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Abstract. Understanding the performance and dynamic behavior of workflow 
is crucial in being able to modify, maintain, and improve it. A particularly 
difficult aspect of measuring the performance of workflows is the dissemination 
of event data and its transformation into business metrics. In this paper we 
introduce an architecture that supports a continuous integration of event data 
from various source systems in near real-time into a data warehouse 
environment. The proposed architecture takes full advantage of existing J2EE 
(Java 2 Platform, Enterprise Edition) technology and uses an ETL container for 
the event data processing. We discuss the challenges of managing flows for 
continuously integrated data and show how a container environment can 
provide services that facilitate the flow management.  

1. Introduction 

Since customers demand faster services, more transparent business transactions, and 
instant responses to business situations or exceptions, organizations without real-time 
information delivery capabilities and feedback of their business operations will 
sacrifice their competitive advantage. Workflow management systems log the 
activities that occur in the executed workflow, and even non-workflow-specific 
operational systems often log activities that users perform. Thus, within and without 
workflow systems, there is often a rich source of activity logs that can be transformed 
in valuable business metrics that provide an accurate feedback about the quality and 
performance of executed business operations. 

Separated from operational systems, data warehouse and business intelligence 
applications are used for strategic planning and decision-making. As these 
applications have matured over time, it has become apparent that the information and 
analysis methods they provide are also vital for tactical day-to-day decision making 
processes, and many organizations can no longer operate their businesses effectively 
without them. Consequently, there is a trend towards integrating decision processing 
into business processes in an organization. Examples are manufacturing processes, 



click-streams in web-personalization, and call detail records in telecommunication 
[4]. 

In this paper, we introduce an approach for managing continuous data integration 
flows with the aim of propagating data with minimal latency into a data warehouse 
environment. Continuous data integration flows are a necessity for achieving a 
minimal latency between the moment the data has been become available and the time 
it is required by the users for monitoring and analytical purposes. Data propagation 
delays can significantly decrease the value of the integrated data for the users, since 
managers and operational staff have to respond very quickly and prudently to 
business situations and business exceptions in order to improve customer service.  

When data is integrated continuously and concurrently, traditional batch-oriented 
ETL processing cannot satisfy the real-time requirements. The data processing flows 
are on a very granular level and data processing mechanisms must be able to handle a 
very large number of flow instances. Continuous data integration flows are aimed to 
process and transform incoming events individually. The types of received events are 
used to trigger the adequate logic for processing the events. Multiple events may 
depend on one another and must be correlated accordingly during the data 
propagation when they are integrated into the data warehouse system. Furthermore, 
because of the parallel processing of events, concurrency issues can arise. 

Since continuous data integration enables a more accurate monitoring of business 
processes, it can also be extended with automated response mechanisms that are part 
of the data integration itself. This is usually referred to as active data integration. In 
the case where an automatic response is required, the data integration process also 
evaluates or analyzes integrated data and triggers business operations.  

The remainder of this paper is organized as follows. In section 2, we discuss 
related work. In section 3, we give an overview of continuous data integration and 
discuss the differences of traditional batch-oriented approaches. Section 4 introduces 
the concept of an ETL container which is proposed as a solution for continuous data 
integration. In section 5, we discuss the flow management capabilities of the ETL 
container. Finally, we discuss our future work and give a conclusion in section 6. 

2. Related Work 

Approaches for measuring the performance of business processes depend on the 
ability of collecting data from an executing process.  Selby et. al describe in [7] a 
system, Amadeus, for automated collection and analysis of process metrics. It acts as 
an event monitor, allowing the triggering of actions based on certain events.  

Wolf and Rosenblum [9] use a hybrid of manual and automated collection methods 
to collect event data from a build process. Krishnamurthy and Rosenblum [5] built a 
system event monitor, Yeast, which can record events occurring on computer, and can 
react to those events. Barghouti and Krishnamurthy [2] describe a process enactment 
system that alternatively could be used to collect event data. The system is based on 
watching for events and matching the events and their contexts with the current state 
of the process. Lacking a process model, their infrastructure could be used to simply 
collect the event data. 

