
Having a ChuQL at XML on the Cloud

Shahan Khatchadourian1, Mariano P. Consens1, and Jérôme Siméon2

1 University of Toronto
shahan@cs.toronto.edu, consens@cs.toronto.edu

2 IBM Watson Research
simeon@us.ibm.com

Abstract. MapReduce/Hadoop has gained acceptance as a framework
to process, transform, integrate, and analyze massive amounts of Web
data on the Cloud. The MapReduce model (simple, fault tolerant, data
parallelism on elastic clouds of commodity servers) is also attractive for
processing enterprise and scientific data. Despite XML ubiquity, there is
yet little support for XML processing on top of MapReduce.
In this paper, we describe ChuQL, a MapReduce extension to XQuery,
with its corresponding Hadoop implementation. The ChuQL language
incorporates records to support the key/value data model of MapReduce,
leverages higher-order functions to provide clean semantics, and exploits
side-effects to fully expose to XQuery developers the Hadoop framework.
The ChuQL implementation distributes computation to multiple XQuery
engines, providing developers with an expressive language to describe
tasks over big data.

1 Introduction

The emergence of Cloud computing has led to growing interest in new program-
ming paradigms for data-intensive applications. In particular, Google’s MapRe-
duce [7] has gained traction as an economically attractive, scalable approach to
process, transform, integrate, and analyze massive amounts of Web data, as well
as enterprise and scientific data. The MapReduce model provides simple, fault-
tolerant, data parallelism on elastic clouds of commodity servers. Hadoop [12]
is a popular open source framework implementing MapReduce on top of a reli-
able distributed file system. Because of Hadoop’s simplicity and scalability, it is
already being used beyond Web companies such as Yahoo! and Facebook3.

Despite XML dominance as a standard format for many industries, such as
publishing [9], government [13], finance [11], and life sciences [8], there is yet
little support for XML processing on top of MapReduce frameworks, Hadoop in
particular. Current approaches to process XML in Hadoop rely either on writing
arbitrary Java code (e.g., using Hadoop’s built-in StreamXmlRecordReader class
to convert XML fragments into records), or on invoking (via a streaming utility)
an executable or a script interpreted by a suitable language. While numerous

3 E.g., see a list of known users at http://wiki.apache.org/hadoop/PoweredBy and
http://www.cloudera.com/customers/.



languages and systems [1, 4–6,15–18,24] have been proposed to facilitate devel-
opment in Cloud environments beyond the simple MapReduce/Hadoop model,
there is little support for XML as a native format.

In this paper we propose ChuQL, a MapReduce extension to XQuery with a
corresponding Hadoop implementation. ChuQL’s goals are to provide developers
with a familiar XQuery-based tool to express XML oriented data processing tasks
on the cloud, while giving them transparent access to the Hadoop framework and
its multiple customization points. XQuery developers using ChuQL can readily
harness the benefits of Hadoop’s scalability and fault-tolerance on commodity
servers. ChuQL fully leverages XQuery’s expressiveness (both its declarative
aspects and its imperative extensions, including the ability to invoke external
computations) to facilitate the development of complex processing tasks over
massive amounts of Cloud data.

The ChuQL implementation takes care of distributing the computation to
multiple XQuery engines running in Hadoop nodes, as described by one or more
ChuQL MapReduce expressions. The ChuQL approach provides developers with
the benefit of a powerful language implemented by mature XQuery processors
to perform XML data processing tasks at each node in a Hadoop cluster. The
ChuQL language incorporates records to support the key/value data model of
MapReduce, leverages higher-order functions to provide clean semantics, and
exploits side-effects to fully expose to XQuery developers the Hadoop framework.

Related Work. Numerous high-level languages for Hadoop have been proposed,
with Yahoo!’s Pig/Latin [17], IBM’s Jaql [15], and SQL-based Hive [22] and
HadoopDB [1] included among the most prominent. Because these languages rely
on more traditional data models, either relational or nested-relational (often in
the form of JSON), such approaches offer limited native support for tree models
such as XML. The Jaql query language can be used to execute complex analytical
jobs for JSON-like data on top of Hadoop. The XML data model is captured
only lossily based on the conversion of XML data to Jaql’s JSON type (using
a provided XmlToJson function). Pig Latin is a query language with a nested
data model that also uses Hadoop. XML can only be represented as a string
value of a field. Unlike Jaql, it does not include a function that converts XML
content to a format that can be handled by its query processor and so requires
third-party plug-ins to support XML. While Hive uses tables stored as files on
HDFS, HadoopDB extends Hive to leverage the MapReduce processing model
with single-node DBMS instances.

