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Abstract. Evolution of Knowledge Bases (KBs) expressed in Description Logics
(DLs) proved its importance. Recent studies of evolution in DLs mostly focussed
on model-based approaches. They showed that evolution of KBs in tractable DLs,
such as DL-Lite, suffers from inexpressibility, i.e., the result of evolution cannot be
captured in DL-Lite. What is missing in these studies is understanding: in which
DL-Lite fragments evolution can be captured, what causes the inexpressibility,
which logics is sufficient to express evolution, and whether one can approximate it
in DL-Lite. This paper provides some understanding of these issues for both update
and revision. We found what DL-Lite formulas make evolution inexpressible and
how to capture evolution in their absence. We introduce the notion of prototypes
that gives an understanding of how to capture evolution for a rich DL-Lite fragment
in FO[2]. Decidability of FO[2] gives possibility for approximations.

1 Introduction

Description Logics (DLs) provide excellent mechanisms for representing structured
knowledge by means of Knowledge Bases (KBs) K that are composed of two compo-
nents: TBox (describes intensional or general knowledge about an application domain)
and ABox (describes facts about individual objects). DLs constitute the foundations for
various dialects of OWL, the Semantic Web ontology language.

Traditionally DLs have been used for modeling static and structural aspects of
application domains [1]. Recently, however, the scope of KBs has broadened, and they
are now used also for providing support in the maintenance and evolution phase of
information systems. This makes it necessary to study evolution of Knowledge Bases [2],
where the goal is to incorporate new knowledge N into an existing KB K so as to take
into account changes that occur in the underlying application domain. In general, N
is represented by a set of formulas denoting those properties that should be true after
K has evolved, and the result of evolution, denoted K � N , is also intended to be a
set of formulas. In the case where N interacts with K in an undesirable way, e.g., by
causing the KB or relevant parts of it to become unsatisfiable, N cannot simply be
added to the KB. Instead, suitable changes need to be made in K so as to avoid this
undesirable interaction. Different choices for changes are possible, corresponding to
different approaches to semantics for KB evolution [3,4,5].

An important group of approaches to evolution semantics, that we focus in this paper,
is called model-based (MBAs). Under MBAs the result of evolution K � N is a set of
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models of N that are minimally distanciated from models of K. Depending on what the
distance between models is and how to measure it, eight different MBAs were introduced
(see Section 3 for details). Since K � N is a set of models, while K and N are logical
theories, it is desirable to represent K �N as a logical theory using the same language as
for K andN . Thus, looking for representations of K�N is the main challenge in studies
of evolution under MBAs. WhenK andN are propositional theories, representingK�N
is well understood [5], while it becomes dramatically more complicated as soon as K
and N are first-order, e.g., DL KBs [6].

Model based evolution of KBs where K and N are written in a language of the
DL-Lite family [7] has been recently extensively studied [6,8,9]. The focus on DL-Lite is
not surprising since DL-Lite is the basis of OWL 2 QL, a tractable OWL 2 profile. It has
been shown that for every of the eight MBAs one can find DL-Lite K and N such that
K � N cannot be expressed in DL-Lite [10,11], i.e., DL-Lite is not closed under MBA
evolution. This phenomenon was also noted in [6,10] for some of the eight semantics.
What is missing in all these studies of evolution for DL-Lite is understanding of:
(1) What fragments of DL-Lite are closed under model-based evolutions? What DL-Lite

formulas are responsible for inexpressibility of model-based evolutions?
(2) What are sufficient extensions of DL-Lite to capture model-based evolutions of

DL-Lite KBs? How to capture the evolutions of DL-Lite KBs in these extensions?
(3) For DL-LiteK andN , is it possible and how to do “good” approximations ofK�N ?

In this paper we study the problems (1)-(3) for so-called ABox evolution, i.e., N
is a new ABox and the TBox of K should remain the same after the evolution. ABox
evolution is important for areas, e.g., bioinformatics, where the structural knowledge
TBox is well crafted and stable, while ABox facts about individuals may get changed.
These ABox changes should be reflected in KBs in a way that the TBox is not affected.
Our study covers both the case of ABox updates and ABox revision [4].

In Sections 2 and 3 we define DL-LiteR and ABox evolution. In Section 4 we study
relationships between different MBAs. In Section 5 we introduce DL-Lite+R, a restriction
on DL-LiteR where disjointness of concepts with role projections is forbidden. We
show that DL-Lite+R is closed under most of MBA evolutions and provide tractable
algorithms computingK�N . In Section 6 we study two important MBAs where distance
between models is based on atoms and prove that DL-Lite+R is a sufficient borderline
of expressibility for these semantics: the class of KBs that are in DL-LiteR but not in
DL-Lite+R is not closed under these semantics. We also introduce and study DL-Lite I

R
that restricts DL-LiteR, extends DL-Lite+R and not closed under MBAs. In order to
capture evolution of DL-Lite I

R KBs in FO, we introduce prototypes, based on which
we show that the evolution can be expressed in FO[2] (restriction of first-order logics
that only makes use of two variables). Finally, we argue that decidability of FO[2] gives
possibilities for approximations of K � N . Proofs can be found in [12].

