
A Semantic Web Representation of a Product
Range Specification based on Constraint

Satisfaction Problem in the Automotive Industry

Fadi Badra1, François-Paul Servant2, and Alexandre Passant1

1 Digital Enterprise Research Institute
National University of Ireland, Galway, Ireland

firstname.lastname@deri.org
2 Renault SA

13 avenue Paul Langevin, 92359 Plessis Robinson, France
francois-paul.servant@renault.com

Abstract. Product Range Specification (PRS) in the automotive world
is one of the most complex PRS that exists in industrial contexts. PRS
plays therefore a key role in the information system of an automaker: re-
lated data pervades many systems, and numerous applications are using
it. This is the case at Renault, where PRS is modelled as a Constraint
Satisfaction Problem. In this paper, we study how to represent the ob-
jects, concepts and services related to such a PRS using Semantic Web
standards. Plugging them into a Linked Data based architecture enables
with new ways to access corresponding data and tools in the whole car
manufacturing and selling process.

Keywords: Constraint Satisfaction Problem, Product Range Specifica-
tion, Enterprise Linked Data, RDF(S), Configuration

1 Introduction and Motivation

In order to cut the cost of accessing data and exchanging it between systems
— both internally and externally — Renault, one of the world’s largest au-
tomakers3, is considering the use of Linked Data principles and Semantic Web
technologies in its information system. Several prototypes were done in the past
years [12], and the first operational application based on Linked Data at Renault
was released in early 2010, enabling the vision of “Linking Enterprise Data” [16]
in the company. To go one step further, Renault aims at building a Semantic
Web compliant representation of the objects, concepts and services related to its
Product Range Specification (PRS). PRS is used to specify the set of all possi-
ble car configurations that an automaker can sell. Several reasons motivate the
representation of PRS into Renault’s current Linked Data infrastructure. First,
PRS impacts many business tasks, and is a core component of Renault’s infor-
mation system. Product diversity being huge and complex, dedicated tools and

3 http://renault.com

37

2

services are required to handle it. Moreover, PRS related data pervades many
systems, and must be used in many applications which, for instance, must refer
to subsets of the range (such as the “Twingo petrol with air conditioning”), and
must state things about them (starting price, features, available options, etc.).
Hence, enabling easier access to PRS data using the Linked Data principles,
and making the PRS functionalities available as REpresentational State Trans-
fer (REST) services, would be very rewarding. In addition, representing PRS in
Semantic Web format would provide efficient ways to share data with industrial
partners.

On the other hand, PRS data is not plain vanilla relational data. That could
be a pain point within a Linked Data framework. In the evaluation of Linked
Data for Renault, we need therefore to carefully check how this difficulty can
be overcome. If the deployment of Semantic Web technologies is to be expanded
at Renault, we need to represent and manipulate the objects of the PRS in the
Web’s Resource Description Framework (RDF). If this turns out to be impossi-
ble, RDF cannot be the solution for data modelling at Renault.

From a general perspective, Renault’s PRS can be modelled as a Constraint
Satisfaction Problem (CSP). Renault has developed several tools, based on a
compiled representation of this CSP, for the many PRS-related questions that
need to be answered in day to day operation of business. Thus, instead of rep-
resenting PRS using Semantic Web technologies, we decided to represent Con-
straint Satisfaction Problems as such. This also bridges the gap between CSP
and Semantic Web, and facilitates exchanges with academic partners, for in-
stance for benchmark purposes. Yet, so far, we limited ourselves to the kind of
CSP used at Renault (CSP with finite domain variables), and do not pretend to
cover the whole question of CSP in RDF, which may come at a later stage.

From Renault’s perspective, requirements on the representation of PRS ob-
jects include that the representation language is a published W3C standard and
that open-source Java tools support this standard (both for producing and con-
suming it). Furthermore, its syntax must be serialisable in RDF, or at least allow
a serialisation of the main PRS objects, so that the latter can be exchanged with
Renault’s partners. Succinctness and readability of the syntax is also a require-
ment in order to limit data transmission bandwidth and to enable Semantic-
Web agnostic developers to understand the representation format. Hence, the
proposed solution must find the right trade-off between strict standard compli-
ance (no extensions to existing standards are required to be implemented by
the Semantic Web client for reading the data), usability and conciseness of the
description. Finally, the proposed solution should build upon the existing PRS
infrastructure. Note that the purpose of this work is strictly about defining a
representation of PRS data, not about providing tools for reasoning over it: all
reasoning tasks on the PRS knowledge base are to be left to the existing CSP
reasoner at Renault, which is already highly efficient and optimised.

