
Supporting Runtime Decision Making in the
Production Automation Domain Using Design Time

Engineering Knowledge

Thomas Moser1, Wikan Danar Sunindyo1, Munir Merdan2 and Stefan Biffl1

1 Christian Doppler Laboratory
“Software Engineering Integration for Flexible Automation Systems”

Vienna University of Technology, Vienna, Austria
2 Automation Control Institute

Vienna University of Technology, Vienna, Austria
{thomas.moser, wikan.sunindyo, munir.merdan, stefan.biffl}@tuwien.ac.at

Abstract. Complex production automation systems are often represented as
multi-agent systems which need to be reconfigured correctly and efficiently to
adapt to new requirements. While the system knowledge is available at design
time in form of workshop layouts, product trees or production strategies, at run-
time this knowledge is often not available and therefore not used at all for oper-
ational decision making. In this paper we describe an engineering ontology used
for the representation of design time engineering knowledge for supporting run-
time decisions. We evaluate the proposed approach using three scenarios from
the production automation domain. Major result was that the explicitly availa-
ble design time knowledge can provide valuable input to runtime decisions.

Keywords: Runtime decision making; design time knowledge, engineering on-
tology.

1 Introduction

Complex software-intensive systems in production automation need to be flexible
to adapt to changing business situations and to become more robust against relevant
classes of failures. Production automation systems consist of components, for which a
general design and behavior is defined during the design phase, but much of the spe-
cific design and behavior is defined during implementation, deployment, and run time
with a range of configuration options. The “Simulator for Assembly Workshops”
(SAW) [1] simulates complex reconfigurable production automation systems to max-
imize the overall system output by scheduling sequences of transport and machine
tasks over 100 times faster than the actual hardware at VUT’s ACIN lab1. Figure 1
(left hand side) illustrates an example assembly workshop layout that consists of
software-controlled manufacturing components: transport components such as con-
veyor belts (dark green), crossings (light green), and stoppers (yellow/red circles); and
assembly machines (colored rectangles with round corners); product parts are trans-

1 Automation & Control Institute; http://www.acin.tuwien.ac.at

9

ported on pallets (colored rectangles; colors represent the target machines). SAW has
been validated with real hardware components in an assembly workshop lab to ensure
that the simulation outcome is relevant for real production automation systems.

Figure 1. SAW Simulator and underlying data model.

Engineers, who want to adapt the system at runtime, need information from soft-
ware models that reflect dependencies between components at design and run time,
e.g., the workshop layout, customer orders and assembly procedures that translate into
needs for machine function capacities over time; and the coordination of tasks for
redundant machines in case of a failure. During development, design-time software
models like data-oriented models (e.g., class or EER diagrams) or workflow-oriented
models (e.g., sequence diagrams or state charts) are the basis to derive run-time mod-
els. But these models are often not provided in machine-understandable format to
reflect on changes at runtime, i.e., the knowledge is modeled using an explicit human-
understandable way but cannot be accessed by components automatically. Domain
and software experts are needed to integrate the fragmented views (e.g., propagating
model changes into other models, cross-model consistency checks) from these mod-
els, which often is an expensive and error-prone task due to undetected model incon-
sistencies or lost experience from personnel turnover.

Practitioners, especially designers and quality assurance (QA) personnel, want to
make reconfigurable software-intensive systems (which like SAW consist of compo-
nents defined by general design-time behavior, derived run-time configuration, and
run-time specific behavior enactment) more robust against important classes of fail-
ures: machine failures, misuse from invalid supply, and failure-related changes in
machine capacities at runtime. QA people could benefit from more effective and effi-
cient tool support to check system correctness, by improving the visibility of the sys-
tem defect symptoms (e.g., exceptions raised from assertions).

Challenges to detect and locate defects at run-time originate from the different fo-
cus points of models: e.g., components and their behavior are defined at design time,
while configurations may change at runtime and violate tacit engineering assumptions
defined in the design-time models. Without an integrated view on relevant parts of
both design time and runtime models inconsistencies from changes and their impact
are harder to evaluate and resolve between design and run time. Better integrated
engineering knowledge can improve the quality of decisions for run-time changes to

10

the system, e.g., better handling severe failures with predictable recovery procedures,
lower level of avoidable downtime, or better visibility of risks before damage occurs.