2 DL-LiteR

We introduce some basic notions of DLs, (see [13] for more details). We consider a logic
DL-LiteR of DL-Lite family of DLs [7,14]. DL-LiteR has the following constructs for
(complex) concepts and roles: (i) B ::= A | ∃R, (ii) C ::= B | ¬B, (iii) R ::= P | P−,
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where A and P stand for an atomic concept and role, respectively, which are just
names. A knowledge base (KB) K = (T ,A) is compound of two sets of assertions:
TBox T , and ABox A. DL-LiteR TBox assertions are concept inclusion assertions of
the form B v C and role inclusion assertions R1 v R2, while ABox assertions are
membership assertions of the form A(a), ¬A(a), and R(a, b). The active domain of K,
denoted adom(K), is the set of all constants occurring in K. The DL-Lite family has nice
computational properties, for example, KB satisfiability has polynomial-time complexity
in the size of the TBox and logarithmic-space in the size of the ABox [15,16].

The semantics of DL-Lite KBs is standard and based on first order interpretations,
all over the same countable domain ∆. An interpretation I is a function ·I that assigns
to each C a subset CI of ∆, and to R a binary relation RI over ∆ in such a way
that (¬B)I = ∆ \ BI , (∃R)I = {a | ∃a′.(a, a′) ∈ RI}, and (P−)I = {(a2, a1) |
(a1, a2) ∈ P I}. We assume that ∆ contains the constants and that cI = c, i.e., we adopt
standard names. Alternatively, we view an interpretation as a set of atoms and say that
A(a) ∈ I iff a ∈ AI and P (a, b) ∈ I iff (a, b) ∈ P I . An interpretation I is a model
of a membership assertion A(a) (resp., ¬A(a)) if a ∈ AI (resp., a /∈ AI), of P (a, b) if
(a, b) ∈ P I , and of an inclusion assertion D1 v D2 if DI1 ⊆ DI2 .

As usual, we use I |= F to denote that I is a model of an assertion F , and I |= K
to denote that I |= F for each assertion F in K. We use Mod(K) to denote the set of all
models of K. A KB is satisfiable if it has at least one model. We use entailment on KBs
K |= K′ in the standard sense. An ABox A T -entails an ABox A′, denoted A |=T A′,
if T ∪ A |= A′, and A is T -equivalent to A′, denoted A ≡T A′ if A |=T A′ and
A′ |=T A.

The deductive closure of a TBox T (of an ABox A), denoted cl(T ) (resp., clT (A)),
is the set of all TBox (resp., positive ABox) assertions F such that T |= F (resp.,
A |=T F ). Clearly in DL-LiteR cl(T ) (and clT (A)) is computable in time quadratic
in the number of assertions of T , i.e., |T |, (resp., |T ∪ A|). In our work we assume
that all TBoxes and ABoxes are closed, while results are extendable to arbitrarily KBs.
For satisfiable KBs K = (T ,A) a full closure of A, denoted fclT (A), is the set of all
membership assertions f (both positive and negative) over adom(K) such that A |=T f .

A homomorphism h from a model I to a model J is a mapping from ∆ to ∆
satisfying: (i) h(a) = a for every constant a; (ii) if α ∈ AI (resp., (α, β) ∈ P I), then
h(α) ∈ AJ (resp., (h(α), h(β)) ∈ PJ ) for everyA (resp., P ). We write I ↪→ J if there
is a homomorphism from I to J . A canonical model I of K, denoted as IcanK or just
Ican when K is clear from the context, is a model of K which can be homomorphically
embedded in every model of K [7].

3 Evolution of Knowledge Bases

This section is based on [10]. Let K = (T ,A) be a DL-LiteR KB andN a “new” ABox.
We study how to incorporate N ’s assertions into K, that is, how K evolves under N [2].
More practically, we study evolution operators that take K and N as input and return,
possibly in polynomial time, a DL-LiteR K′ = (T ,A′) (with the same TBox as K) that
captures the evolution, and which we call the (ABox) evolution of K under N . Based on
the evolution principles of [10], we require K and K′ to be satisfiable and coherent.
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Fig. 1. Left: measuring distances between models and finding local minimums.
Right: three-dimensional space of approaches to model-based evolution semantics.

Model-Based Semantics of Evolution. In model-based approaches (MBAs), the result
of evolution of a KB K wrt new knowledge N is a set K � N of models. The idea of
MBAs is to choose as K �N some models of (T ,N ) depending on their distance to K’s
models. Katsuno and Mendelzon [4] considered two ways, so called local and global, of
choosing these models of N , where the first choice corresponds to knowledge update
and the second one to knowledge revision.