Several high-level languages have been proposed for non-Hadoop environ-
ments. While Hyracks [4] and Nephele [3] extend the parallel processing model
beyond MapReduce, BOOM [2] shows how a declarative language can be used to
implement parallel processing models in orders of magnitude fewer lines of code.
DryadLINQ [24] and Scope [5] are two high-level declarative languages that are
compiled for processing tables on a Dryad [14] cluster. DryadLINQ [24] is of
particular interest since it does provide support for XML through an elegant
’model agnostic’ support for iterators at the programming language level, which
allows various models to be integrated, including XML.



Organization and Contributions. The main contributions of the paper are:

– In Section 2, we illustrate how to use ChuQL to write fairly complex data
processing jobs on top of XML data, including common Cloud data process-
ing operations, such as co-grouping.

– The ChuQL language is defined precisely, in Section 3, as an extension of
XQuery with MapReduce capabilities. This relies on a small extension of
the XML data model with records, which is used to model the notion of
key/value pairs that is central to processing with MapReduce.

– ChuQL has been implemented using Hadoop and the IBM WebSphere XML
feature pack [10]. We give a brief overview of that implementation in Sec-
tion 4, and mention early experimental results.

– Section 5 concludes the paper and suggests some future work.

2 ChuQLing

In this section, we give a brief introduction to MapReduce/Hadoop, and intro-
duce ChuQL through examples.

2.1 MapReduce and Hadoop

MapReduce is a parallel processing framework for analyzing large datasets re-
siding on distributed storage. In our work, we focus on Hadoop, a popular open
source implementation of MapReduce written in Java. Hadoop’s default stor-
age system is the fault-tolerant Hadoop Distributed File System (HDFS), which
maintains copies of the data on a cluster of commodity machines. One of the
benefits of using a file system rather than a traditional database index is that it
can serve any kind of data, such as website access logs or XML files.

Hadoop implements the MapReduce processing model, and can process large
datasets stored on HDFS. The processing is performed through a fixed number of
phases, including the map phase and the reduce phase, which are then automat-
ically decomposed into parallel tasks. Each phase is described as a function over
key/value pairs that may contain any data. Key/value pairs which are output of
the map are serialized to HDFS for fault-tolerance and then grouped together
according to their key before they are passed to the reduce phase. As a result,
the reduce phase processes groups of key/value pairs, giving the user the ability
to efficiently evaluate aggregate operations over the data. In addition, Hadoop
provides two additional phases to read and write files from/to HDFS. The record
reader (RR, for short) phase is used to read the input from disk and create the
initial key/value pairs for the map. The record writer (RW, for short) phase is
used to serialize on disk the key/value pairs produced from the reduce.

One of the key benefits of using Hadoop is that it supports deployment on a
cluster of machines. Hadoop takes care of aspects related to parallelization of the
work, including splitting the work into independent tasks, orchestration of those
tasks, and provides mechanisms for fault tolerance in the case of machine failure



or if tasks do not complete. Each pair of associated RR and map tasks runs in
a distinct Java Virtual Machine (JVM), and each pair of associated reduce and
RW tasks runs in a distinct JVM. Tasks are monitored and restarted if they
fail. A map task that fails triggers the re-execution of that task (possibly on a
different machine) with the initial input of the failed task, and a reduce task
that fails triggers a re-execution of that task.

2.2 WordCount in ChuQL

WordCount is a simple program that leverages MapReduce to compute the car-
dinality of words in a text collection stored on HDFS. Since it typically serves
as the “Hello World!” of MapReduce, we also use it here as our first ChuQL
program. As shown on Figure 1, it uses the mapreduce expression that is the
main extension of ChuQL.

