decision-making and facili-
tate interaction in such a way that effective collaboration becomes
possible [13]. On a process level, free riding, dominance, group
think, hidden agendas, are but a few phenomena in group work that
make it a non straight-forward effort [16].

Groups might not be able to overcome the challenges of collabo-
ration by themselves [16]. Even if groups are able to accomplish
their goals, they can often collaborate more efficiently and effec-
tively using collaboration support [6]. Collaboration support can
be comprised by tools, processes and services that support groups
in their joint effort. In knowledge oriented organizations, there is
often a need or demand for collaboration support. However, tools
and technology for group support exist in a variety of shapes from
complex computer systems, as e.g. Group Support Systems (GSS),
to simple boxes with cards and pencils. Each of these tools can
be used by the group to be more successful in sharing ideas and
indicating relations and preferences, but current challenges emerge
from the fact that available tools are not regularly used, are not in-
tuitive and often are difficult to adapt to the changing group needs
[7]. This makes it difficult for organizations to provide their teams
with a suitable and adaptable collaboration support that help them
accomplish their goals efficiently and effectively.

As discussed in [7], current collaboration support systems focus
adaptations with a limited scope. They are either restricted to spe-
cific domains or to specific aspects of collaborative work, often
focusing on awareness or knowledge management. Compared to
this, we aim to create intelligent collaboration support that creates
a shared understanding, facilitates collaborative actions across vari-
ous geographic, temporal, disciplinary, and cultural boundaries and
provides intuitive and adaptive tool support. This will allow us to
offer collaboration support for a variety of collaborative tasks in
a way that groups can use it for themselves without the need for
extensive training or a professional facilitator. In this paper, we
will as a first step propose a conceptual framework towards intel-
ligent collaboration support. We modeled collaboration processes
and identified factors suggesting process changes as well as adap-
tations. These factors are the basis for this framework of intelligent
collaboration support, which will offer us a first step in monitoring
groups and predicting the need for facilitation interventions.

In the next section we will explain in detail how facilitators guide
collaboration processes. This will lead to a conceptual framework
of collaboration support interventions, presented in section 3. Next
we will present how this framework can be used to identify specific
collaboration situations to create intelligent collaboration support.
We will then reflect on this design and end with conclusions and a
research agenda.

2. FACILITATING COLLABORATION
PROCESSES

One of way of supporting groups in achieving their goals more ef-
ficiently and effectively is to support the group by structuring and

guiding their activities. This skill and profession is called facilita-
tion. The facilitation task is described extensively in GSS literature
[1, 8, 14]. The task of a facilitator requires both experience and
extensive knowledge of group dynamics and facilitation methods.
This tasks involves for instance management of the activities the
group is performing, quality of their deliverables, relations between
the participants and the use of resources and time [9]. This type of
process guidance is often offered by someone external to the group,
to ensure impartiality and objectivity.

In an effort to reduce the need for professional facilitators, re-
searchers have been coding facilitation practices to enable the sepa-
ration of the design task of a facilitator and the execution task [11].
In this way a master facilitator called collaboration engineer, can
design and transfer a collaborative work practice to practitioners to
execute it for them selves based on a short training. This approach
is called Collaboration Engineering [3]. To ensure the predictabil-
ity and transferability of the collaborative work practice, they are
designed with design patterns called thinkLets [4].

To realize an intention by means of intervention, two types of in-
terventions are required [2]. First, there are static interventions in
which one or more commands are given to initiate the key activi-
ties of a process. We will refer to this kind of communication as an
instruction intervention. Second, there are dynamic interventions
intended to adjust the actions performed by the group to resolve a
discrepancy between the facilitator’s intentions and the groups’ ac-
tions. These interventions depend on emergent conditions. We will
call these messages adjustment interventions.

The conceptual design of a thinkLet exists of a set of instruction
and adjustment interventions described as rules [4]. These rules
are similar to rules mimicking human behavior in avatars [2]. Each
rule describes for a role an action that needs to be performed using
a capability under some set of constraints to restrict those actions.
Further, some thinkLets include conditional rules for frequently-
required adjustment interventions because specific discrepancies
manifest predictably during the execution of an activity based on
the thinkLet.