The idea of the local approaches is to consider all models I of K and for each I to
take those models J of (T ,N ) that are minimally distant from I. Formally,

K � N =
⋃

I∈Mod(K)
I � N , where I � N = argmin

J∈Mod(T ∪N )

dist(I,J ).

where dist(·, ·) is a function whose range is a partially ordered domain and argmin stands
for the argument of the minimum, that is, in our case, the set of models J for which the
value of dist(I,J ) reaches its minimum value, given I . The distance function dist varies
from approach to approach and commonly takes as values either numbers or subsets of
some fixed set. To get a better intuition of the local semantics, consider Figure 1, left,
where we present two model I0 and I1 of a KBK and four modelsJ0, . . . ,J3 of (T ,N ).
We represent the distance between a model of K and a model of T ∪ N by the length
of a line connecting them. Solid lines correspond to minimal distances, dashed lines to
distances that are not minimal. In this figure {J0} = argminJ∈{J0,...,J3} dist(I0,J )
and {J2,J3} = argminJ∈{J0,...,J3} dist(I1,J ).

In the global approach one choses models of N that are minimally distant from K:

K � N = argmin
J∈Mod(N )

dist(Mod(K),J ), (1)

where dist(Mod(K),J ) = minI∈Mod(K) dist(I,J ). Consider again Figure 1, left, and
assume that the distance between I0 and J0 is the global minimum, hence, {J0} =
argminJ∈{J0,...,J3} dist({I0, I1},J ).

Measuring Distance Between Interpretations. The classical MBAs were developed for
propositional theories [5], where interpretations were sets of propositional atoms, two
distance functions were introduced, respectively based on symmetric difference “	” and
on the cardinality of symmetric difference:

dist⊆(I,J ) = I 	 J and dist#(I,J ) = |I 	 J |, (2)
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where I 	 J = (I \ J ) ∪ (J \ I). Distances under dist⊆ are sets and are compared by
set inclusion, that is, dist⊆(I1,J1) ≤ dist⊆(I2,J2) iff dist⊆(I1,J1) ⊆ dist⊆(I2,J2).
Finite distances under dist# are natural numbers and are compared in the standard way.

One can extend these distances to DL interpretations in two different ways. One way
is to consider interpretations I, J as sets of atoms. Then I 	 J is again a set of atoms
and we can define distances as in Equation (2). We denote these distances as dista⊆(I,J )
and dista#(I,J ). Another way is to define distances at the level of the concept and role
symbols in the signature Σ underlying the interpretations:

dists⊆(I,J ) = {S ∈ Σ | SI 6= SJ }, and dists#(I,J ) = |{S ∈ Σ | SI 6= SJ }|.

Summing up across the different possibilities, we have three dimensions, which give
eight semantics of evolution according to MBAs by choosing: (1) the local or the global
approach, (2) atoms or symbols for defining distances, and (3) set inclusion or cardinality
to compare symmetric differences. In Figure 1, right, we depict these three dimensions.
We denote each of these eight possibilities by a combination of three symbols, indicating
the choice in each dimension, e.g. La# denotes the local semantics where the distances
are expressed in terms of cardinality of sets of atoms.

Closure Under Evolution. Let D be a DL and M one of the eight MBAs introduced
above. We say D is closed under evolution wrt M (or evolution wrt M is expressible
in D) if for any KBs K and N written in D, there is a KB K′ written in D such that
Mod(K′) = K � N , where K � N is the evolution result under semantics M .

We showed in [10,11] that DL-Lite is not closed under any of the eight model
based semantics. The observation underlying these results is that on the one hand, the
minimality of change principle intrinsically introduces implicit disjunction in the evolved
KB. On the other hand, since DL-Lite is a slight extension of Horn logic [17], it does not
allow one to express genuine disjunction (see Lemma 1 in [10] for details).

Let M be a set of models that resulted from the evolution of (T ,A) with N . A KB
(T ,A′) is a sound approximation of M if M ⊆ Mod(T ,A′). A sound approximation
(T ,A′) is minimal if for every sound approximation (T ,A′′) inequivalent to (T ,A′), it
holds Mod(T ,A′′) 6⊂ Mod(T ,A′), i.e. (T ,A′) is minimal wrt “⊆”.