1 mapreduce {
2 input { fn:collection("hdfs://input/") }
3 rr { for $line at $i in $in//line return { key: $i, val: $line } }
4 map { for $word in fn:tokenize($in=>val, " ")
5 return { key: $word, val: 1 } }
6 reduce { { key: $in=>key, val: fn:count($in=>val) } }
7 rw { <word text="{$in=>key}" count="{$in=>val}"/> }
8 output { fn:put($in,"hdfs://output/") }
9 }

Fig. 1. WordCount in ChuQL

In ChuQL, the mapreduce expression can be used to describe a MapReduce
job, and is specified using the following clauses: (i) input and output clauses
to respectively read and write onto HDFS, (ii) rr and rw clauses describing re-
spectively the record reader and writer, (iii) map and reduce clauses describing
respectively the map and reduce phases. Those clauses process XML values or
key/value pairs of XML values to match the MapReduce model and are specified
using XQuery expressions. In each of those expression, the special variable $in
is bound to the input currently being processed. An expression can return key/-
value pairs using the record constructor { key: Expr, val: Expr }. The key or
value can then be accessed using the record accessor expression Expr=>key or
Expr=>val.

The ChuQL program on Figure 1 uses 9 lines of code as opposed to the
original 150-line Java version. In the original Java implementation of WordCount
over Hadoop, the RR task produces key/value pairs whose keys are the byte
offsets of lines, and whose values are the corresponding lines of text. In our
case, we assume the input is an XML document that includes a sequence of
<line>...</line> elements containing text. The rr clause on line 3 accesses
each line with its index (in variable $i), and returns key/value pairs whose index
is the key, and whose value is the line element.

Similar to the original Java implementation, the map clause on line 5 tokenizes
the lines of text and produces key/value pairs whose keys are the tokenized



words, and whose values are all set to 1. Then, the keys with the same word are
grouped together, and the reduce clause on line 6 counts each word by counting
the number of 1’s associated with each word. Finally, the rw clause on line 7
creates an XML element word, with an attribute text containing the word, and
an attribute count containing the word count.

The fn:collection and fn:put functions are used in the input and output
clauses on lines 2 and 8 respectively to specify the job’s input and output. To
that effect, we extend the XQuery URL scheme with support for hdfs. The func-
tion fn:put is part of the XQuery Update Facility [19]. It “stores” the values
at the provided URL through a side-effect and returns the empty sequence. A
consequence of using the fn:put function is that the value of the overall expres-
sion is also the empty sequence; however, another expression could then use the
fn:collection function again to access that job’s output. We show later in this
section how to return a job’s output directly into memory so that it can be
further processed using XQuery.

In terms of implementation, the ChuQL engine, which itself runs in a JVM,
processes a ChuQL expression by configuring and starting jobs, handling job
output, and processing the remainder of the expression. A job configuration is
built from the task expressions extracted from the abstract syntax tree of the
ChuQL expression. A job is then started with that configuration, and finally, its
output is either stored on HDFS or in memory. Within the job, each task JVM
has an XQuery processor to compile and process task expressions.

2.3 Analytics in ChuQL

Another classic use of MapReduce is as a platform for analytics, notably lever-
aging the ability to aggregate information. In our second ChuQL example, we
illustrate its use for aggregation. We consider a simple scenario where one data
source exports a large amount ot sales data in XML, and one wants to correlate
that information with a public Web collection, such as Wikipedia, to cross-
reference city sales with e.g., local population or city statistics. If the size of
the two collections is substantial, attempting to perfom the desired computa-
tion using a single XQuery processor may consume hundreds of hours; instead,
using a Hadoop cluster to perform the computation can reduce the computa-
tion time significantly. Also, because one of the collections is not purely in XML
(wiki markup), there is a need to support invocation of special-purpose code to
process part of the data.

The example on Figure 2 shows a possible implementation using ChuQL
that combines the output of two distinct MapReduce jobs. The first job (lines 4
to 12) extracts city statistics from Wikipedia articles using the external func-
tion extractcitystats that interfaces to a Perl script that extracts the relevant
city information from the wiki markup. First, the RR task on line 7 creates a
value with the article wikitext which is then transformed in the map task on
line 9 into key/value pairs containing city statistics using extractcitystats. The
key/value pairs are then grouped by their key, the city in this case. The reduce



1 declare function my:extractcitystats($article) as element(my:stats) external;
2

3 let $stats :=
4 mapreduce {
5 input { fn:collection("hdfs://wikipedia/") }
6 rr { for $article in $in//article
7 return { key: <empty/>, val: $article } }
8 map { for $stat in my:extractcitystats($in=>val)
9 return { key: $stat/city, val: $stat } }