An example of a set of rules are captured in the LEAFHOPPER thin-
kLet [4]:

1. Allow participants to add in parallel any number of contribu-
tions to any category.

2. Allow participants to add only contributions that are relevant
to the categories in which they are placed.

3. Allow participants to add only contributions that match to the
contribution specification.

4. Let participants shift focus from category to category as in-
terest and inspiration dictate.

5. Ensure that participants read the contributions of others for
inspiration.

3. CONCEPTUAL FRAMEWORK
In order to provide intelligent collaboration support, we first need
to identify the key goals that guide facilitation interventions. When
facilitators intervene to initiate activity they can offer these at dif-
ferent levels [15]:

1. Collaboration process design: Interventions to guide col-
laborators in choosing appropriate tools and techniques to
support the collaboration process.

2. Collaboration process execution: guidance to move from
one activity to a next activity, changing the collaboration sup-
port environment to transfer between activities, while taking
documents and decisions along to a next phase.

3. Collaboration process guidance: Activities need to be ini-
tiated and guarded to execute the collaborative activity.

4. Collaborative behavior guidance: guidance in determining
and adjusting improves collaborative effectiveness.

In a face to face context, facilitators can make adjustment interven-
tions based on behavior of group members, including communica-
tion with group members, quality of the output of the group, and
progress versus planned time for the group task. Based on our ex-
perience and discussion with expert facilitators, the following list
is a first attempt to identify factors used to determine the need to
make an intervention:

• Group: behavior, emotions, communication, body language,
address facilitator, gestures

• Task: amount of input, rate of input, quality of input, quality
of output, shared understanding, fit in relations in output

• Time: progress, time left

Some of these aspects are non-digital and based partially on inter-
pretations. This requires a translation to gain the same insights
from the online interaction. For instance facilitators might monitor
de-focus of participants as an indicator that the group is finished
with the task. However, this might also be learned from a signifi-
cant decrease in input rate. However, without technology support
to monitor input rate, perhaps per participant, this would be diffi-
cult to detect for a facilitator. Also the interpretation of input rate
requires some experience and understanding of the cognitive impli-
cations of tools and knowledge sharing. Therefore we need more
than a thermometer to measure input rate, we need an intelligent
collaboration support system that can monitor these factors, and
use them to reason about the current collaboration process in order
to support facilitators in making intervention decisions.

4. LEAFHOPPER FACILITATION INTER-
VENTIONS

In the textbox below we describe what a facilitator does after initi-
ating the LEAFHOPPER thinkLet to brainstorm ideas in categories.
Underlined are those indicators the facilitator uses to make deci-
sions on interventions. Some of these indicators can directly be
observed, others are an interpretation of the facilitator.

After initiating the Leafhopper the facilitator needs to maintain sev-
eral rules. The contributions of the group need to meet the quality
intended, they need to meet the contribution specification, the cat-
egory in which they are placed. The contributions need to be made
in a certain timeframe, and they need to cover a certain scope of
information (completeness). Additionally the facilitator will need
to maintain a safe and respectful atmosphere to ensure that people
feel free and encouraged to participate. To ensure that the partic-
ipants can share all relevant contributions, the facilitator can add

Figure 1: Domain model for collaboration in a shared workspace

a category ’other’. This category is monitored by the facilitator.
When a pattern of contributions can be found in this category, the
facilitator will add a new category to cover this topic.