Bouzeghoub et al. discuss in [3] an approach for modeling the data refreshment 
processes as a workflow. They distinguish three types of data refreshments that are



triggered by a timer or data conditions in the data warehouse system: 1) client-driven 
refreshment, when a user causes an update of the data warehouse information, 2) 
source-driven refreshment, when changes to the source data trigger a refreshment, and 
3) ODS-driven refreshment, which is triggered by data changes in the operational data 
store. They show a design and implementation for data refreshments from various 
sources as a workflow and demonstrate that the refreshment process is more complex 
than the view maintenance problem [10], and different from the loading process. The 
authors propose for the implementation of the ETL processes the usage of workflow 
management systems (WFMSs) and active rules which are executed under certain 
operational semantics.  

Vassiliadis et. al. describe in [8] an approach that uses workflow technology for the 
management of data warehouse refreshment processes. The authors propose a meta 
model for data warehouse processes that is capable of modelling complex activities, 
their interrelationships, and the relationship of activities with data sources from a 
logical, physical and conceptual perspective. The physical perspective of the meta 
model covers the execution details of the data warehouse processes. The logical and 
conceptual perspectives allow the modelling of complex data warehouse processes as 
workflows.  

The approaches discussed in [3] and [8] focus on data refreshment processes with 
batch-oriented data integration. The ETL container proposed in this paper also 
supports batch-oriented ETL processing flows that are triggered by events or by a 
scheduler. In addition, the ETL container allows the definition and efficient execution 
of processing flows for individual event types which is very crucial for continuous 
data integration and which is very difficult to achieve with a workflow management 
system.  

3. Continuous Data Integration 

This section describes a framework for continuous data integration as the context of 
this work. Figure 1 shows the process for continuously integrating data from various 
source systems. The processing steps are not equivalent to the traditional ETL 
because the underlying assumptions for the data processing and the latency 
requirements are different. Traditional ETL tools often take for granted that they are 
operating during a batch window and that they do not affect or disrupt active user 
sessions. If data is meant to be integrated continuously, a permanent stream of data 
must be integrated into the data warehouse environment while users are using it. The 
data integration process is performed in parallel and uses regular database transactions 
(i.e. generating inserts and updates on-the-fly), because in general database systems 
do not support block operations on tables while user queries simultaneously access 
these tables.

Figure 1 shows three stages for continuous data integration: 1) Extraction, 2) Data 
Processing, and 3) Evaluation. Please note that we do not include a separate loading 
stage in the process because data is not buffered and prepared for bulk loading. We 
extend the traditional data integration process with an evaluation stage that allows the 
system responding to conditions or irregularities in the integrated data. An evaluation 
of continuously calculated business metrics can be very valuable to the business 



because it promotes intelligent responses to business operations and proactive 
notification mechanisms in near real-time.  
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Fig. 1: Continuous Data Integration Process 

Data Extraction. Real-time integration of data from various operational sources 
addresses the issue of timeliness by minimizing the average latency from when a fact 
is first captured in an electronic format somewhere within an organization until it is 
available for the knowledge worker who needs it. In general, not all but only a 
relatively small amount of data represents transactions or other relevant information 
that must be captured continuously and “live” from transactional systems. The 
ultimate goal is to integrate the transactional data in near real-time with the historical 
information in the data warehouse. We need to be able to accept real-time feeds of 
transactional key business data, which can be a burden for the systems involved if 
they work in a synchronous mode using a direct connection. Therefore, an 
asynchronous messaging infrastructure with a publish-and-subscribe architecture is 
very advantageous because of the following reasons: 

- Operational systems are able to publish (push) their transaction data to 
message queues without being slowed down or even disturbed if a data 
integration process fails. 

- Data warehouses are able to decide themselves when to pull new data from 
operational sources. Therefore, they subscribe to particular message queues, 
filled by operational systems. 

- Messaging middleware provides reliable data delivery. 