4 Relationships Between Model-Based Semantics

Let S1 and S2 be two evolution semantics and D a logic language. Then S1 is subsumed
by S2 wrt D, denoted (S1 4sem S2)(D), or just S1 4sem S2 when D is clear from the
context, if K �S1 N ⊆ K �S2 N for all satisfiable KBs K and N written in D, where
K �Si N denotes evolution under Si. Two semantics S1 and S2 are equivalent (wrt D),
denoted (S1 ≡sem S2)(D), if (S1 4sem S2)(D) and (S2 4sem S1)(D). Further in this
section we will consider K and N written in DL-LiteR. The following theorem shows
the subsumption relation between different semantics, which we also depict with solid
arrows in Figure 2. The figure is complete in the following sense: there is a solid path
between any two semantics S1 and S2 iff there is a subsumption S1 4sem S2.



6 Evgeny Kharlamov, and Dmitriy Zheleznyakov

Mod(K) :

Mod(K � N ) :

Imin I1

J min J1

Gs
# Ls

#

Ls
⊆Gs

⊆

Ga
#

Ga
⊆ La

⊆

La
# �→

�→
Fig. 2. Left: Subsumptions for evolution semantics.
“ ”: in DL-LiteR (Theorem 1). “ ”: in DL-Lite+R (Theorems 6, 7).
Dashed frame surrounds semantics under which DL-Lite+R is closed.
Right: commutation diagram for La⊆ semantics, “I ⇒ J ” denotes that J ∈ I � N .

Theorem 1. Let β ∈ {a, s} and α ∈ {⊆,#}. Then

Gβα 4sem Lβα, Gβ# 4sem Gβ⊆, and Ls# 4sem Ls⊆.

Proof. Let dist be one of the four considered distances, EG = K � N wrt Gβα and
EL = K � N wrt Lβα be corresponding global and local semantics based on dist. For
given K and N , let J ′ ∈ EG . Then, there is I ′ |= K such that for every I ′′ |= K
and J ′′ |= T ∪ N it does not hold dist(I ′′,J ′′) � dist(I ′,J ′). In particular, when
I ′′ = I ′, there is no J ′′ |= T ∪ N such that dist(I ′,J ′′) � dist(I ′,J ′), which
yields that J ′ ∈ argminJ∈Mod(T ∪N ) dist(I ′,J ), and J ′ ∈ EL. We conclude that:
Ga# 4sem La#, Ga⊆ 4sem La⊆, Gs# 4sem Ls#, Gs⊆ 4sem Ls⊆.

Now consider E# = K�N wrtLβ#, which is based on dist#, and E⊆ = K�N wrtLβ⊆,
which is based on dist⊆. Assume J ′ ∈ E# and J ′ 6∈ E⊆. Then, from the former assump-
tion we conclude existence of I ′ |= K such thatJ ′ ∈ argminJ∈Mod(T ∪N ) dist#(I ′,J ).
From the latter assumption, J ′ /∈ E⊆, we conclude existence of a model J ′′ such
that dist⊆(I ′,J ′′) ( dist⊆(I ′,J ′). This yields that dist#(I ′,J ′′) � dist#(I ′,J ′),
which contradicts the fact that J ′ ∈ E#, assuming that dist⊆(I ′,J ′) is finite. Thus,
E# 4sem E⊆ as soon as dist⊆(I,J ) is finite. This finiteness condition always holds for
when β = s since the signature of K ∪N is finite. It is easy to check that dist⊆(I,J )
may not be finite when β = a, hence, La# 64sem La⊆.

Similarly one can show that Gs# 4sem Gs⊆. It also holds that Ga# 4sem Ga⊆ due to the
finite model property in DL-LiteR. ut

5 Evolution in DL-Lite+R

Here we consider a restriction of DL-LiteR, which we call DL-Lite+R. A KB K = (T ,A)
is in DL-Lite+R if it is in DL-LiteR and T 6|= ∃R v ¬B for any role R and any
concept B. Intuitively, “+” emphasizes absence of disjointness for roles (only positive
inclusions involving roles are permitted). DL-Lite+R is defined semantically, while one
can syntactically check (in quadratic time), given a DL-LiteR KB K, whether K is in
DL-Lite+R: one computes a closure of K, checks that no assertions of the form ∃R v ¬B
are in the closure and if it is the case, then K is in DL-Lite+R. DL-Lite+R is an extension
of RDFS ontology language (of its FO fragment). DL-Lite+R adds to RDFS the ability of
expressing disjointness of concepts (A1 v ¬A2) and mandatory participation (A v ∃R).
Since DL-Lite+R restricts DL-LiteR, the semantics relations from Theorem 1) are also
correct for DL-Lite+R. We now study what further 4sem-relations hold in DL-Lite+R.
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INPUT : consistent KBs (T ,A) andN
OUTPUT: a set A′ ⊆ fclT (A) of ABox assertions

A′ := ∅; S := fclT (A);1
repeat2

choose some φ ∈ S; S := S \ {φ};3
if {φ} ∪ fclT (N ) is consistent then A′ := A′ ∪ {φ}4

until S = ∅ ;5

Algorithm 1: Algorithm AlignAlg((T ,A),N ) for A′ deterministic computation

5.1 Capturing Atom-Based Evolution

We first study evolution under La⊆. Let I be an interpretation and N a knowledge
base. An alignment of I with N , denoted Align(I,N ), is the interpretation J = {f |
f ∈ I and f is satisfiable with N}. There is a tight connection (Lemma 2) between
an alignment of a model and its evolution under La⊆ semantics. Moreover, alignment
preserves homomorphic relationship on interpretations (Lemma 3). Let N be a set of
membership assertions and I an interpretation. A union I∪N denotes the model I∪JN ,
where JN = {f | f ∈ N and f is positive}.