The facilitator will monitor the input, mainly to detect if there are
small or insufficient quality contributions. Later in the process
the facilitator will monitor if the categories each contain a suffi-
cient number of contributions. Also, the facilitator will monitor
the ’other’ category to see if there is a persistent topic addressed,
and therefore, a need to add a category. The facilitator might inter-
vene if some categories are not filled. Such intervention would be
made before the time for the task is passed, to give participants
time to add ideas in these categories, but not too early, when par-
ticipants might not yet had a chance to contribute to all categories.
The facilitator will also observe the group to see if participants get
distracted, or focus on other activities, which indicate that they
are (no longer) motivated for the task. The facilitator will also mon-
itor behavior, communication and body language to see if any of the
input causes an emotional reaction, which could indicate conflict
or flaming, which would require intervention. Finally the facilitator
will monitor the input rate and the focus of participants to detect
when there is no more inspiration and the task can be ended. If the
group is still very active and focused when time is running out,
the facilitator might encourage the group to speed up or to focus
on more important contributions in order to ensure that sufficient
progress is made when the task should be finished. In some cases
this can also be a reason to give the group more time for the task.

5. DESIGNING INTELLIGENT COLLAB-
ORATION SUPPORT

In order to create a collaboration support system that can suggest
facilitators to make interventions, we use an explicit context model
to describe the current collaboration situation. A collaboration situ-
ation can be characterized by the configuration of the collaboration
environment as well as the state of interaction of the users with the
system (e.g., based on interaction history) and the organizational

setting (e.g., team structure, roles, tasks). Dey et al. [5]define con-
text as any information used to characterize a situation of an entity
where an entity may be any object, person or place providing in-
formation about the interaction between a user and an application.
With this definition, any information may help characterizing the
situation of the interaction’s participants because it is part of the
context itself. For our purposes, we can narrow this definition so
that context includes all information which is necessary or helpful
to adapt a shared workspace to better fit the needs of a collaborat-
ing team. This implies that the context contains information about
the team as well as about the current collaboration situation. This
context information is necessary to recognize situations which de-
mand a facilitator’s intervention (and thus help minimizing the ef-
fort needed for adaptation).

We use a collaboration domain model for describing collaboration
environments and collaboration situations [7]. Figure 1 summa-
rizes this domain model and shows the basic classes and their rela-
tions that can be used to describe collaboration context in a global
collaboration space. The domain model intends to capture the basic
concepts of collaborative workspaces. It focuses on the technolog-
ical support for collaborative interaction and does not distinguish
different artifact types or task domains. If applied to a certain col-
laboration environment, it must be extended with concepts match-
ing the specific properties.

The model in Figure 1 distinguishes different concepts that describe
collaboration in a collaboration environment and relations between
these concepts. We start exploring and explaining the model in Fig-
ure 1 with the concept of an Actor (see lower part of Figure 1). The
domain model assumes that Actors are member of a Team and have
a Role defined by the User Workspace, as Applications are started
from within the User Workspace and thus the workspace can en-
sure pre-defined Roles. Each Role allows an Actor to perform spe-
cific Actions. The available Actions are defined by the supported
Application Functionality of an Application. As an example con-

sider a chat application which should offer at least two action types:
OpenChat and SendMsg. These two actions would allow users to
communicate with each other by opening a chat tool and send mes-
sages to each other. Other forms of collaboration such as within a
collaborative diagram editor would require to add additional action
types in order to specify the application functionality.

As Actors interact with the Application by performing Actions al-
lowed by their Roles, Roles define interaction possibilities within
an application, e.g. in a shared writing application an author might
perform all edit actions whereas a reviewer can only comment ex-
isting text. The Actions are received by the corresponding Con-
troller components of the Application. An Application implements
the model-view-controller (MVC) paradigm [12] and consists of
Views and Controllers components. Views and Controllers use Ser-
vices to access the Artifacts. Artifacts use Services to notify Views
and Controllers about changes. Each Application is part of a User
Workspace and is created by an Application Factory which spec-
ifies what Applications are available within a workspace and how
these can be initialized. Finally, the class Application Functionality
specifies the functionality an Application offers, e.g. in relation to
communication, shared editing, or awareness.

All above classes are useful to model and store the configuration of
a collaboration environment and to capture the current context at
runtime. Based on such context information, a collaboration envi-
ronment is enabled to recognize situations, which demand a facili-
tator’s attention and intervention.