In this paper we present an approach to improve the support for runtime decision
making with an engineering ontology. This engineering ontology provides a better
integrated view on relevant engineering knowledge in typical design time and runtime
models, which were originally not designed for machine-understandable integration.
The engineering ontology can contain schemes on all levels and instances, data, and
allows reasoning to evaluate rules that involve information from several models that
would be fragmented without machine-understandable integration. The major advan-
tage of using the engineering ontology for representing and querying the domain-
specific engineering knowledge is the fact that ontologies are well suited to model
logical relationships between different variables in axioms which can be used later for
the derivation of assertions based on measured runtime data. We illustrate and eva-
luate the engineering ontology approach with three exemplary scenarios (change of
conveyor directions, machine reconfiguration and machine maintenance preparation)
from the production automation domain. Major result was that the explicitly available
design time knowledge can provide valuable input to runtime decisions.

The remainder of this paper is structured as follows: Section 2 summarizes related
work on Production Automation Systems, on the representation of design time know-
ledge and on the support of runtime decisions. Section 3 identifies the research issues
and introduces the use case. Section 4 presents the approach; and finally section 5
discusses the findings, concludes the paper and presents further work.

2 Related Work

This section summarizes related work on Production Automation Systems, and on the
representation of design time knowledge and the support of runtime decisions.

2.1 Production Automation Systems

By offering modularity and decentralizing system control, multi-agent-based ap-
proaches are recognized as a promising way to reduce complexity and increase flex-
ibility of manufacturing systems [2, 3]. In this context, an agent is an intelligent entity
placed in a manufacturing environment in order to supervise particular units and make
decisions that influence the environment as well as its state. Agents communicate and
negotiate with each other in order to perform the operations based on the available
local information or in order to solve possible conflicts. However, manufacturing
systems typically consist of heterogonous units, which use different types of data and
data structures, and it is not easy to ensure the uninterrupted flow of information be-
tween and sometimes through the controlled levels. In order to ensure the correct
understanding of the exchanged messages, agents must have the same presentation of
the environment, or at least that part of the shared environment about which they are
exchanging information with each other. Ontologies have been developed and inves-
tigated for quite a while in artificial intelligence and natural language processing to
facilitate knowledge sharing and reuse [4]. They are of vital importance for enabling

11

knowledge interoperations between agents and, at the same time, a fluent flow of
different data between different entities.

Various ontologies have been developed to capture particular fields in the manu-
facturing domain: the OZONE ontology [5] is devoted to constructing scheduling
systems, the Enterprise Ontology aims to define the overall activities of an organiza-
tion [6], the TOVE Ontology focuses on the enterprise modeling [7], the “Machine
Shop Information Model” is intended for representing and exchanging machine shop
data, initially between manufacturing execution, scheduling, and simulation systems
[8], the Process Specification Language (PSL) covers generic process representation
common to manufacturing applications [9]. On the other hand, ontologies like MA-
SON [10] or ADACOR [11] could be classified as general-purpose manufacturing
ontologies. An interesting standardization initiative has been started by the ONEIDA
consortium establishing the framework for both the hardware and the software intero-
perability at all enterprise levels. Product data, which encapsulates intellectual proper-
ty along with appropriate semantic information, is collected from the manufacturer
and integrators in order to set a searchable repository and ease the work of related
intelligent repository agents [12]. Complementary work has been reported by Lopez
and Lastra: they merged several ontologies for mechatronic devices reference models
(covering both the hardware and the software features) and the IEC 61499 reference
model respectively into an ontology for an Automation Objects reference model [13].

However, by now an ontology is missing that will support the usage of design time
engineering knowledge for supporting runtime decisions as well as is able to provide
system knowledge to agents. The application of agent technology does not bring any
advantages if the used agents are not intelligent. Considering ontologies as an intelli-
gent way to manage knowledge, the integration of both technologies brings advantag-
es such as extensibility and communication, and enables agents to agree on the mean-
ing of common concepts they use with any other agent in an open environment [14].