10 reduce { { key: $in=>key, val: <stats city="{$in=>key}"}>{$in=>val}</stats> } }
11 rw { $in=>val }
12 output { $in }
13 }
14 let $sales :=
15 mapreduce {
16 input { fn:collection("hdfs://sales/") }
17 rr { for $sale in $in//sale[@period="1Q2011"]
18 return { key: <empty/>, val: $sale } }
19 map { { key: $in=>val/city, val: $in=>val/sale } }
20 reduce { { key: $in=>key,
21 val: <sales city="{$in=>key}"}>{avg($in=>val/amount)}</sales> } }
22 rw { $in=>val }
23 output { $in }
24 }
25 for $city in $sales/@city
26 return
27 <salesreport city="{$city}">
28 <sales>{$sales[@city=$city]}</sales>
29 <stats>{$stats[@city=$city]}</stats>
30 </salesreport>

Fig. 2. Analytics across collections

task on line 10 aggregates each city’s statistics from all the articles, which is
then returned in memory and assigned to the stats variable on line 12. Similarly,
the second job (lines 15 to 23) computes city sales. First, on line 18, a key/value
pair is returned for each sale in the given period. Each is then transformed into
a key/value pair by the map task on line 19 by placing the sale’s city as the key
and leaving the sale as the value. Like the first job, key/value pairs are grouped
by city. The reduce task on line 21 performs the sales analysis for each city, which
is the average of all the sales amounts, and then returns the result in memory
and assigns it to the sales variable on line 22. Finally, lines 25 to 30 are used to
combine the job outputs, including sales average, and statistics, for each city.

This example shows that the compositionality of XQuery makes it easy to ex-
press whether to store output on HDFS or to return it in memory. In WordCount,
above, we showed that job output can be stored on HDFS using the side-effect
function fn:put (and which then returns the emtpy sequence), but can alterna-
tively be returned to the ChuQL expression by returning XML values from the
output expression (in this case, the variable $in).

2.4 Co-grouping

Finally, we show an example of co-grouping [17], a common operation in MapRe-
duce scenarios. Co-grouping is a way to return groups of elements from several
sets in a single result, differing from grouping in relational databases where sets



cannot typically be nested within a result row. Co-grouping can be performed
efficiently using MapReduce due to the parallelism involved in examining and
filtering collections. Most languages proposed for programming over MapReduce
provide special purpose support for co-grouping [15,17]. In this example, we show
how ChuQL can support co-grouping by leveraging imperative features proposed
in the XQuery Scripting Extension [21].

1 mapreduce {
2 input {fn:collection("hdfs://wikipedia/")}
3 rr { for $article in $in//article
4 return { key: <empty/>, val: $article } }
5 map { for $revision in $in=>val/revision
6 return { key: fn:data($revision/date),
7 val: ($in=>val/title | $in=>val/revision/author) } }
8 reduce { block {
9 declare variable $ts := <top/>;

10 declare variable $as := <top/>;
11 (for $t in $in=>val return
12 if ($t/title) then (insert node $t as last into $ts)
13 else if ($t/author) then (insert node $t as last into $as)
14 else ()),
15 { key: $in=>key, val: <mods date="{$in=>key}">
16 <titles>{$ts/title}</titles>
17 <auth>{$as/author}</auth></mods> } } }
18 rw { $in=>val }
19 output {fn:put($in,"hdfs://cogroupoutput/") }
20 }

Fig. 3. Co-grouping using XQuery Scripting

A ChuQL expression that co-groups authors and article titles from Wikipedia
by revision date is shown in Figure 3. The Hadoop job is processed as follows.
First, the RR expression on line 3 places each article element as the value of
a key/value pair, each of which is then processed by the map task on line 5
to produce key/value pairs whose key is the article’s revision date and whose
value is an XML sequence containing the article title and revision author. After
grouping the key/value pairs by revision date, the reduce task is specified as
an XQuery Scripting expression that iterates over the $in=¿val sequence once
(line 11). The variables as and at (initialized on line 9) are used to store the
titles and authors on lines 12 and 13, respectively. Titles and authors grouped by
each distinct revision date are returned as the value of key/value pairs on line 15.
Finally, the record writer expression on line 18 selects the values of key/value
pairs, and serializes them to HDFS on line 19. In contrast, if an XQuery Scripting
expression were not used in the reduce task, the $in=¿val sequence would need
to be iterated over twice - once to extract authors, and a second time to extract
titles.