Lemma 2. Let K = (T ,A) and (T ,N ) be satisfiable DL-Lite+R KBs, and I |= K.
Then I � N = {Align(I,N ) ∪N}, under La⊆ semantics.

Lemma 3. Let K and N be satisfiable DL-Lite+R KBs and I be a model of K. Then
Align(IcanK ,N ) ↪→ Align(I,N ).

Lemmas 3 and 2 imply that (Ican � N ) ↪→ (I � N ) for every I ∈ Mod(K) under
La⊆, where we apply ↪→ to the sets (Ican � N ) and (I � N ), instead of their single
models. We depict this phenomenon in Figure 2, right: evolution preserves homomorphic
embeddability of Ican into I . This fundamental property implies that Ican � N consists
of the universal model of K � N wrt La⊆.

Consider an algorithm AlignAlg (see Algorithm 1) that inputs K, N , and returns the
alignment Align(Ican,N ): it drops all the assertions of fclT (A) contradicting N and
keeps the rest. Using AlignAlg we can compute K � N :

Theorem 4. Let K = (T ,A) and (T ,N ) be satisfiable DL-Lite+R KBs. Then:

K � N = Mod(T ,AlignAlg(K,N ) ∪N ) (wrt La⊆).

Note that since computation of AlignAlg(T ,A,N ) is polynomial in A and N ,
computation of K � N is also polynomial.

Example 5. Consider T = {B0 v B, B v ¬C}, A = {C(a)}, and N = B(a).
Then, fclT (A) = {C(a),¬B0(a),¬B(a)}. The alignment of (T ,A) with N is the set
AlignAlg((T ,A),N ) = {B(a),¬B(a)}. Hence, the result of evolution under every the
model-based semantics with atom-based distance is (T , {B(a),¬B0(a)}).
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Relationships Between Atom-Based Semantics. Next theorem shows that evolutions
wrt all four model-based semantics on atoms coincide wrt DL-Lite+R. We depict these
relations between semantics in Figure 2 using a dashed arrow, e.g., between La⊆ 4sem Ga#.
Note that there is a path with solid or dashed lines between any two semantics if and
only if there is a subsumption wrt DL-Lite+R.

Theorem 6. La# ≡sem La⊆ ≡sem Ga# ≡sem Ga⊆.

Theorems 6 and 4 imply that in DL-Lite+R one can use AlignAlg to compute evolution
under all MBAs on atoms.

5.2 Capturing Symbol-Based Evolution

Observe that symbol-based semantics behave differently from atom-based ones: two
local semantics (on set inclusion and cardinality) coincide, as well as two global ones,
while there is no subsumption between local and global ones, as depicted in Figure 2.

Theorem 7. The following relations hold:
(i) La⊆ 4sem Gs#, while Gs# 64sem La⊆;

(ii) Ls⊆ ≡sem Ls#, and Gs⊆ ≡sem Gs#, while Ls⊆ 64sem Gs#.

As a corollary of Theorem 7, the algorithm of computing K � N of Theorem 4 in
general does not work for computing evolution under any of the symbol-based semantics.
At the same time what it outputs is a complete approximation of all symbol-based
semantics, while it approximates global semantics better than the local ones.

Consider the algorithm SymAlg in Figure 2 that will be used for evolutions on
symbols. It works as follows: for every atom φ in N it checks whether φ satisfies a
condition Π (Line 4). If it does, the algorithm deletes all those literals that share their
concept name with φ. Both local and global semantics have their own Π: ΠG and ΠL.

Capturing Global Semantics. ΠG(φ) checks whether φ ofN T -contradictsA:ΠG(φ) is
true iff ¬φ ∈ fclT (A) \ AlignAlg((T ,A),N ). Intuitively, SymAlg for global semantics
works as follows: having contradiction between N and A on φ = B(c), the change of
B’s interpretation is inevitable. Since the semantics traces changes on symbols only, and
B is already changed, one can drop from A all the assertions of the form B(d). Clearly,
SymAlg(K,N , ΠG) can be computed in time polynomial in |A ∪ K|. The following
theorem shows correctness of this algorithm.