Overall, this paper discusses how we represented PRS objects using Semantic
Web technologies, and how we applied this in the industrial context of car man-
ufacturing. The next section introduces Renault’s Product Range Specification

38

3

and shows how it is modelled as a constraint network. Section 3 presents some
use cases of applications that need to represent, store, manipulate, or exchange
different PRS objects. Section 4 gives some related work and discusses our mod-
elling choices regarding a Semantic Web representation of the objects of the PRS.
Section 5 presents an RDF Schema representation of the main PRS objects. Sec-
tion 6 compares this representation with its corresponding OWL representation
and in section 6 with its corresponding SPARQL representation. Section 7 high-
lights a RESTful API developed to provide the functionalities developed over
the PRS. Finally, section 8 concludes the paper and gives some future work.

2 Product Range Specification

2.1 Modelling vehicle diversity

PRS is used by Renault to specify all possible car configurations and comes as
a lexicon, i.e., a set of discrete variables representing the descriptive features
or attributes of a vehicle (body type, engine type, gearbox type, colour, etc.),
together with a set of constraints that restrict the possible combinations of vari-
able assignments. A particular vehicle is uniquely defined by a tuple of values,
one and only one per variable. Constraints invalidate some of the possible car
configurations to reflect industrial, engineering or marketing imperatives. The
purpose of the PRS is to specify Renault’s vehicle diversity, that is, the set of
the distinct cars that Renault can build. The size of this set being very big
(exceeding 1020), it cannot be enumerated and it must therefore be defined in
intention. Yet, product range is not only huge, it is also complex, because of
numerous technical, commercial and legal constraints: should every combination
of distinctive features and options be possible, the number of distinct vehicles
would be in the order of 1025 rather than 1020. To address these issues, fast and
reliable reasoning services are required. To this aim, the PRS vocabulary and
constraints are expressed as a constraint network and a CSP solver is used for
reasoning over this constraint network [3].

2.2 Modelling PRS as a constraint network

A constraint network consists of a finite set of variables X such that each variable
x ∈ X is associated with a finite domain D(x) denoting the set of values allowed
for x, and a finite set of constraints C that restricts the values the variables can
simultaneously take. A constraint c ∈ C is a subset of the Cartesian product on
domains: c ⊆ D(x1)×D(x2)× . . .×D(xn). A solution to a constraint network
is the assignment of a value to each variable such that all the constraints are
satisfied. A constraint network is said to be satisfiable if it admits at least a so-
lution. To a constraint network is associated the constraint satisfaction problem,
which task is to determine if such a constraint network is satisfiable. Renault’s
PRS is modelled as a constraint network, in which a solution (i.e., an assignment
of all variables of X) completely defines a particular vehicle. A vehicle range is

39

4

defined by a partial assignment of variables of X . Therefore, some constraints
will be represented as Boolean expressions on fluents. A fluent is a pair (x,A),
where x ∈ X and A ⊆ D(x). A fluent is elementary when A is a singleton (it
thus represents an assignment of x).

3 Use cases

3.1 The Bill of Materials

The Bill of Materials, which is the process of defining the parts used in each
vehicle of the range, is organised in “generic parts”: a generic part is a function
fulfilled by a part. For instance, the steering wheel, as a function, is a generic
part which may be fulfilled by different steering wheels, as parts, depending
on the vehicle. The relationships between the PRS, the generic parts and the
corresponding real parts are defined by Boolean expressions called “use cases”:
the use case of a part is a Boolean expression (over the variables of the PRS)
specifying on which vehicles the part is used. This definition of the references
of parts corresponding to a given “generic part” is equivalent to defining a new
variable whose part references constitute the list of possible values. These values
have to be defined with respect to the variables of the PRS4. Basically: any
vehicle has one and only one steering wheel, as part.