2.2 Representing Design Time Knowledge and Supporting Runtime Decisions

An ontology is a representation vocabulary for a specific domain or subject matter,
e.g., production automation. More precisely, it is not the vocabulary as such that qual-
ifies as an ontology, but the (domain-specific) concepts that the terms in the vocabu-
lary are intended to capture [15].

Manufacturing Execution Systems (MES), as a state-of-the-art in production
workshops, link plan management and workshop control in an enterprise, which has
the advantage to be integrated or interfaced with ERPs. Long [16] constructed a MES
ontology which provides a formal specification of the concepts in the MES domain.

The infrastructure of MDA provides an architecture for creating models and meta-
models, defining transformations between these models, and managing meta-data.
Although the semantics of models are structurally defined by its meta-model, the
mechanisms to describe the semantics of a domain are rather limited compared to
machine-understandable representations using, e.g., knowledge representation lan-
guages like RDFF

2 or OWL3. In addition, MDA-based languages do not have a know-

2 Resource Description Framework: http://www.w3.org/RDF/

12

ledge-based foundation to enable reasoning (e.g., for supporting QA), which ontolo-
gies provide [17].

Beyond traditional data models like UML class diagrams or entity relationship di-
agrams, ontologies provide methods for integrating fragmented data models into a
common model without losing the notation and style of the individual models [18].
The idea of using design time engineering knowledge to support runtime decision
making have been already introduced by Moser et al. [19]. The authors proposed to
collect design models information from production automation systems, such as the
workshop layout, customer orders, product tree, or assembly procedures, and integrate
them with the run-time information by using an ontology-based approach.

Andreolini et al. proposed to use models and frameworks for supporting runtime
decisions in the context of web-based service systems [20]. The problems behind
runtime decisions are how to detect significant and non-transient load changes of a
system resource and how to predict its future load behavior. The authors described,
tested and tuned the two-phase strategy to overcome the problems and integrating the
strategy into a framework to support runtime decisions in a cluster web system and in
a locally distributed Network Intrusion Detection System.

3 Research Issues and Use Case

In this section, we describe a real-world use case on system adaptation, e.g., to ac-
commodate runtime failures. The use case is based on a Java simulation of an adap-
tive system that has been validated with a hardware version available at VUT’s ACIN
lab, the so-called Simulator for Assembly Workshops” (SAW). In the simulation
context we collect evidence to which extent a richer and better integrated semantic
knowledge base can translate into more accurate faster and cheaper decision making.
The general SAW architecture consists of three major layers: the business process
layer, the workshop system coordination layer and the machines in the workshop.

SAW simulates complex reconfigurable production automations systems to max-
imize the overall system output by scheduling sequences of transport and machine
tasks over 100 times faster than the actual hardware. In the workshop, each machine
has a set of specific functions, e.g., drilling or painting. Production parts are put on
pallets and delivered to the machines via conveyor belts. In production automation
systems, conveyor belts, junctions, and sensors can be represented by software agents
that are working together and form a multi-agent system. By configuring an agent, the
behavior of the real hardware can be specified as well. A junction connects two or
more conveyor belts and follows the configuration of the software agents; select the
correct outgoing conveyor belt for a pallet carrying a work piece. Sensors help the
software agents to sense if pallets are in close proximity or help agents counting pass-
ing pallets to detect an overloaded conveyor belt and move to a backup strategy.

We defined three scenarios here according to the usage of SAW to solve possible
problems that could occur also when using real hardware.

Runtime Decision 1 – Change of Conveyor Directions. The first scenario is re-
lated to the way of solving problems caused by conveyors failure. The failures of

3 Web Ontology Language: http://www.w3.org/2007/OWL

13

conveyors and especially of conveyors that connect machines to each other, may lead
to unreachable machines, hence may result in the failure of the system to produce
products at all. One possible option to solve this problem is to change the direction of
other unbroken conveyors in order to be used as a substitution of the broken con-
veyor. By changing other conveyors’ direction, it is expected that a new route can be
formed; hence the connection between different machines may become available
again. The runtime decision that can be taken is to decide which conveyor directions
should be changed in order to fulfill the new goal. The operator should also consider
which conveyors are available and have a connection to the other machines directly or
indirectly in order to identify possible new routes.