3 The ChuQL Language

In this section, we describe the syntax and semantics of ChuQL, our MapReduce
extension to XQuery 3.0 [20]. We first extend the XQuery data model (XDM) [23]
and type system with records.

Data Model. Values in our data model include XML values and records. They
are described by following grammar, in which a1...an are record fields.

1 V alue ::= ... XQuery 3.0 values ...
2 | { a1: V alue, ... , an: V alue }

In this paper, records are simply used to provide support for key/value pairs,
which play a central role in the MapReduce processing model. For instance, the
following is a pair whose key is the integer 1, and whose value is a text node
containing the string ‘‘Hello World”.

1 { key : 1, value: text { ‘‘Hello World!’’ } }

Type System. Similarly, our type system include XML types and record types.
They are described by the following grammar, in which a1...an are record fields.

1 Type ::= ... XQuery 3.0 types ...
2 | { a1: Type, ... , an: Type }

In this paper, types are used to ensure that expressions used from within
mapreduce have the proper input and output, i.e., key/value pairs containing
XML data. For instance, the following type describes pairs whose key is an
integer, and whose value is a text node.

1 { key : xs:integer, value: text }

For readability, we introduce the following two built-in types to ChuQL.
The first type stands for any XML value (item()* in the XQuery sequence type
syntax). The second type stands for any key/value pair containing XML values.

1 define type chuql:xml { item()∗ };
2 define type chuql:keyval { { key: item()∗, value: item()∗ } };

Relationship to XQuery. ChuQL is built on top of XQuery [20], the XML Query
language designed by the W3C. We briefly review some of the main features of
XQuery which are relevant to ChuQL. We make use of recent developments in
the standard, notably XQuery 3.0 and XQuery Scripting Extensions.

– First, XQuery is compositional, i.e., it includes a set of expressions which can
be composed together to build larger more complex expressions. This facili-
tates language extension, including ChuQL, as powerful features can be built
by simply extending the original expression syntax, along with providing the
proper typing rules and semantics.

– Second, we define the semantics of the mapreduce expression by leveraging
XQuery 3.0 higher order functions, and the group by feature.



– Finally, we make use of XQuery Scripting in a number of examples, notably
in order to describe MapReduce job whose output is being stored back onto
HDFS.

Grammar. We extend XQuery’s expression syntax with three new expressions,
as described by the following grammar.

1 Expr ::= ... XQuery 3.0 expressions ...
2 | { a1: Expr, ... , an: Expr } (: record creation :)
3 | Expr=>ai (: record field access :)
4 | mapreduce { input { Expr } (: map/reduce expression :)
5 rr { Expr }
6 map { Expr }
7 reduce { Expr }
8 rw { Expr }
9 output { Expr } }

The first expression constructs a key/value pair (i.e., a record with two fields
key and value). The second expression accesses either the key or the value field
of a key/value pair. The last expression is the map/reduce expression, as was
already illustrated in examples from Section 2.

Semantics. We are now ready to describe the semantics of ChuQL, focusing on
the mapreduce expression. It is interesting to note that the semantics can be fully
expressed in terms of XQuery 3.0 constructs.

We first define a built-in function that encodes the semantics of the mapre-
duce expression in terms of its sub-expressions. This function relies heavily on
the recently proposed higher-order functions for XQuery 3.0. Higher-order func-
tions are used to capture the fact that sub-expressions in the various mapreduce
clauses are always expressed in terms of an input value, represented by the vari-
able $in.