Theorem 8. Let K = (T ,A) and (T ,N ) be satisfiable DL-Lite+R KBs. Then DL-Lite+R
is closed under Gs⊆ and Gs#, and for both K � N = Mod(T , SymAlg(K,N , ΠG)),

Capturing Local Semantics. Observe that Ls⊆ and Ls# are not expressible in DL-Lite+R.

Theorem 9. DL-Lite+R is not closed under Ls⊆ and Ls# semantics.

To compute the minimal sound approximations under local semantics on symbols,
we use algorithm SymAlg in Figure 2 with the following ΠL: ΠL(φ) is true iff φ /∈ S1.
That is, ΠL checks whether the ABox T -entails A(c) ∈ fclT (N ), and if it does, the
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INPUT : consistent DL-Lite+R KB (T ,A) and ABoxN , a formula property Π
OUTPUT: a set A′ ⊆ fclT (A) ∪ fclT (N ) of ABox assertions

A′ := ∅; S1 := AlignAlg((T ,A),N ); S2 := fclT (N );1
repeat2

choose some φ ∈ S2; S2 := S2 \ {φ};3
if Π(φ) = TRUE then S1 := S1 \ {φ′ | φ and φ′ have the same concept name}4

until S2 = ∅ ;5
A′ := S1 ∪ fclT (N )6

Algorithm 2: Algorithm SymAlg((T ,A),N , Π) for deterministic computation of
K � N under Gs⊆ and Gs# semantics and minimal sound approximation under Ls⊆
and Ls# semantics

algorithm deletes all the assertions from fclT (A) that share the concept name with A(c).
This property is weaker than one for global semantics, since it is easier to get changes
in interpretation of A by choosing a model of K which does not include A(c). Clearly,
SymAlg(K,N , ΠL) can be computed in time polynomial in |A ∪ K|. The following
theorem shows correctness of the algorithm.

Theorem 10. Let K = (T ,A) and (T ,N ) be satisfiable DL-Lite+R KBs. Then the KB
(T , SymAlg(K,N , ΠL)) is a minimal sound approximation of K�N under Ls⊆ and Ls#.

6 Evolution in DL-Lite I
R

In the previous section we considered evolution in DL-Lite+R. Here we show that
DL-Lite+R is essentially a maximal fragment of DL-LiteR closed under atom-based
evolution, and present a wide fragment of DL-LiteR, namely DL-Lite I

R, that is not
closed under atom-based evolution while the evolution can be captured in FO[2].

The following theorem shows that the restriction not to have roles involved into
negation relation is essential, and even a minimal violation leads to inexpressibility of
evolution. The minimal way to violate conditions of DL-Lite+R is to have two assertions:
A v ∃R and ∃R− v ¬C entailed from a TBox.

Theorem 11. Let assertions {A v ∃R, ∃R− v ¬C} be entailed from a DL-LiteR
TBox T , for some R and C, Then there exist ABoxes A and N such that (T ,A) � N is
inexpressible in DL-LiteR under La⊆ and under La#.

The following example provides reasons why DL-Lite+R restrictions are important
for expressibility of atom-based MBAs. We will further use this example to show how to
capture La⊆ evolution in FO for KBs violating DL-Lite+R restrictions.

Example 12. Consider the following DL-Lite KBs K1 = (T1,A1) and N1 = {C(b)}:

T1 = {A v ∃R,∃R− v ¬C}; A1 = {A(a), C(e), C(d), R(a, b)}.
Consider the following model I of K1:
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I: AI = {a, x}, CI = {d, e}, RI = {(a, b), (x, b)},
where x ∈ ∆ \ adom. We now show that the following models belong to I � N1, this
will be used further to capture K1 � N1.

J0: AI = ∅, CI = {d, e, b}, RI = ∅,
J1: AI = {x}, CI = {e, b}, RI = {(x, d)},
J2: AI = {x}, CI = {d, b}, RI = {(x, e)},
J3: AI = {a, x}, CI = {b}, RI = {(a, d), (x, e)},
J4: AI = {x}, CI = {d, e, b}, RI = {(x, β1)},

where β1 ∈ ∆\adom(K1). Clearly all five models satisfyN1 and T1. To see that they are
in I �N1 observe that every model J (I) ∈ (I �N1) can be obtained from I by making
modifications that guarantee that J (I) |= (N1 ∪ T1) and that the distance between I
and J (I) is minimal. What are these modifications? Since in every such J (I) the new
knowledge C(b) holds and (C v ¬∃R−) ∈ T1, there should be no R-arc incoming into
b in J (I), hence the necessary modification of I is to forbid the R-arcs going from
a and from x to point into b. Where in J (I) should this R-arcs point in? There are
only three mutually exclusive cases for each of a and x: (i) there is no R-arc in J (I)
that points from a (resp., x), we simply drop it from I, (ii) it points to some element
β ∈ ∆ \ {d, e, b}, that is, J (I) |= R(a, β). (iii) it points to an element γ of {d, e}, that
is, J (I) |= R(a, γ). Case (i) for both a and x corresponds to J0, hence, J0 ∈ I � N1.
Case (ii) for both a and x corresponds to J4, hence, J4 ∈ I �N1. Case (i) and Case (iii)
for a corresponds to J1 and J2, hence, both J1 and J2 are in I � N1. Case (iii) for both
a and x corresponds to J3, hence, J3 ∈ I � N1. There are clearly more models I � N1