3.2 Accessing after-sales documentation

One user wants to find, for instance, how to remove the gearbox of the car under
repair. Assuming methods are tagged with their subject, this looks like a simple
SPARQL query — and the first part of the question, indeed, is a simple SPARQL
query, such as “select documents where the subject is gearbox removal”. Yet,
filtering on the vehicle is more tricky: each document has a “condition” property,
which points to the set of vehicles for which the document in question is relevant.
This condition must be evaluated against the vehicle to decide whether the
document must be returned by the query or not. In other words, the service
accessing the technical documentation has two input parameters, one being the
vehicle (possibly only partially defined with regards to PRS variables), the other
one being a standard SPARQL query over documents described with metadata.
We could even consider that any vehicle has its own SPARQL endpoint that
provides access to its documentation.

3.3 Exchanging PRS related information with partners

It is not uncommon that automotive constructors need to exchange information
related to their respective PRS. This occurs for instance when one of them
assembles in its own plants cars conceived by the other one, or sell under its own
brand cars conceived and / or assembled by the other one. In such cases, each

4 See [3] for a description of the controls needed for the Bill of materials.

40

5

one has its own definition of the PRS. The core of it originates of course from the
constructor who conceived the model. Yet, even before adding its own marketing
constraints, the other one will first rephrase this PRS using the terms it is used
to. This corresponds to the definition of new variables and attached values, based
on the original ones, though the use of Boolean expressions . Several variables
can be involved in the definition of a given value. Here’s a real world example,
regarding the seats and their features (such as “adjustable height with lumbar
support”) : one of the constructor uses the two variables “driver’s seat” and
“passenger’s seat”, while the other one uses ”left seat” and “right seat”. Cross
definition of the values involves the variable “traffic flow direction”.

This boils down to the creation of translation tables between PRS vocabu-
laries. Tools to assist in the creation of such translations needs (for the GUI)
information about the variables and values (typically what we put into a RDF
description, such as labels, etc.). CSP based computation is necessary to control
the validity of the translation table.

4 Representing constraints on the Semantic Web

Constraint satisfaction is an important reasoning paradigm in artificial intelli-
gence. Constraints are essentially declarative, which makes them very well suited
for knowledge sharing and reuse [10]. In [11], an XML format is proposed that
can be used to represent CSP instances, as well as quantified or weighted CSP
instances. While no standard formalism currently exist to represent constraints
on the Semantic Web, several languages have been proposed to extend existing
Semantic Web standards in order to express various types of constraints.

4.1 Representing constraints in OWL

Different constraint languages based on OWL/SWRL have been proposed. For
example, CIF/SWRL [6] extends SWRL with quantifiers and nested implica-
tions in order to express complex range-restricted constraints. [9] further extends
CIF/SWRL to add disjunction, negation in rule antecedents and the ability to
use any OWL description in the scope of quantifiers. A complementary approach
can be found in [5], where OWL is extended to support arithmetic constraints.
But these languages are not currently Semantic Web standards and no imple-
mentation is to be found. Besides, the semantics of OWL does not seem well
suited for constraint checking because it makes the open world assumption and
it does not adopt the unique name assumption. Indeed, though a constraint
can be represented in many different ways, including mathematical inequalities,
logical formulas or matrices, it can be seen conceptually as the set of all legal
compound labels for a set of variables [14]. In this regard, constraint satisfac-
tion is very close to database theory, and a constraint satisfaction problem can
even be expressed as a database-theoretic problem [15]. This has important im-
plications regarding the choice of the formalism to use to represent CSPs. In

41

6

particular, constraint satisfaction problems typically apply a closed world as-
sumption5 and a unique name assumption6 as in database modelling, which is
usually not the case on the Semantic Web [8]. For this reason, providing OWL
with a constraint-checking mechanism would require in some cases to grant sub-
sequent axioms with alternative semantics [13]. For example, value constraints
can be expressed using range restrictions but can not be checked using direct
OWL inference. The following axiom could be used to state that a car must have
its version variable set, and its value is either generic or other:

Car v ∃ version.{generic, other}

Yet, due to the open world assumption, there is no way to ensure that the
constraint is not violated on a particular dataset using strict OWL semantics,
since a missing value for the variable version in an OWL knowledge base would
not cause logical inconsistency.