The domain model is abstract and not related to a specific applica-
tion domain. When considering our example on the LEAFHOPPER
thinkLet, we need to extend the model as shown in Figure 2. In
order to incorporate the LEAFHOPPER thinkLet, the Artifact class,
the Action class and the Role class were extended. Based on this
extension, we can now distinguish between participants and the fa-
cilitator as well as identify contributions within a category.

Based on the extended domain model, we can suggest process in-
terventions or tool adaptations in order to improve collaborative
interaction. One process intervention within our LEAFHOPPER ex-
ample is triggered when the category ’other’ exceeds a specified
threshold. The following rule consists of a condition and an action
block. The condition block retrieves all contributions within the
context model that belong to the category ’other’ and then evalu-
ates whether the number of contribution has exceeded a specified
threshold. If this is the case, the action block opens an alert view
for the facilitator. The following pseudo code shows how such a
rule can be specified:

rule "create new category"
when
$contributions: Contribution(category ==
’other’)

eval($contributions.size() >= 20)
then
openForFacilitator(Alert, "Number of

contributions in
category ’other’ has
exceeded specified
limit. Check whether
new category is
necessary.")

end

Another example for a rule that monitors whether there are empty

categories and in case again alerts the facilitator can specified as
follows:

rule "empty categories"
when
$category: Category(size == 0)

then
forall $c in $category
openForFacilitator(Alert, "Category "+

$c.name()+" is empty.
Focus the attention of
the participants on the
empty category.")

end

As final example, the following rule checks the focus of the partici-
pants in order to alert the facilitator when half of the participants do
not focus on the activity of creating contributions. For that purpose,
the rule retrieves for focus of each participant by identifying the ac-
tive View in the User Workspace. Based on the basic collaboration
model (cf. Figure 1), this information can be inferred via the User
Workspace and the opened Applications within the workspace. The
following example rule assumes that the participants should focus
on a view with the name ’contribution input’ and if they do not do
so alerts the facilitator:

rule "participants distracted"
when
$participants: Participant(focus !=

"contribution input")
$threshold: $participants[0].team().

size()/2
eval($participants.size() >= $threshold)

then
openForFacilitator(Alert, "More than 50%

of the participants do
not focus on creating
contributions.")

end

6. DISCUSSION AND CONCLUSION
Collaboration has become a critical success factor for many orga-
nizations, as products and services are becoming increasingly com-
plex and cannot be designed individually. However, collaboration
has several challenges. It is essential to create a shared understand-
ing and facilitate interaction in such a way that effective collabora-
tion becomes possible. Free riding, group think or hidden agendas
need to be addressed by rarely available process facilitators. Avail-
able tools are not regularly used, are not intuitive and often are
difficult to adapt to the changing group needs. In order to tackle
the above issues, we want to enable effective collaborative design
and engineering by offering intelligent collaboration support that
supports facilitators of collaboration processes when monitoring
collaboration processes and planning process interventions or tool
adaptations.

In this article, we identified several factors that are observed by
professional facilitators before changing and adapting an ongoing
collaboration process. We further introduced an abstract context
model which can be used to model collaboration within a shared
workspace. We extended this model to include concepts and classes
of the LEAFHOPPER thinkLet. Based on the experiences of a pro-
fessional facilitator, we used this extended context model to define
rules which can assist a facilitator.

Based on the proposed rules, a context-adaptive and intelligent col-
laboration support environment, such as [17], can alert a facilita-

Figure 2: Extended domain model for the LEAFHOPPER thinkLet

tor when an intervention might become necessary and reduce the
facilitator’s overhead. In future work, we will go a step further
and model entire collaboration processes based on thinkLets [10].
We then will study factors that determine and influence collabora-
tion performance, e.g. cognitive load or shared understanding, and
that inform facilitation interventions. Once identified, we will inte-
grate these factors in our context model and think about possibili-
ties to measure soft factors via additional application functionality
and without obstructing or distracting the group work, e.g. by of-
fering means for self reporting. We will further identify and specify
rules that recognize situations that require process interventions by
recording facilitation interventions and the performance indicators
at the point of intervention to gain more fine-grained rules for pro-
cess intervention.