than these five.
To show thatK1�N1 is inexpressible in DL-LiteR consider a modelJ5 ∈ Mod(T1,N1)

which is not in K1 �N1, while it gives a property of models from K1 �N1 that is respon-
sible for inexpressibility of K1 � N1.

J5: AI = {x}, CI = {e, b}, RI = {(x, d), (x, β1)}.
Observe that J4 is closer to I that J5, hence J5 6∈ (I � N1). Indeed, since for ev-
ery model I ′ ∈ Mod(K1) it holds that I ′ |= C(d) and I ′ 6|= R(x, d), we have that
{C(d), R(x, d)} ⊆ I ′ 	J5. At the same time J4 |= C(d) and J4 6|= R(x, d), while J4
and J5 agree on all the atoms but C(d) and R(x, d). Hence, (I ′	J4) ( (I ′	J5) and
J5 6∈ (I � N1). Moreover, since I ′ is an arbitrary model of K1, J5 /∈ (K1 � N1).

Let us make a closer look at J5: it extends J1 with the atom R(x, β1), and this is
the reason why it is not in the result of evolution K1 � N1. This observation gives a
restriction on all the models J on K1 � N1: if in J there is one R-arc from some x into
d, then J has no other arcs from x. In a way, we have a functionality restriction on the
role R, when it connects two specific elements of the domain: x and d. The same kind
of functionality holds for x and e, and both of them are not expressible in DL-Lite. This
functionality for x and d, and for x and e can be formally written as the following φ and
ψ, respectively:

φ = ∀x∀y. [R(x, d) ∧R(x, y)→ y = d] , ψ = ∀x∀y. [R(x, e) ∧R(x, y)→ y = e] .

Since every model of K1 � N1 should satisfy φ and ψ, and DL-Lite is a slight extension
of Horn logics [17], K1 � N1 cannot be captured in DL-Lite.
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This example shows that DL-LiteR is not closed under model-based evolution.
Besides the fact that both φ and ψ are inexpressible in DL-LiteR, while should be
entailed by the result of evolution, there is another observation also responsible for
inexpressibility ofK1 �N1: it has no canonical model. At the same time, one can see that
the set K1 � N1 can be divided in four subsets, where each has a canonical model. We
now show that these four canonical models, which we call prototypes for K1 � N1, can
be used to capture K1 � N1 in FO[2], in a similar way as we used the unique canonical
model of the evolution result in DL-Lite+R to capture the evolution in DL-Lite+R.

Definition 13. Let K be a DL-LiteR KB andN be an ABox. A prototypal set for K �N
is a minimal subset J = {J1, . . . ,Jn} of K � N satisfying the property: for every
J ∈ K � N there is Ji ∈ J such that Ji ↪→ J . Every Ji ∈ J is a prototype for K � N .

Continuing with Example 12, one can check that the prototypal set J for K1 � N1

consists of four models: {J0,J1,J2,J6}, where
J6: AI = {x1, x2}, CI = {b}, RI = {(x1, d), (x2, e)}.

Note that J6 ↪→ J3 and J0 ↪→ J4.
We now introduce a restriction of DL-LiteR for which the result of evolution under

La⊆ can be captured in FO using prototypes. DL-Lite I
R (where I stands for (mutual)

independence of roles) is a restriction of DL-LiteR in which TBoxes T satisfy: for any
two roles R and R′, T 6|= ∃R v ∃R′ and T 6|= ∃R v ¬∃R′. That is, we forbid direct
role interaction (subsumption and disjointness) between role projections. The interaction
is still possible but in a simple manner only, e.g., projections may contain the same
concept. This restriction allows us to analyze evolution that affects roles independently
for every role. For the ease of exhibition of the following procedure constructing J, we
further assume that in DL-Lite I

R for each role R there is exactly one concept AR such
that K |= AR v ∃R. As for DL-Lite+R, one can syntactically check (in quadratic time),
given a DL-LiteR KB K, whether K is in DL-Lite I

R using the closure of K.
If f is an ABox assertion, then rootT (f) is a set of all the ABox assertions, that

T -entail f . The procedure BP (K,N ) (where BP stands for build prototypes) of con-
structing J for the case of DL-Lite I