Runtime Decision 2 – Machine Reconfiguration. The second scenario in the
production automation system that we want to go through is the possibility to reconfi-
gure machines. Usually machines do not only offer one machine function but several
different machine functions that can be reconfigured. However it takes time to recon-
figure the machine functions inside one machine, e.g., to disassemble and reassemble
the machine functions to another machine. If a machine fails, certain machine func-
tions are not available anymore, but there is still exists the possibility to transfer the
machine function to another machine which is still working well. In this case, the
operator should calculate whether another machine should be reconfigured to offer the
needed machine function or not, e.g., to check whether the repair time is smaller than
the time needed for reconfiguration, and to check whether there are any products
ordered that require the machine function at all.

Runtime Decision 3 – Machine Maintenance Preparation. The third scenario is
regarding the maintenance time that is needed by machines in the production automa-
tion system. After a certain amount of time running, machines need to undergo main-
tenance. In order to prepare the maintenance mode, the operator should calculate the
number of orders, and therefore the related time needed for all machine functions
required for a certain order, which can be produced before the machine needs to go
into maintenance mode.

Based on the use case and the three derived exemplary runtime decisions, we de-
rive the following research issues:

RI-1. Efficiency and effectiveness of the proposed engineering ontology. Inves-
tigate to what extent the integrated design time and runtime data models do facilitate
queries regarding data originating from more than one different data model. Compare
the number of queries required for retrieving specific information using the engineer-
ing ontology approach with a traditional (e.g., database-based) approach using mul-
tiple data sources with potentially heterogeneous data schemata. Can the proposed
engineering ontology cope with a potentially very large number of possible solutions
for specific scenarios, and how does this affect the answer time of complex queries to
the engineering ontology?

RI-2. Scalability of the proposed engineering ontology. Since the evaluated
workshop layout is manageably small, investigate the scalability of the proposed
engineering ontology approach. Does the ontology area concept [21] support the
structuring and therefore the usability of a potentially large and fast-growing engi-
neering ontology? How to support specific stakeholders in working with parts of the
engineering ontology, e.g., by providing tool support for specific tasks?

14

For investigating the research issues we gathered requirements from the use cases
in the production automation domain. Based on these use cases we designed the archi-
tecture of the engineering ontology and the evaluation regarding the support for the
three different runtime decisions.

4 Supporting Runtime Decisions using the engineering ontology

This section describes the architecture and contained design and runtime knowledge
of the used engineering ontology, as well as the application of the engineering ontolo-
gy for supporting the three runtime decisions introduced in the previous section.

4.1. Engineering Ontology Architecture

In this section, we describe the engineering ontology, a set of relevant information
elements about components in machine-understandable format using OWL DL
ontology syntax. Components can query the engineering ontology at run time to
retrieve information for decision making, e.g., enriching and filtering failure
information or runtime coordination of machine workloads due to changes of the
available machine capacities.

The engineering ontology provides a place for storing design-time information
that seems valuable for supporting run-time decisions of components, especially in
the case of handling failures or unplanned situations (but not transformed into run-
time code or configuration to limit their complexity).

Components can query the engineering ontology at run time with query languages
like SPARQL4 (SPARQL Protocol and RDF Query Language), which provide the
components with the full expressive power of ontologies, including the ability to
derive new facts by reasoning. In addition, components can feed back interesting
observations into the run-time information collection of the engineering ontology and
therefore help to improve the design-time models (e.g., by improving estimated
process properties with analysis of actual run-time data) and/or check the information
based on a certain set of assertions. Furthermore, valuable deployment information
can also be stored in the engineering ontology in order to support and enhance for
further deployments.

Figure 2 shows the three different layers involved in SAW: a) the business layer
for production planning to fulfil customer orders by assigning optimal work orders to
the workshop; b) the workshop layer for coordinating the complex system of transport
elements and machines to assemble smaller basic products into larger more compre-
hensive products according to the work orders; and c) the operation layer for monitor-
ing the individual transport system elements and machines to ensure their contribu-
tions to the workshop tasks. Those three layers are divided into two parts based on the
time those layers worked on, namely design time (development) and run time (usage).

4 www.w3.org/TR/rdf-sparql-query/

15

Figure 2. Engineering Ontology Overview.

