
Mathematical Optimization Based Channel Coding:
Current Achievements and Future Challenges

Michael Helmling#, Stefan Scholl∗, Akın Tanatmis#

∗Department of Electrical and Computer Engineering
#Department of Mathematics

University of Kaiserslautern, 67653 Kaiserslautern, Germany
{helmling, tanatmis}@mathematik.uni-kl.de

scholl@eit.uni-kl.de

Abstract— Channel coding and mathematical optimization—
two omnipresent branches of science which heavily influence
our everyday life, which is certainly unimaginable without the
epochal achievements of each of the two disciplines since they
affect nearly every communication system as well as every
transportation, manufacturing, and organization process. The
following report is dedicated to some of the achievements of a
research project decisively influenced by a cooperative interplay
of these two disciplines.

I. CHANNEL CODING

Channel coding is an important technique for the correction
of transmission errors that is used in nearly every commu-
nication system today. It is used in mobile phones as well
as in satellite communication, navigation systems, storage
devices like hard disks, CDs and also in internet or broadcast
applications. Let us first review what channel coding is and
why we need it. To understand the problems channel coding
solves, we will have a look at the old days. As an example
we take a communication system without channel coding that
becomes more and more obsolete: analog TV.

Television broadcasting is a form of one way communi-
cation. On the one hand we have a transmitter, which is
usually placed on top of a mountain and transmits radio waves
with high power to reach an area as big as possible. On the
other hand we have the receivers, ordinary TV sets, in our
households, that pick up the radio waves.

If the connection between transmitting antenna and receiv-
ing antenna is of good quality, we a see clear picture and
hear a comfortable sound. But what happens if the quality of
the connection is not so good? Let us assume our receiver
is placed far away from the transmitter, behind a mountain,
in the cellar or simply in bad weather, so that the reception
quality drops. Then the picture is distorted or, even worse, the
whole picture bounces up and down. Also the sound might be
clicking and crackling, disturbing the viewers enjoyment. The
TV signal is noisy or distorted.

Figure 1 shows such a situation where we have two TV
watchers, A and B. Whereas A is close to the transmitter and
receives a clear picture, B is not in such a good position. He
has worse receiving conditions due to serveral obstacles.

The goal of new digital TV broadcasting systems is to make
picture and sound more resistant to distortion and noise. In

Fig. 1. TV transmitter and two receivers

Fig. 2. TV pictures from A and B

contrast to the presented analog system, there are additional
possibilities for techniques to improve the link from the
transmitter to the TV set at home. One of them is channel
coding. Channel coding is a technique to detect and correct
occuring errors. But how is that possible?

Whenever a signal is transmitted in modern digital commu-
nication systems, the data is transmitted in form of bits or bit-
streams, respectively. To allow error correction on the receiver
side, we have to make some preprocessing before transmission,
called encoding. To encode the data, the bitstream is first cut
into small blocks. At the end of every block some extra bits,
called parity bits, are added as shown in Figure 3. The k data
bits together with the r parity bits form a vector of n bits
which is called codeword the c.

Fig. 3. A bitstream is being encoded

During encoding the additional parity bits are calculated

from the data bits. The “way” we calculate the parity bits
is called channel code and determines the performance of the
channel coding system. Since data is processed block by block,
the channel codes described here are called linear block codes.
A linear block code is defined by a binary r × n matrix H ,
so that every bitvector c that fullfills

H · c = 0 (1)

(where the calculation takes place modulo 2) is a codeword. H
is called parity-check matrix. By C = {c ∈ {0, 1}n : H · c ≡
0 mod 2} we denote the set of all codewords [1]. Finding a
good channel code with its matrix H is non-trivial and subject
to research since decades.

After encoding the data it is sent to the receiver. During
transmission some bits may be distorted and change their
values.

The actual correction of corrupted data takes place in the
receiver by a device called channel decoder, that tries to
“repair” the incoming blocks. For this purpose the decoder
uses the previously added parity bits. In many cases this
technique works well and many errors can be successfully
corrected.

transmitter receiver

encode
data data +

parity

errors occur

decode
corrected

Fig. 4. Encoding, transmission, and decoding of data

However there is a probability that the decoder cannot
correct an erroneous block. This remaining error probability
is called frame error rate (FER) and is dependent on the
signal-to-noise ratio (SNR), which is the signal power divided
by the noise power at the receiver. The FER is an indicator
for the quality of the channel coding system. It is measured
with Monte-Carlo simulation on a computer and visualized
with a special chart, shown in Figure 5. This type of chart
has a typical shape. For weak signals, that is, low SNR,
the FER is very high (close to 1) and drops with increasing
signal strength. In Figure 5 there are two curves, the blue
one represents a system without channel coding, the red one
corresponds to the same system with channel coding. One
can easily see that the channel coding provides significantly
less errors. The lower a curve lies in the performance chart,
the better the coding system works. In fact there are many
parameters that influence the performance of channel coding,
but the performance chart allows for a good comparison.