1 declare function chuql:mapreduce(
2 $input as function() as chuql:xml,
3 $rr as function($in as chuql:xml) as chuql:keyval*,
4 $map as function($in as chuql:keyval) as chuql:keyval*,
5 $reduce as function($in as chuql:keyval) as chuql:keyval*,
6 $rw as function($in as chuql:keyval) as chuql:xml,
7 $output as function($in as chuql:xml) as chuql:xml
8 ) as chuql:xml
9 {

10 let $input-result := $input()
11 let $rr-result := for $in in $input-result return $rr($in)
12 let $map-result := for $in in $rr-result return $map($in)
13 let $reduce-result :=
14 for $in in $map-result
15 let $key := $in=>key
16 group by $key
17 return $reduce({ key: $key, val: for $x in $in return $x=>val })
18 let $rw-result := for $in in $reduce-result return $rw($in)
19 let $output-result := for $in in $rw-result return $output($in)
20 return $output-result
21 };

Note that the function merely evaluates each phase in order, passing the
result of each phase to the next. The only phase that requires special attention
is, not surprisingly, the reduce phase, as it must group its input based on each
key. It simply uses the XQuery 3.0 group by to capture the grouping semantic



of the map/reduce processing model. Note that, in accordance to the XQuery
3.0 semantics, after the group by is applied, the $in variable does not contain
each key/value pair, but all the key/value pairs with the same key. Also note
that in XQuery 3.0, the grouping criteria is always applied using deep-equality,
which gives a precise, but not always flexible, semantics for the ChuQL mapreduce
expression. We are currently considering extensions to the grouping semantics
which would allow a user to explicitly specify the kind of equality they desire,
and requires an extension to the XQuery 3.0 group by expression.

The mapreduce expression can be defined by simply mapping it into the
chuql:mapreduce function we just defined.

1 J mapreduce {
2 input { InputExpr }
3 rr { RRExpr }
4 map { MapExpr }
5 reduce { ReduceExpr }
6 rw { RWExpr }
7 output { OutputExpr }
8 } K
9 ≡

10 chuql:mapreduce(function() as chuql:xml { InputExpr },
11 function($in as chuql:xml) as chuql:keyval* { RRExpr },
12 function($in as chuql:keyval) as chuql:keyval* { MapExpr },
13 function($in as chuql:keyval) as chuql:keyval* { ReduceExpr },
14 function($in as chuql:keyval) as chuql:xml { RWExpr },
15 function($in as chuql:xml) as chuql:xml { OutputExpr })

Finally, it may be worth mentioning that this approach provides the com-
plete semantics for ChuQL, but does not make any aspects of parallel execution
explicit.

4 ChuQL on the IBM Cloud

Due to space limitations, we give here only a brief overview of the implementation
and of preliminary experiments run using a ChuQL deployment on the IBM
Cloud.

Implementation Our ChuQL processor is built on top of Hadoop 0.21.0 and the
so-called “thin client” of the WebSphere XML Feature Pack [10], which provides
a complete XQuery implementation in Java. We modified the XQuery processor
to accept the new mapreduce construct by modifying the abstract syntax tree (to
configure jobs), updated the internal intermediate language (to invoke jobs), as
well as adding the new record type described in the previous section. A ChuQL
job is based on a regular Hadoop job with custom RR, map, reduce, and RW
task classes written in Java. Within each customized task class, the class’ JVM
invokes the XQuery processor to compile and process a task expression (taken
from the corresponding ChuQL expression).

Experiments Up to 20 virtual machines on the IBM Cloud were used for the
experiments. Each instance, configured to use 0.9 of a physical machine, had a
32-bit quad-core CPU, 3.64 GB of RAM, and a 350 GB hard disk. The IBM 1.6
JDK was used as the JVM.



Some of Wikimedia’s XML datasets were used as for the experiments. Each
dataset is provided as a single large XML file containing the latest revision of
each article, including the article’s metadata, and its content as wikitext. We
partitioned and stored each dataset on HDFS as XML files containing 1,000
articles each; this value, obtained by hand tuning, produced XML files that
could be processed by the XQuery Engine within memory limits.

We report initial performance and scalability results for a co-grouping job
that uses XQuery Scripting. The job on the largest dataset completed in over 15
hours with 6 machines and approximately 7 hours with 20 machines. Our initial
performance results show that our approach is realistic and that ChuQL can be
used for processing large XML collections in parallel using Hadoop. Additional
experiments will examine larger datasets (such as the multi-terabyte Wikipedia
collection containing all article revisions), and they will also compare different
ChuQL expressions (e.g., to quantify the performance benefits of using XQuery
Scripting).

5 Conclusion

In this work we have described ChuQL, a language that allows XML to be
processed in a distributed manner using MapReduce. ChuQL extends the syntax,
grammar, and semantics of XQuery, and also leverages the compositionality,
side-effects, and higher-order functions of XQuery 3.0. Our initial experimental
results show that ChuQL facilitates XML processing of large datasets on Hadoop
Clouds.