4.2 Representing constraints in SPARQL

In the Semantic Web community, propositions have been made to assimilate
constraints to the SPARQL queries that can be triggered on a given RDF dataset
to check for their validity [1, 4, 13]. For example, the above constraint could be
expressed as the following SPARQL ASK query:

ASK { NOT EXISTS {

?x :version ?y . FILTER (?y != :generic && ?y != :other)

} }

In this approach, a constraint is modelled as the evaluation of a graph pattern
on a dataset, and checking its validity amounts to running the query. One of
the main benefits of this approach lie in the expressivity of the subsequent con-
straint language (the SPARQL query language has the expressive power of the
relational algebra, as shown in [2]). Besides, SPARQL/SPIN [4] provides an RDF
Schema for SPARQL queries so that they can be serialised in RDF. SPIN is not
a Semantic Web standard but provides an implementation7 on top of the Jena
API, which is already used by Renault.

4.3 Representing constraints in RIF

As Renault’s main requirement is to use a Semantic Web standard to represent
Boolean expressions, we also considered the W3C’s Rule Interchange Format
(RIF)8. In particular, RIF’s dialect RIF-BLD could fairly suit Renault’s needs

5 The closed world assumption states that if a fact is not explicitly stated, then it is
assumed to be false.

6 The unique name assumption states that two different identifiers can not refer to
the same individual.

7 http://www.topquadrant.com/topbraid/spin/api
8 http://www.w3.org/TR/rif-core/

42

7

as an interchange format for constraints but it still suffers from a lack of imple-
mentations, and at the time of writing no consistent RDF serialisation is to be
found. It can be hoped that future developments on RIF would include defining
a dedicated dialect for constraints, as well as an RDF serialisation format.

4.4 Discussion

Regarding the user’s requirements, RDF(S), SPARQL/SPIN and OWL appear
to be the best candidates to represent PRS objects. Our hypothesis here is that
an RDF(S) vocabulary might be sufficient to express the main PRS objects, all
the more so that Renault has no need for any constraint-checking mechanism. For
these reasons, we started with a direct translation of the main PRS objects into
a lightweight RDF Schema, and then studied how this representation translates
to OWL and SPARQL/SPIN.

5 An RDF(S) representation of the main PRS objects

5.1 Variables and their domains

The basic building blocks of the PRS is a set of variables and their associated
domains of values. A variable can be seen as a function associating a value to

Fig. 1. The RDF representation of a particular car.

an object (here a vehicle). Therefore, it is modelled as an RDF property:

csp:variable a rdf:Property ;

rdfs:domain csp:Solution .

The domain of values of a given variable is specified by the rdfs:range property:

43

8

:fuel rdfs:subPropertyOf csp:variable ;

rdfs:label "The car fuel type." ;

rdfs:domain :Vehicle ;

rdfs:range [owl:oneOf (: Diesel :Petrol :Electric)] .

In this example, the variable fuel can take only 3 different values: Diesel,
Petrol or Electric. A particular vehicle is assigned a URI and described using
the values it takes for different variables (Fig. 1).

5.2 Fluents

A fluent (x,A), where x ∈ X and A ⊆ D(x) is the association of a variable
and a subset of its domain of values. Two properties are introduced to model
a fluent in RDF: the property csp:var links a fluent to its variable and the
property csp:val links a fluent to its different values. For example, the fluent
(fuel,{Petrol,Diesel}) is represented by the RDF graph given in Fig. 2. In
this figure, the empty node represents a blank node, but this blank node can be
replaced by a URI in order to provide the fluent with an identifier.

Fig. 2. The RDF representation of the fluent (fuel,{Petrol,Diesel}).

5.3 Boolean expressions

To represent Boolean expressions on fluents, a class csp:BoolExpr is introduced,
along with 3 subclasses csp:And, csp:Or, and csp:Not, that model logical sub-
expressions. The Boolean operators ∧, ∨, and ¬ can be viewed as functions taking
Boolean expressions as arguments. Therefore, three properties csp:and, csp:or,
and csp:not are introduced, to link an operator to its arguments (Fig. 3). The
subject of each property can either be a blank node or a URI, thereby enabling
each Boolean expression to be given an identifier.

5.4 Subsets of the product range

This vocabulary can be used to represent subsets of the product range. For
example, the set of cars with manual gearbox and either diesel or petrol type of

44

9

Fig. 3. An RDF Schema to represent Boolean expressions.

fuel corresponds to the conjunction of fluents:

(gearbox, {Manual}) ∧ (fuel, {Petrol, Diesel})

which is written in RDF (here with Turtle syntax) as:

:myCarSet a csp:And ;

csp:and

[csp:var :gearbox ; csp:val :Manual],

[csp:var :fuel ; csp:val :Petrol ,: Diesel] .