In prior work [21], we proposed a data modelling approach that helps structuring
large ontologies using ontology building blocks, so-called “Ontology Areas”. An
ontology area is a part of an ontology, which is meaningful for a stakeholder and
which helps ontology users to manage a complex ontology. The combination of all
needed ontology area represents the overall ontology for supporting the original engi-
neering process. An ontology area is a subset of an ontology as a building block that
can solve a certain task. The ontology can be broken into ontology areas based on
several aspects, for example by time, volatility, layer and roles. Figure 2 shows the
breakdown of ontology into several ontology areas based on the stakeholder layers
(business, workshop, operation) and the time the models are mostly used (design time
and run time). Some parts of the data mode are much more volatile than others, e.g.,
run-time process measurements compared to design-time workshop layout.

4.2 Runtime Decision 1 – Change of Conveyor Directions

A Change-Direction-Algorithm (CDA) is used to handle a breakdown of conveyors
which might lead to unreachable destinations (machines). The CDA is able to find the
best stable configuration of the transport system by changing the directions of specific
conveyors [22].

16

Each component of the transport system (e.g. conveyor belts, nodes, etc.) is
represented and controlled by a corresponding Automation Agent [23] — an auto-
nomous semantic entity responsible for the maintenance of the local data described in
its world model. Besides the Automation Agents we also introduced the Contact
Agent (CA) [24], which is created at the start-up of the system and is always active.
Its main responsibilities are to supervise the functionality of the system and in the
case that one part of the system collapses this agent considers its influence on the
system performance and, if significant, undertakes particular steps in order to bring
the system back into the optimal state.

The system uses the CDA and reacts on failures as follows:

1) The hardware of the system detects the failure using sensors. The low-level
control informs the corresponding high-level control through the low-
level communication interface [25].

2) Based on the given information the agent updates its knowledge base and
informs all related agents about the detected failure. Each node has to re-
calculate its routing table.

3) Furthermore, the agent also informs the CA, which is responsible for the
overall system functionality.

4) The CA starts the CDA and compares its results with the actual system
state.

5) In the case that the CDA recommends a new configuration, the CA updates
its ontology, requests conveyor agents of concerned conveyors to change
directions, and informs node agents to update their system representation.

6) Each node agent will recalculate and update its routing table. Having accu-
rate information and an up-to-date world model of the system is of prima-
ry importance for nodes. Due to their role to receive pallets coming from
input conveyors and —according to their destinations — to route them to
the appropriate output conveyors.

Listing 1 shows the Prolog code (we use the Prolog notation for simplicity reasons)

for detecting routes between two machines. There are 4 conveyors that connect ma-
chine A and machine B, machine B and junction C, junction C and junction D, and
machine A and junction D. The connection between two nodes is defined bidirection-
al, i.e., whether there is a conveyor from a node to another node or vice versa. The
routes from a node to another node are specified either as a connection directly from
the second node to the first node (backtrack) or if there is a connection from the first
node to the next node on the list of the nodes on the route to second node. This is
done recursively. Hence the route from machine A to machine B can be discovered by
using the query route(machineA,machineB,Y). This query returns two results, namely
machine A junction D junction C machine B and machine A machine B,
which means if the conveyor from machine A to machine B is failing, there is the
possibility to use an alternative route.

This query requires design time workshop layout information regarding conveyors
that are connected to machines or to other conveyors to check possible routes and
change conveyor directions if required.

17

conveyor('machineA','machineB').
conveyor('machineB','junctionC').
conveyor('junctionC','junctionD').
conveyor('junctionD','machineA').

connect(NodeX,NodeY) :- conveyor(NodeX,NodeY),
 conveyor(NodeY,NodeX).

route(Node1,Node2,Way) :- go(Node2,Node1,[],Way).

go(Node,Node,Oldway,[Node|Oldway]).
go(Node1,Node2,Oldway,Way) :- connect(Node1,ANode),
 member(ANode,Oldway),
 go(ANode,Node2,[Node1|Oldway],Way).

?- route(machineA,machineB,Y).
Y = [machineA, junctionD, junctionC, machineB].
Y = [machineA, machineB].

Listing 1. CDA Query for detecting routes between two machines.