We conclude mentioning two promising directions for future work. The first is
expanding ChuQL capabilities to take advantage of richer Cloud platforms (such
as advanced distributed stores and parallel processing models beyond MapRe-
duce). The second is to provide the ability to compile XQuery expressions into
ChuQL (i.e., generating a data parallel plan for non-ChuQL expressions, with
the added convenience that the plan created can be reviewed and then executed
as a ChuQL expression).

Acknowledgements The first author was supported by an IBM CAS Fellowship.
We also thank the reviewers for their detailed comments.

References

1. A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Silberschatz.
HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for
Analytical Workloads. PVLDB, 2(1):922–933, 2009.

2. P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein, and R. Sears.
Boom analytics: exploring data-centric, declarative programming for the cloud. In
EuroSys, pages 223–236, 2010.

3. D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke. Nephele/-
PACTs: a programming model and execution framework for web-scale analytical
processing. In SoCC, pages 119–130, 2010.



4. V. Borkar, M. J. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks: A flexible
and extensible foundation for data-intensive computing. In ICDE, 2011.

5. R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver, and
J. Zhou. Scope: easy and efficient parallel processing of massive data sets. PVLDB,
1(2):1265–1276, 2008.

6. S. Das, Y. Sismanis, K. Beyer, R. Gemulla, P. Haas, and J. McPherson. Ricardo:
Integrating R and Hadoop. In SIGMOD, 2010.

7. J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clus-
ters. Commun. ACM, 51(1):107–113, 2008.

8. R. Dolin, L. Alschuler, S. Boyer, C. Beebe, F. Behlen, P. Biron, and A. Shabo.
HL7 Clinical Document Architecture, Release 2. Journal of the American Medical
Informatics Association, 13(1):30–39, 2006.

9. ePub. Open Publication Structure (OPS) 2.0, July 2007. Recommended Specifi-
cation.

10. WebSphere application server feature pack for XML. http://www-01.ibm.com/
software/webservers/appserv/was/featurepacks/xml/.

11. Introducing FpML: A New Standard for ecommerce. http://www.fpml.org, 1999.
12. Apache Hadoop. http://hadoop.apache.org, Jan. 2011.
13. Modernized e-File (MeF) Guide for Software Developers And Transmitters. Inter-

nal Revenue Service, Electronic Tax Administration. Publication 4164.
14. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-

parallel programs from sequential building blocks. SIGOPS Oper. Syst. Rev.,
41:59–72, March 2007.

15. Jaql: A JSON Query Language. http://code.google.com/p/jaql, Jan. 2011.
16. C. Olston, S. Chopra, and U. Srivastava. Generating example data for dataflow

programs. In SIGMOD, pages 245–256, 2009.
17. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: a not-so-

foreign language for data processing. In SIGMOD Conference, pages 1099–1110,
2008.

18. R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the Data: Parallel
Analysis with Sawzall. Scientific Programming, 13(4):277–298, 2005.

19. J. Robie, D. Chamberlin, M. Dyck, D. Florescu, J. Melton, and J. Siméon. XQuery
update facility. http://www.w3.org/TR/xquery-update-10/, Jan. 2011.

20. J. Robie, D. Chamberlin, M. Dyck, and J. Snelson. XQuery 3.0: An XML Query
Language. http://www.w3.org/TR/xquery-30/, Dec. 2010.

21. J. Snelson, D. Chamberlin, D. Engovatov, D. Florescu, G. Ghelli, J. Melton, and
J. Siméon. XQuery Scripting Extension 1.0.
http://www.w3.org/TR/2010/WD-xquery-sx-10-20100408.

22. A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H. Liu,
and R. Murthy. Hive – a petabyte scale data warehouse using hadoop. In ICDE,
pages 996–1005, 2010.

23. N. Walsh and J. Snelson. XQuery and XPath Data Model (XDM) 3.0.
http://www.w3.org/TR/xpath-datamodel-30/, Dec. 2010.

24. Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Cur-
rey. DryadLINQ: A system for general-purpose distributed data-parallel computing
using a high-level language. In OSDI, pages 1–14, 2008.