Data Processing. Continuous data streams require light-weight data processing of the 
events that were raised in the source system and propagated in near real-time to the 
data warehouse environment [1]. The data processing can include any type of data 
transformation, data cleansing, the calculation of business metrics, and storing the 
metrics in a database table. Since the data has to be integrated with minimal delay, an 
architecture is needed that facilitates streamlining and accelerating the data processing 
by moving data between the different processing steps without any intermediate file 
or database storage. Traditional (batch-oriented) ETL scripts are not suitable for 
event-driven environments data extracts and data transformations are very small and 



frequent, because the overhead for starting the processes and combining the 
processing steps can dominate the execution time. Another limitation of ETL scripts 
is that they are written for a specific task in a self-sustaining manner, and don’t 
provide any kind of interfaces for data inputs and outputs. Because of this constraint 
in the traditional approach, a data processing environment must be very light-weight 
and scalable to handle a large number of processing flows. Continuous data streams 
often only include key business data from the transactional source systems. Therefore, 
the calculation of complex business metrics frequently requires additional information 
from other data sources. For instance, in the case of an order process, the workflow 
events do not include detailed information about the orders and customers. 
Nevertheless, order and customer information might be needed for the calculation of 
business metrics about the order transactions.  

Evaluation. The monitoring of business operations often entails a direct or indirect 
feedback into a workflow management system or an operational system. This 
response can be done either manually or automatically and enhances the business 
intelligence of operational systems. This is usually referred to as closed loop analysis. 
In the case when an automatic response is required, the data integration process has to 
evaluate the integrated data on-the-fly and trigger business operations based on the 
results of the evaluation. One major challenge of evaluating business metrics is the 
binding of the evaluation logic to the data processing logic. During the data 
processing, business metrics are generated that have to be passed to the evaluation 
logic. 

4. Data Integration with an ETL Container 

An ETL container provides a robust, scalable, and high-performance data staging 
environment, which is able to handle a large number of data extracts or messages 
from various source systems in near real-time. In [6] we introduced the architecture of 
the ETL container which provides services for the execution and monitoring of event 
processing tasks. Container services are responsible for creating, initializing, 
executing and destroying the managed components for the data extraction, data 
processing and evaluation. In this paper, we want to focus on the flow management 
capabilities of the ETL container. Before showing the approach taken for managing 
continuous data processing flows, we will briefly describe the components of the ETL 
container. 

An ETL container is a component of a Java-based application server and is used to 
manage the lifecycle of ETL components. It provides services for the execution and 
monitoring of ETL tasks. Three types of ETL components are managed by the 
container: 1) Event Adapters, 2) ETLets, and 3) Evaluators. Event Adapters are used 
to extract and receive data from source system, and they unify the extracted data into 
a standard XML format. The container controls the processing steps performed by a 
specialized Java components - so-called ETLets. ETLets use the data extracted by 
Event Adapters as input and perform the ETL processing tasks. ETLets also publish 
business metrics that can be subsequently evaluated by Evaluator components. Figure 
2 shows how these ETL components work together. 



ETL Container

E
v
e
n
t 
A
d
a
p
te
r

Thread1

Thread2

Thread 3

Event
Handler

ETLet
Service

ETLet 1

ETLet 2

ETLet 3

...

Evaluation
Service

Evaluator 1

Evaluator2

Evaluator3

M etric
Handler

Metric
Dispatcher

Ev
en
t1

Event3

Event2
E
v
e
n
t 
D
is
p
a
tc
h
e
r -- EventProcessing --

E
ve
n
t 
A
d
a
p
te
r

E
v
e
n
t
A
d
a
p
te
r

O DS
Data

W arehouse

...

Fig. 2: Multithreading in the ETL Container [6] 

The ETL container handles incoming events with a lightweight Java thread, rather 
than a heavyweight operating system process. Figure 2 shows the internal event 
processing of the container. The components shown with round boxes are components 
that are managed by the container. The components shown with square boxes are 
internal container components that are used to conjoin the ETL components. Please 
note that the ETL developers never see or have to deal with the internal components. 
We show these internal components for illustration purposes only. Every managed 
component has its own deployment descriptor for the configuration parameters. The 
ETL container controls and monitors the event processing by optimizing these 
configuration settings. As shown in Figure 2 the internal container components bind 
together the ETL processing steps without using intermediate storage. When new 
events arrive, the ETL container decides which ETL components are called and in 
what sequence these components are executed. In the next section, we describe in 
detail the mechanisms of the ETL container for managing the data processing flows. 