4.3 Runtime Decision 2 – Machine Reconfiguration

The second scenario deals with the possible reconfiguration of machines. Since there
may be available modular assembly machines that can perform more than one differ-
ent machine function, there always is the option to reconfigure a certain machine;
either to provide a machine function in case of a failure of the original machine pro-
viding that function, or to provide an additional instance of this machine function to
increase the throughput. However, this reconfiguration does not only may take essen-
tial time, but may also be not required at all, since it depends on the type and number
of (future) orders to be produced. All of this information needs to be taken into con-
sideration before machine reconfiguration should take place, and since these consid-
erations may become quite complex, automation support is required for an efficient
and effective machine reconfiguration process.

Listing 2 shows the Prolog code for calculating the reconfiguration time of a ma-
chine and comparison with the repair time needed to repair the failed machine provid-
ing the required machine function, so the operator can decide whether to reconfigure
an alternative machine to provide the required machine function or wait for the repair
of the failed machine. We have the design time information regarding the time needed
to disassemble the machine function mf1 from machine A and also regarding the time
required to assemble machine function mf1 to machine B. Hence, the reconfiguration
time is calculated as sum of disassembly and assembly time of machine function mf 1.
By applying the query reconfigure(mf_1), we can check whether the time required to
reconfigure an alternative machine is smaller than the time needed to repair the failed
machine, which is true for the used exemplary values.

This query requires design time machine configuration information regarding the
time required to disassemble and assemble machine function from certain machines,
as well information regarding standard repair times of machines. Then we can com-

18

pare the time needed to reconfigure an alternative machine to provide a required ma-
chine function or to repair failed machine.

disassembly('machineA','mf_1',100).
assembly('machineB','mf_1',200).

reconfiguration_time(MachineFunction,Time) :-
 disassembly(_,MachineFunction,DisassemblyTime),
 assembly(_,MachineFunction,AssemblyTime),
 Time is DisassemblyTime + AssemblyTime.

repair_time('mf_1',500).

reconfigure(MachineFunction) :-
 reconfiguration_time(MachineFunction,TimeA),
 repair_time(MachineFunction,TimeB),
 TimeA =< TimeB.

?- reconfigure(mf_1).
true.

Listing 2. Query for calculating the reconfiguration time of a machine.

4.4 Runtime Decision 3 – Machine Maintenance Preparation

A third relevant run-time decision in the production automation scenario is the
decision when to perform machine maintenance tasks in order to keep a certain
minimum level of production output. This decision could also be taken during design
time, resulting in a decreased ability to react to new or changing environment
conditions (e.g., failures, reconfiguration). Since system flexibility supports
operational efficiency in production automation, the decision when to perform
machine maintenance tasks (e.g., cleaning, refurbishment) and the preparations for
these tasks (i.e., emptying the machine buffers) could be taken by the machines
themselves taking into account the state of other machines and workshop environment
conditions. The idea is to coordinate the maintenance tasks of a set of related
machines to minimize the impact on the overall production process. This planned
maintenance should also be reported to a controlling system (e.g., an ERP system) in
order to allow in-time reaction to the future capacity changes.

Listing 3 shows the Prolog code for calculating the total runtime of a machine. By
using this code, the operator can calculate the total time to run all machine functions
of a specific machine. The operator can check whether the total time is not exceeding
the maximal runtime of the machine. By using the query overuse(‘machineA’), we
can check whether the machine A overuses the maximal runtime allowed by the simu-
lation workshop. In the used example, the total time is still below the maximal al-
lowed runtime.

This query requires design time machine configuration information regarding the
different times needed to run each machine function of particular machines.

19

run('machineA','mf_1',50).
run('machineA','mf_2',75).
run('machineA','mf_3',100).

list_of_run_time(List,X) :-
 findall(T,run(X,MF,T),List).

list_sum([], 0).

list_sum([Head | Tail], TotalSum) :-
 list_sum(Tail, Sum1),
 TotalSum is Head + Sum1.

total(X,Time) :-
 list_of_run_time(List,X),
 list_sum(List,Time).

maximal_runtime('machineA',300).

overuse(MachineName) :-
 total(MachineName,TimeA),
 maximal_runtime(MachineName,TimeB),
 TimeA > TimeB.