5.5 Constraints given in intension

Constraints are given either in intension or in extension. Constraints given in
intension are represented using Boolean expressions on fluents. An example of
such constraint expressed in propositional logic is: Electric =⇒ NoGearbox.
This constraint states that electric cars have no gearbox. We could have intro-
duced a representation of the Boolean operator =⇒ in our vocabulary, but
it would be only syntactic sugar since all Boolean operators can be rewritten
using solely the ∧, ∨, and ¬ operators. Indeed, the previous constraint can be
rewritten as the following Boolean expression on fluents:

¬ (fuel, {Electric}) ∨ (gearbox, {NoGearbox})

This Boolean expression is represented in RDF as:

:myConstraint a csp:BoolExpr ;

csp:or

[csp:not [csp:var :fuel ; csp:val :Electric]],

[csp:var :gearbox ; csp:val :NoGearbox] .

45

10

5.6 Constraints given in extension

Other constraints are given in extension, and simply consist in the list of all
valid combinations of values of a set of variables. Consider for example the
compatibility array given in Tab. 1 for the variables fuel and gearbox. In this

XXXXXXXXXgearbox

fuel
Diesel Petrol Electric

Manual x x

Automatic x x

NoGearbox x

Table 1. A compatibility array for the variables fuel and gearbox.

array, the crosses specify the valid combinations of values of these two variables.
So the interpretation of such a compatibility array is that uncrossed combinations
are illegal, i.e., no solution of the constraint network should include one of these
combinations. For some compatibility arrays, it is also required that each crossed
combination must be satisfiable, i.e., there must exist at least one solution of the
constraint network that includes this combination. A list of valid combinations
of values for a set of variables is represented in RDF(S) by a list of tuples, i.e., an
RDF list of conjunctions of elementary fluents. The presence of the additional
requirement regarding the satisfiability of each crossed combination is modelled
by adding an attribute csp:isSatisfiable that points to a Boolean literal. So
the compatibility array given in Tab. 1 is represented in RDF by:

:myRelation a csp:Relation ;

csp:isSatisfiable

"true"^^<http ://www.w3.org /2001/ XMLSchema#Boolean > ;

csp:supports (

[csp:and

[csp:var :fuel ; csp:val :Diesel],

[csp:var :gearbox ; csp:val :Manual]]

[csp:and

[csp:var :fuel ; csp:val :Petrol],

[csp:var :gearbox ; csp:val :Manual]]

[csp:and

[csp:var :fuel ; csp:val :Diesel],

[csp:var :gearbox ; csp:val :Automatic]]

[csp:and

[csp:var :fuel ; csp:val :Petrol],

[csp:var :gearbox ; csp:val :Automatic]]

[csp:and

[csp:var :fuel ; csp:val :Electric],

[csp:var :gearbox ; csp:val :NoGearbox]]) .

46

11

6 Comparison with OWL and SPARQL/SPIN

The syntax of language presented so far seems to be very close to the OWL RDF
syntax and the transformation from our language to OWL is quite straight-
forward. For example, the properties csp:or, csp:and and csp:not can be
translated into the OWL properties owl:intersectionOf, owl:unionOf and
owl:complementOf. A fluent can also be represented in OWL as an existential
restriction. For example, conjunction of fluents

(gearbox, {Manual}) ∧ (fuel, {Petrol, Diesel})

which was introduced in section 5.4 to represent the set of cars with manual
gearbox and either diesel or petrol type of fuel can be written in OWL as:

:myCarSet rdf:type owl:Class ;

owl:equivalentClass

[rdf:type owl:Class ;

owl:intersectionOf (

[rdf:type owl:Restriction ;

owl:onProperty :fuel ;

owl:someValuesFrom

[rdf:type owl:Class ;

owl:oneOf (: Petrol :Diesel)]]

[rdf:type owl:Restriction ;

owl:onProperty :gearbox ;

owl:someValuesFrom

[rdf:type owl:Class ;

owl:oneOf (: Manual)]])] .