5. Managing Continuous ETL Processing Flows 

Traditional WFMS are suitable to control the execution of ETL batch-processes [3], 
[8]. However, when it comes to continuous data integration, a very large amount of 
ETL process instances will arise because the incoming events are processed 
individually and have to be handled by a separate flow. For instance, an order process 
with the magnitude of thousands of process instances can result in potentially millions 
of workflow events. Therefore, it is not feasible to use traditional workflow engines 
for managing millions of ETL processing flows. As an alternative, a solution is 
needed that is extremely lightweight and supports sufficient capabilities to control the 
ETL processing flows. 



For the control of the processing flow, the ETL container uses ETLet triggers that 
define conditions for the execution of an ETLet. These conditions are checked at 
different points in time during the ETL processing. The current ETL container 
implementation supports the following triggering conditions: 1) event-IDs or XPath 
selectors, 2) ETLet processing outcome, 3) evaluation results, and 4) schedules. We 
will discuss these trigger mechanisms in detail in the following sections. 

5.1. ETLet Triggers Based on Event-IDs or XPath Selectors 

ETLets can be triggered if an incoming event has a particular event-ID or a matching 
XPath expression. The matching of incoming events with XPath expressions allows a 
content-based subscription to XML events (e.g. subscription to all events that include 
an order business object). Since event adapters transform all incoming raw events to 
XML events, the triggering XPath expressions can be used as a universal subscription 
mechanism which is more flexible than traditional queue topic subscription 
mechanisms. Figure 3 shows examples for the definition of ETLet triggers in the 
deployment descriptors that are based on event-IDs and XPath expressions. 

Fig. 3: Example - ETLet Triggers with Event-ID and XPath Selector  

5.2. ETLet Triggers Based on the ETLet Processing Outcome 

The container can trigger ETLets based on the execution outcome of another ETLets. 
This triggering mechanism can be used to construct processing flows (e.g. ETLet 
chaining). For instance, an ETLet successfully calculated the cycle time of a business 
process, another ETLet could be triggered which calculates the costs which are 
determined based on the before calculated cycle time. 

Example:
      <ETLet-finished ETLet-name="previousETLet"> 
   <onComplete> 
      <event-selector-trigger selector="//Order"/> 
   </onComplete> 
…. <ETLet-finished>

Fig. 4: Example - ETLet Triggers Based on the Processing Outcome 

<event-trigger event-id="ORDER_CHANGED"/> 
<event-trigger event-id="ORDER_ACCEPTED"/> 
<event-selector-trigger selector="//Order"/> 



Figure 4 shows the structure of ETLet triggers in the deployment descriptor that are 
based on the processing outcome of other ETLets. The example in Figure 4 triggers 
an ETLet after the completion of the ETLet with the name “previousETLet” only if 
the current processed event includes an “Order” element. 

5.3. ETLet Triggers Based on Evaluation Results   

An ETLet can also be triggered based on the outcome of a metric evaluation. For 
instance, if a metric reaches a certain threshold it could be an indicator that additional 
data processing is required.  Figure 5 shows an ETLet trigger that triggers if the 
evaluator “CycleTimeLimitEvaluator” returns ‘1’. A return value of ‘1’ indicates that 
the cycle time was exceeded. 

Fig. 5: ETLet Trigger Based on an Evaluation Result 

5.4. ETLet Triggers Based on a Schedule  

An ETLet can have associated with it a triggering schedule. Between predefined start 
and the end timestamps, the scheduler triggers the associated ETLet. The frequency of 
triggering an ETLet is defined by a time interval. Figure 6 shows an example of an 
ETLet that is triggered every 10 minutes during the time period 2001-08-25 till 2002-
08-25. 