The path to intelligent collaboration support sketched above is long,
but small steps might already improve collaborative design and en-
gineering today. As facilitators need to monitor many factors and
indicators of progress, basic suggestions for process intervention as
outlined above might already reduce some of the cognitive load of
the facilitation task.

7. REFERENCES
[1] F. Ackermann. Participants perceptions on the role of

facilitators using group decision support systems. Group
Decision and Negotiation, 5:93–519, 1996.

[2] N. Badler, R. Bindiganavale, J. Bourne, M. Palmer, J. Shi,
and W. Schuler. A parameterized action representation for
virtual human agents. In Workshop on Embodied
Conversational Characters, 1998.

[3] R. Briggs, G. de Vreede, and J. Nunamaker. Collaboration
engineering with thinklets to pursue sustained success with
group support systems. Journal of Management Information
Systems, 19:31–63, 2003.

[4] R. Briggs and G.-J. de Vreede. ThinkLets: Building Blocks
for Concerted Collaboration. Delft University of
Technology, Delft, The Netherlands, 2001.

[5] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual
framework and a toolkit for supporting the rapid prototyping
of context-aware applications. Human-Computer Interaction,
16(2, 3, & 4):97–166, 2001.

[6] J. Fjermestad and S. Hiltz. A descriptive evaluation of group
support systems case and field studies. ournal of
Management Information Systems, 17:115–159, 2001.

[7] J. M. Haake, T. Hussein, B. Joop, S. Lukosch, D. Veiel, and
J. Ziegler. Modeling and exploiting context for adaptive
collaboration. International Journal for Cooperative

Information Systems (IJCIS), 19(1-2):71–120, 2010.
[8] S. Hayne. The facilitator’s perspective on meetings and

implications for group support systems design. Database,
30(3-4):72–91, 1999.

[9] G. Kolfschoten and G. de Vreede. A design approach for
collaboration processes: A multi-method design science
study in collaboration engineering. Journal of Management
Information Systems, 26:225–256, 2009.

[10] G. Kolfschoten, S. Lukosch, and M. Seck. Modeling
collaboration processes to understand and predict group
performance. In A. Dix, T. Hussein, S. Lukosch, and
J. Ziegler, editors, Proceedings of the IUI workshop on
Semantic Models for Adaptive Interactive Systems (SEMAIS)
2010, 2010.

[11] G. Kolfschoten, F. Niederman, G. de Vreede, and R. Briggs.
Roles in collaboration support and the effect on sustained
collaboration support. In Hawaii International Conference
on System Science (HICSS-41), 2008.

[12] G. E. Krasner and S. T. Pope. A cookbook for using the
model-view-controller user interface paradigm in
Smalltalk-80. Journal of Object-Oriented Programming,
1(3):26–49, Aug. 1988.

[13] S.-Y. Lu, W. Elmaraghy, G. Schuh, and R. Wilhelm. A
scientific foundation of collaborative engineering. CIRP
Annals - Manufacturing Technology, 56(2):605 – 634, 2007.

[14] F. Niederman, C. Beise, and P. Beranek. Issues and concerns
about computer-supported meetings: The facilitator’s
perspective. Management Information Systems Quarterly,
20(1):1–22, 1996.

[15] F. Niederman, G. de Vreede, R. Briggs, and G. Kolfschoten.
Extending the contextual and organizational elements of
adaptive structuration theory in GSS research. Journal of the
Association for Information Systems, 9(10), 2008.

[16] J. J. Nunamaker, R. Briggs, D. Mittleman, D. Vogel, and
P. Balthazard. Lessons from a dozen years of group support
systems research: A discussion of lab and field findings.
Journal of Management Information Systems, 13:163–207,
1997.

[17] D. Veiel, J. M. Haake, and S. Lukosch. Facilitating
team-based adaptation of shared workspaces. In
International Symposium on Collaborative Technologies and
Systems (CTS 2010), pages 275–284. IEEE, 2010.