R, generalizes what was done in Example 12 in the
following way: In Items 1 and 2 it takes into account all the roles and concepts that
may be interpreted differently in different resulted models (R, A and C in our example)
and all the constants that could not be present at the second coordinate of those roles in
the models of the original KB (e and d in our example). In Items 3, 4, and 5 it builds
the prototype J0. Finally in Item 6 it builds the rest of prototypes basing on J0. A
pseudocode of the procedure BP (K,N ) is the following:

1. SR = {R1, . . . , Rn} is a set of all roles such that
(i) N |=T ¬R−i (bi) for some bi and

(ii) for every Ri(ai, bi) in fclT (A), an atom AR(ai) ∈ fclT (A) and R(ai, b′i) /∈
Align(fclT (A),N ), where b′i /∈ {bj}nj=1.

Sat =
⋃n
j=1{Rj(a, bj) | Rj(a, bj) ∈ fclT (A)}.

2. FA(Ri) is equal to the following set
{D(c) ∈ fclT (A) | ∃R−i (c)∧D(c) |=T ⊥ and N 6|=T D(c), and N 6|=T ¬D(c)}.
Then FA =

⋃
Ri∈SR FA(Ri), FC = {c | D(c) ∈ FA},

where the acronyms FA and FC stand for forbidden atoms and constants, respectively.
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3. I ′ := Align(Ican,N ) ∪N , where Ican is the canonical model of K.
4. For each R(a, b) ∈ Sat, do I ′ := I ′ \ {AR(a)}.
5. J0 := I ′, J := {J0}.
6. For each subset D = {D1(c1), . . . , Dk(ck)} ⊆ FA do

for eachR = (Ri1 , . . . , Rik) such that Dj(cj) ∈ FA(Rij ) for j = 1, . . . , k do

J [D,R] :=
[
J0 \

⋃k
i=1 rootT (Di(ci))

]
∪ ⋃ki=1

[
clT (R′i(xi, ci)) ∪ {AR′

i
(xi)}

]
,

where all xi’s are different constants from ∆ \ adom(K), fresh for Ican.
J := J ∪ {J [D,R]}.

Theorem 14. Let K = (T ,A) be a DL-Lite I
R KB, and N a DL-LiteR ABox consistent

with T . Then the set BP (K,N ) is a prototypal set for K � N .

We proceed to correctness of BP in capturing evolution in DL-Lite I
R.

Theorem 15. Let K = (T ,A) be a DL-Lite I
R KB, N a DL-LiteR ABox consistent with

T , and BP (K,N ) = {J0, . . . ,Jn} is a prototypal set for K � N . Then

K � N = Mod(T ) ∩Mod(A1 ∨ . . . ∨ An) ∩Mod(Φ ∧ Ψ),

where Ai is a DL-LiteR ABox such that Ji is a canonical model for (T ,Ai), and

Φ =
∧
cj∈FC

∀x. [(R(x, cj)→ AR(x)) ∧ ∀y. (R(x, cj) ∧R(x, y)→ y = cj)] ,

Ψ =
∧

R(a,b)∈Sat

∃R(a)→ AR(a).

Note that Theorem 4 about computation of K � N for DL-Lite+R is a particular case
of Theorem 15 when FC = ∅ and there is just one prototype. Next theorem allows us to
approximate result of evolution by a DL-LiteR KB, since FO[2] is decidable.

Theorem 16. K � N under La⊆ for KBs in DL-Lite I
R is in FO[2].

7 Conclusion

We studied expressibility of ABox evolution (for both update and revision) over two
subfamilies of DL-LiteR: DL-Lite+R and DL-Lite I

R, that both extend RDFS. The first one
is closed under most of the evolution semantics, while the second one is not closed even
under MBAs were distance is based on atoms. We isolated conditions on TBox assertions
that lead to inexpressibility: pairs of assertions of the form A v ∃R and ∃R− v ¬C
bring inexpressibility. Note that this condition is similar to the notion of unexpected facts
introduces in [10], for formula-based semantics of evolutions. For DL-Lite+R we provided
algorithms how to compute semantics that are expressible, and how to approximate those
that are not. For DL-Lite I

R we captured local model-based semantics, where the distance
between models defined on atoms, in FO[2]. For this purpose we introduced prototypes
and showed how they can be used to capture results of evolution.

It is the first attempt to provide an understanding of inexpressibility of MBAs for
DL-Lite evolution. Without this understanding it is unclear how to proceed with the
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study of evolution in more expressive DLs and what to expect from MBAs in such logics.
Moreover, isolating the smallest fragment of FO that is sufficient to captured DL-Lite
evolution is important in understanding whether it is possible and how to do reasonable
approximations of evolution results. We also believe that our techniques of capturing
semantics based on prototypes give a better understanding of how MBAs behave on
FO theories. We are currently working on extending the results to capture evolution for
general DL-LiteR KBs.
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