Fig. 6: ETLet Trigger Based on a Schedule 

These four ETLet trigger types can be used in the ETL container to compose 
complex data processing flows. Figure 7 shows a summary of the ETL flow 
management capabilities available in the ETL container. Please note that the ETL 
container does not provide the same advanced flow management capabilities as  those 
of workflow management systems. However, the flow management capabilities are 
very well integrated and support typical ETL processing scenarios. Moreover, the 
ETL flow management is very lightweight and thereby able to support a very large 
number of flows. 

<evaluator-finished evaluator-name="CycleTimeLimitEvaluator"> 
   <onEvaluate result="1" /> 

  </evaluator-finished> 

<schedule-trigger>
  <period> 
    <start>2001-08-25</start> 
    <end>2002-08-25</end> 
  </period> 
  <interval> 
     <minutes>10</minutes> 
  </interval> 

  </schedule-trigger> 
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5.5. Serialization of Processing Flows 

ETLets can subscribe to a number of event types and they are invoked in parallel for 
the processing. There are situations where the data processing of ETLets or entire 
processing flows have to be serialized. For instance, there are two incoming events 
that contain the same Order-ID. The first event places an order and the second event 
cancels the same order. Due to propagation delays, the first event arrives only one 
second before the second event. If these two events are processed in parallel by 
ETLets, there will be a high risk of data inconsistencies, because we need to preserve 
the serialization order also for the ETL processing. This situation is typically referred 
to as late-arriving data. The ETL container solves this problem by providing 
mechanisms for serializing the data processing flows. The serialization of processing 
flows is also configured within the deployment descriptor of an ETL solution. 
Therefore, it is possible to specify for example, that events of the event type “order” 
should be serialized, but only if they refer to the same Order-ID (the corresponding 
deployment descriptor section would be <event-flow-serialization 

selector="//Order@ID"/>). Therefore, the decision regarding whether parallelism 
should be used depends on the contents of incoming events. 

Figure 8 shows an example for serializing the data processing needed to update the 
customer ratings. In the example we assume a database table in an operational data 
store that captures the current ratings for customers. Many external events might have 
an impact on these ratings (e.g. a customer cancelled many orders or did not pay). To 
ensure a consistent update of the customer rating, it is necessary to serialize the event 
processing for a customer rating. Please note that the ratings of customers are 
generally calculated in parallel (e.g. the rating for customer “Joe” and for customer 
“Alex”). However, all events that affect a particular customer (e.g. all events for the 
rating of customer “Joe”) must be serialized. 



The ETL container is able to solve the above discussed serialization problems. It 
uses XPath selector expressions for incoming events which are used to identify 
common attributes for the serialization. Selector expression can be applied globally to 
entire flows (as shown before with the order example) or locally to ETLets (as shown 
with the customer rating example). If the selector returns the same contents as a 
currently processed ETLet or flow, the ETL container waits with the processing of the 
new event. Figure 8 shows that the ETL container waits with the invocation of 
CustomerRating ETLet on thread 3 until the processing in “Thread 2” is finished. 
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Fig. 8: Serialization of ETLets 

6.   Conclusion and Future Work 

In large organizations, huge amount of data can be generated and consumed by 
business processes. Business managers need up-to-date information to make timely 
and sound business decisions. Conventional workflow management systems and 
decision support systems do not provide the low latencies needed for the decision 
making in e-business environments. This paper described a container-based approach 
with the aim of providing continuous, near real-time data integration for data 
warehouse environments. We use an ETL container for the data processing, which 
provides a robust, scalable and high-performance event processing environment. We 
introduced the flow management capabilities of the ETL container and discussed 
serialization issues as well.  

The work presented in this paper is part of a larger, long-term research effort 
aiming to develop real-time data services for business process management platforms. 
In our future work, we want to extend our model to formally describe and execute 



data processing flows. Furthermore, we want to add new services to the ETL 
container, which are useful for the ETL processing. This includes a set of services for 
the data extraction and data transformation, including caching, concurrency, locking, 
and transformation engines. 
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