?- overuse('machineA').
false.

Listing 3. Query for calculation the total runtime of a machine.

5 Discussion and Conclusion

Engineers of complex software-intensive systems such as the “Simulator of Assembly
Workshops” (SAW) system, who want to adapt the system at runtime, need informa-
tion from software models that reflect dependencies between components at design
and run time, e.g., the workshop layout, customer orders and assembly procedures
that translate into needs for machine function capacities over time; and the coordina-
tion of tasks for redundant machines in case of a failure. Without an integrated view
on relevant parts of both design-time and run-time models inconsistencies from
changes and their impact are harder to evaluate and resolve between design and run
time. Better integrated engineering knowledge can improve the quality of decisions
for run-time changes to the system, e.g., better handling severe failures with predicta-
ble recovery procedures, lower level of avoidable downtime, and better visibility of
risks before damage occurs.

In this paper, we presented an approach to improve support for runtime decision
making using an engineering ontology. This engineering ontology provides a better
integrated view on relevant engineering knowledge in typical design-time and runtime
models, which were originally not designed for machine-understandable integration.
We illustrated and showed the feasibility of the engineering ontology approach with
three exemplary scenarios (change of conveyor directions, machine reconfiguration

20

and machine maintenance preparation) from the production automation domain, an
extensive empirical evaluation will be performed in our future research work.

Based on this evaluation, we addressed the following research issues:
RI-1. Efficiency and effectiveness of the proposed engineering ontology. The

engineering ontology provides a better integrated view on relevant engineering know-
ledge contained in typical design-time and run-time models in machine-
understandable form to support runtime decisions. Another benefit is the possibility to
define assertions in the engineering ontology which are checked based on the run-
time information input of the running components. Further, the quality of information
presented to an operator is improved since all information both from design-time as
well as from run-time is available, leading to more intelligent run-time analysis and
decision support.

RI-2. Scalability of the proposed engineering ontology. Typically, the engineer-
ing ontology can become very large and complex compared to the basic data model
(such as used in a data base to automate run-time processes) if they include several
aspects on a domain and some parts of the data model are volatile. In this paper, we
proposed to use a data modeling approach based on ontology building blocks, so-
called “Ontology Areas” [21], which allow solving tasks with smaller parts of the
overall ontology. Ontology Areas also improve the efficiency of data collection task
for decision making by lowering the cognitive complexity for designers and users of
the ontology.

Future Work. While the engineering ontology can be seen as a comprehensive on-
tology, which stores and uses engineering knowledge both at design time and run
time, more manageable, their application needs the effort of designers for structuring
the overall ontology and for building task-specific smaller ontologies. Thus we will
conduct empirical studies on the effort needed to design and use the engineering on-
tology. Future work could include human-subject experiments to assess complexity
and efficiency more rigorously.

Acknowledgments. This work has been supported by the Christian Doppler For-
schungsgesellschaft and the BMWFJ, Austria; and also by the FIT–IT: Semantic
Systems program, an initiative of the Austrian federal ministry of transport, innova-
tion, and technology (bm:vit) under contract FFG 815132.

References

1. Merdan, M., Moser, T., Wahyudin, D., Biffl, S.: Performance evaluation of workflow
scheduling strategies considering transportation times and conveyor failures. International
Conference on Industrial Engineering and Engineering Management. IEEE (2008) 389-394

2. Jennings, N.R., Bussmann, S.: Agent-based control systems: Why are they suited to
engineering complex systems? Control Systems Magazine, IEEE 23 (2003) 61-73

3. Sycara, K.P.: Multiagent systems. AI magazine 19 (1998) 79-92
4. Kulvatunyou, B., Cho, H., Son, Y.J.: A semantic web service framework to support

intelligent distributed manufacturing. Int. J. Know.-Based Intell. Eng. Syst. 9 (2005) 107-
127

5. Smith, S.F., Becker, M.A.: An ontology for constructing scheduling systems. Working
Notes of 1997 AAAI Symposium on Ontological Engineering. AAAI Press (1997)

21

6. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The Enterprise Ontology. Knowl. Eng.
Rev. 13 (1998) 31-89