However, Renault has currently no need of using OWL semantics for con-
straint satisfaction as the reasoning is done by its external CSP solver, and the
OWL RDF syntax is somewhat cumbersome. Thus, adopting OWL RDF syntax
only as a serialisation means might be of limited interest. On the other hand,
providing a complete representation of a CSP instance in OWL that would en-
able constraint satisfaction by the means using OWL inference would require
supplementary axioms (Tab. 2). These axioms correspond to a set of constraints
that are implicitly added by the CSP solver at execution time but are not ex-
plicitly represented in the definition of the CSP instance. They would be needed
in OWL e.g., to make the unique name assumption and to ensure that in any
solution of the CSP a variable is assigned one and only one value.

A translation to SPARQL/SPIN syntax would be also quite straightforward.
A Boolean expression corresponds to a SPARQL abstract query. The csp:and,
csp:or and csp:not operators translate respectively to a set of basic graph
patterns, a UNION of basic graph patterns, and a NOT EXIST filter expression.
For example, the above conjunction of fluents could be expressed as the following
SPARQL query, in which ?this is the special SPIN variable that binds to the
current instance of the class the constraints apply to:

47

12

ASK {

?this :gearbox :Manual .

{ ?this :fuel :Diesel } UNION { ?this :fuel :Petrol }

}

The SPIN serialisation of this query gives:

:myCarSet a sp:Ask ;

sp:where ([sp:object :Manual ;

sp:predicate :gearbox ;

sp:subject spin:_this

] [a sp:Union ;

sp:elements (([sp:object :Diesel ;

sp:predicate :fuel ;

sp:subject spin:_this

]) ([sp:object :Petrol ;

sp:predicate :fuel ;

sp:subject spin:_this

]))

]) .

However, expressing PRS constraints in SPARQL/SPIN seems a bit artificial
since no constraint-checking mechanism is needed by Renault, which relies on
its own CSP solver to check whether a constraint (or a set of constraints) is
satisfied or not.

Constraint Additional Axiom Description

Unique Name
Assumption

DifferentIndividuals
Two different variable (resp., value) iden-
tifiers can not refer to the same individual.

var at most 1 FunctionalProperty
In any solution of the CSP a variable is
assigned at most one value.

var at least 1 SomeValuesFrom
In any solution of the CSP a variable is
assigned at least one value.

Table 2. Some additional axioms that would need to be added to an OWL knowledge
base to enable constraint satisfaction using OWL inference.

7 Adhering to the Linked Data principles

One last step is required to seamlessly use these Boolean expressions in a Linked
Data architecture: recognising them as first class citizens, a status they truly
deserve, as they do represent very concrete “real world things”, i.e. precisely
characterised sets of vehicles, in the case of Renault PRS. To do so, we also need
to assign them URIs, and — as per compliance with the Linked Data principles
— making those URIs dereferenceable, and returning information about corre-
sponding subset of the range (first of all their definition in RDF) when they

48

13

are accessed. However, as the possible number of distinct cars (and therefore of
subsets of the range) is so huge, we cannot use URIs that are truly opaque: the
server in charge of returning information about them must be able to reconstruct
the Boolean expression from the URI (otherwise, we would need a database with
an infinite number of lines to store them), without storing all the possibilities
in an internal database or RDF store. All services to PRS can then be inte-
grated on the enterprise Linked Data bus as REST services. As an illustration,
and to highlight the interest of this compliance to Linked Data principles, let us
consider the configuration question.

Configuration is a very classical and challenging problem regarding PRS.
It is defined as the process of choosing interactively a vehicle by defining its
features, the CSP solver ensuring that only possible choices are proposed to the
user [7]. The configuration process can be seen as a traversal of Linked Data
provided by a REST service. At any step, the configuration state (i.e, the list of
choices already done) corresponds to a Boolean Expression over the variables of
the PRS (typically, a conjunction of elementary fluents). Following our model, a
URI provides, in particular, the links to the following step in the configuration
process (i.e. the choices that can be picked up), as well as any appropriate
marketing information (including price, description of features, etc.)

The HTML page presented to the user can be built from that data. Some
RDFa in the page maintains the link to the “real world thing” it is about — a
car that is partially defined, in other word, a subset of the range. Which is a
very interesting thing to take care of: it captures indeed the exact expression of
the customer’s choice at the moment. This opens some interesting possibilities,
in particular from a marketing point of view. One obvious example is related to
recommendations (considering for instance the association of configuration with
Facebook’s OpenGraph9 protocol and its “like” buttons). It makes no doubt
also that the inclusion of RDFa data linking to open description of products
in e-commerce context, such as GoodRelations10, will soon be useful for the
structured information it can provide to search engines.