7. Fox, M.S., Barbuceanu, M., Gruninger, M.: An organisation ontology for enterprise
modeling: Preliminary concepts for linking structure and behaviour. Computers in Industry
29 (1996) 123-134

8. McLean, C.R., Lee, Y.T., Shao, G., Riddick, F.: Shop data model and interface
specification. NISTIR 7198. National Institute of Standards and Technology (2005)

9. Grüninger, M., Kopena, J.B.: Planning and the Process Specification Language. WS2
ICAPS 2005 (2005) 22-29

10. Lemaignan, S., Siadat, A., Dantan, J.-Y., Semenenko, A.: MASON: A Proposal For An
Ontology Of Manufacturing Domain. IEEE Workshop on Distributed Intelligent Systems:
Collective Intelligence and Its Applications. IEEE Computer Society (2006) 195-200

11. Leitão, P., Restivo, F.: ADACOR: A holonic architecture for agile and adaptive
manufacturing control. Computers in Industry 57 (2006) 121-130

12. Vyatkin, V.V., Christensen, J.H., Lastra, J.L.M.: OOONEIDA: an open, object-oriented
knowledge economy for intelligent industrial automation. Industrial Informatics, IEEE
Transactions on 1 (2005) 4-17

13. Lopez Orozco, O.J., Martinez Lastra, J.L.: Using semantic web technologies to describe
automation objects. International Journal of Manufacturing Research 1 (2006) 482-503

14. González, E.J., Hamilton, A.F., Moreno, L., Marichal, R.L., Muñoz, V.: Software
experience when using ontologies in a multi-agent system for automated planning and
scheduling. Softw. Pract. Exper. 36 (2006) 667-688

15. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: What are ontologies, and why do
we need them? IEEE Intelligent Systems and Their Applications 14 (1999) 20-26

16. Long, W.: Construct MES Ontology with OWL. ISECS International Colloquium on
Computing, Communication, Control, and Management (CCCM '08), Vol. 1 (2008) 614-
617

17. Baclawski, K., Kokar, M.K., Kogut, P.A., Hart, L., Smith, J., Letkowski, J., Emery, P.:
Extending the Unified Modeling Language for Ontology Development. International
Journal of Software and Systems Modeling (SoSyM) 1 (2002) 142-156

18. Hepp, M., De Leenheer, P., De Moor, A., Sure, Y.: Ontology Management: Semantic Web,
Semantic Web Services, and Business Applications. Springer-Verlag (2007)

19. Moser, T., Schatten, A., Sunindyo, W.D., Biffl, S.: A Run-Time Engineering Knowledge
Base for Reconfigurable Systems. Technical Report (available at: http://bit.ly/hOr9Tf),
Vienna, Austria (2009)

20. Andreolini, M., Casolari, S., Colajanni, M.: Models and framework for supporting runtime
decisions in Web-based systems. ACM Trans. Web 2 (2008) 1-43

21. Biffl, S., Sunindyo, W.D., Moser, T.: Bridging Semantic Gaps Between Stakeholders in the
Production Automation Domain with Ontology Areas. 21st International Conference on
Software Engineering & Knowledge Engineering (SEKE 2009). KSI (2009) 233-239

22. Koppensteiner, G., Merdan, M., Hegny, I., Weidenhausen, G.: A change-direction-
algorithm for distributed multi-agent transport systems. Mechatronics and Automation,
2008. ICMA 2008. IEEE International Conference on (2008) 1030-1034

23. Vallée, M., Kaindl, H., Merdan, M., Lepuschitz, W., Arnautovic, E., Vrba, P.: An
automation agent architecture with a reflective world model in manufacturing systems.
IEEE International Conference on Systems, Man and Cybernetics. IEEE Press (2009) 305-
310

24. Merdan, M.: Knowledge-based Multi-Agent architecture applied in the assembly domain
(Available at:http://www.ub.tuwien.ac.at/diss/AC05040230.pdf). PhD Thesis, VUT (2009)

25. Merdan, M., Lepuschitz, W., Hegny, I., Koppensteiner, G.: Application of a
communication interface between agents and the low level control. Autonomous Robots
and Agents, 2009. ICARA 2009. 4th International Conference on (2009) 628-633

22