8 Conclusion and Future Work

In this paper, an RDF(S) representation of the main objects related to Renault’s
Product Range Specification have been provided. We discussed the various re-
quirements to build this, as well as our modelling decisions and the way our
model relates with other Semantic Web standards such as OWL or SPARQL.
In addition, we discussed design patters for representing PRS on the Web, and
their applicability for end-user applications.

While our model focus on the particular PRS representation at Renault,
future work may include extensions to the model to cope with other PRS needs,
as well as using the related model as an interoperability format between various
CSP solvers. Yet, while being specific to our particular use-case, we demonstrated

9 http://ogp.me
10 http://www.heppnetz.de/projects/goodrelations

49

14

in this paper how Linked Data principles and Semantic Web technologies can be
used to model one of the core components of the manufacturing and commercial
process in the automotive industry.

Acknowledgements. The work presented in this paper is funded in part by Science
Foundation Ireland under grant number SFI/08/CE/I1380 (Lion 2) and by a
research grant from Renault SA.

References

1. Faisal Alkhateeb, Jean-François Baget, and Jérôme Euzenat. Constrained Reg-
ular Expressions in SPARQL. Technical report, EXMO - INRIA Rhône-Alpes,
Grenoble, France, 2007.

2. Renzo Angles and Claudio Gutierrez. The Expressive Power of SPARQL. In
Proceedings of the 7th International Conference on The Semantic Web, ISWC ’08,
pages 114–129, Berlin, Heidelberg, 2008. Springer-Verlag.

3. J.M. Astesana, L. Cosserat, and H. Fargier. Constraint-based modeling and ex-
ploitation of a vehicle range at Renault’s: Requirement analysis and complexity
study. In ECAI2010, Configuration Workshop Proceedings, 2010.

4. Christian Fürber and Martin Hepp. Using SPARQL and SPIN for Data Qual-
ity Management on the Semantic Web. In Business Information Systems, 13th
International Conference, volume 47 of LNBIP, pages 35–46. Springer, 2010.

5. Hak-Jin Kim, Wooju Kim, and Myungjin Lee. Semantic Web Constraint Language
and its application to an intelligent shopping agent. Decision Support Systems,
46(4):882 – 894, 2009. IT Decisions in Organizations.

6. Craig McKenzie, Peter M. D. Gray, and Alun D. Preece. Extending SWRL to
Express Fully-Quantified Constraints. In RuleML 2004, volume 3323 of LNCS,
pages 139–154. Springer, 2004.

7. Bernard Pargamin. Vehicle Sales Configuration: the Cluster Tree Approach. In
ECAI2002, Configuration Workshop Notes, 2002.

8. Peter F. Patel-Schneider and Ian Horrocks. A comparison of two modelling
paradigms in the Semantic Web. Journal of Web Semantics, 5(4):240 – 250, 2007.

9. Alun Preece, Stuart Chalmers, Craig McKenzie, Jeff Z. Pan, and Peter M.D. Gray.
A semantic web approach to handling soft constraints in virtual organisations.
Electronic Commerce Research and Applications, 7(3):264 – 273, 2008.

10. Alun D. Preece, Kit ying Hui, W. A. Gray, Philippe Marti, Trevor J. M. Bench-
Capon, Zhan Cui, and Dean M. Jones. Kraft: An agent architecture for knowledge
fusion. Int. J. Cooperative Inf. Syst., 10(1-2):171–195, 2001.

11. Olivier Roussel and Christophe Lecoutre. XML Representation of Constraint Net-
works: Format XCSP 2.1. CoRR, abs/0902.2362, 2009.

12. François-Paul Servant. Semantic Web Technologies in Technical Automotive Doc-
umentation. In Proceedings of OWLED 2007, volume 258 of CEUR Workshop
Proceedings. CEUR-WS.org, 2007.

13. Jiao Tao, Evren Sirin, Jie Bao, and Deborah L. McGuinness. Integrity Constraints
in OWL. In AAAI 2010. AAAI Press, 2010.

14. Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, London
and San Diego, 1993.

15. Moshe Y. Vardi. Constraint satisfaction and database theory: a tutorial. In Pro-
ceedings of ACM PODS ’00, pages 76–85, New York, NY, USA, 2000. ACM.

16. David Wood, editor. Linking Enterprise Data. Springer, 2010.

50