In practical applications different error probabilities are
necessary. For audio signals, like in a mobile, a minimal
error probability 0.01 is required, otherwise crackling or
interruptions make a call uncomfortable. For communications
through optical fiber error rates of less than 10−12 may be
necessary for flawless operation.

0 2 4 6 8 10 12
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

signal−to−noise ratio (SNR)[db]

fr
a

m
e

 e
rr

o
r

ra
te

 (
F

E
R

)

uncoded

with channel code

less errors

with
channel coding

without
channel coding

less
transmit power

Fig. 5. FER for a system without channel coding and one using channel
coding

Using channel coding we can handle more weak signals
without any loss of quality or provide much more reliable data
for a given signal strength. This advantage can be translated
into equipment cost reduction, for example smaller antennas,
cheaper electronics or smaller batteries.

We now have seen which processing steps in channel coding
are necessary, namely encoding and decoding. The decoder is
much more complex than the encoder and is the main part of
a channel coding system. So now we will have a closer look
at the decoding process.

In channel coding the data is processed in blocks of n
bits consisting of k data bits and r = n − k parity bits.
Because the parity bits are calculated from the data bits, they
are fully dependent on the data bits. Therefore there are only
2k possible codewords, although there are 2n possible bit
combinations. When a erroneous codeword is received, the
channel decoder checks which one of the 2k valid codewords
is most similar to the received block. This process is called
maximum likelihood (ML) decoding and is the optimal way of
decoding [1]. However, because all 2k codewords need to be
tested, this procedure is applicable only for small values of k.
With increasing k the complexity grows exponentially. Since,
in practice, we deal with pretty large blocks (for example
k = 100 or k = 10000), the ML decoding procedure of
going through all 2100 or even 210000 codewords is simply
not possible to calculate in an imaginable amount of time.

To overcome this problem engineers often use heuristics or
suboptimal algorithms for the decoding procedure. These al-
gorithms are very often capable of finding the correct solution,
but with much less complexity. In some cases, however, the
suboptimal algorithms decide for a wrong solution. This leads
to a small degradation in performance, which one has to accept
if the problem should be feasible.

Only if the complexity is low enough, the decoding al-
gorithm can be implemented on a chip for use in practical
applications. For many of modern codes, algorithms with
a good tradeoff between performance and complexity are
known. Moreover, for many used channel codes only the

performance with suboptimal decoding algorithms is known—
not the one of optimal ML decoding.

From a mathematicans point of view there exist other
means of solving the ML decoding problem than comparing
all 2k codewords to the received one. The decoding can be
formulated as follows.

Assume that at the receiver a vector c̃ was received. It will
check all possible sent codewords c out of C and decide for
the codeword c∗ which was most likely sent. Thus, the ML
codeword c∗ is the codeword which maximizes the so called
conditional probability p(c̃ received|c sent):

c∗ = arg maxc∈C p(c̃ received|c sent) (2)

This problem is an optimization problem. In the following,
we will present how decoding can be done with methods of
integer optimization.

II. OPTIMIZATION METHODS FOR ML DECODING

Mathematical optimization is the task of finding an optimal
solution for and the optimal value of an objective function
under the condition that some constraints are satisfied. Ob-
jective function and side constraints typically model some
real-world scenario, where the variables of the function are
the abstraction of parameters like the per-day work time of
different machines or the path on which a truck drives from
location A to location B. Depending on the task, “optimal”
may be either minimal (if the objective function represents
some sort of cost or time) or maximal (e.g., if the function
value stands for the profit gained). The constraints are used to
model limitations of resources, working time, money, etc., or
to avoid solutions that would be mathematically correct, but
do not make sense in the real world—for example, a machine
cannot work −2 hours per day, and one cannot build 1.72
facilities.

Linear programming is the best-studied discipline of mathe-
matical optimization and it deals with optimization of a linear
objective function which is constrained by linear (in)equalities.
The domain of the variables is Rn for some n ∈ N and a linear
program (LP) is then defined as

min (or max) wTx =

n∑
i=1

wi · xi

such that Ax ≤ b
x ∈ Rn

where w ∈ Rn is the cost (benefit) vector, A the m × n
constraint matrix, b ∈ Rm the right hand side vector of
the constraints, and the variables are real-valued. Linear pro-
gramming has become famous since George Dantzig in 1947
proposed an algorithm to solve LPs as the above one, called the
Simplex algorithm. Despite the fact that the Simplex algorithm
was later proven to have exponential worst-case complexity,
it is still the algorithm most used in practice. For the far
most problem instances, the Simplex method is very fast, and
outperforms polynomial-time algorithms that were developed
in the 1980’s. Since its invention, linear programming has

become a standard tool in business for a wide range of
applications such as planning, scheduling, routing or facility
location.

Yet, this is not the end of the story—for many applications,
linear programs lack some important capabilities, such as the
restriction to integral or binary decision variables.

From this requests, the field of integer linear programming
evolved. An integer program (IP) is defined in the same way
as a linear program, but additionally requires that some (or
all) of the variables take values in Zn instead of Rn. The
increased power obtained by this extension vastly enlarges the
number of practical problems that can be modelled by IPs—
at the cost, however, of efficiency, since it was shown that
the general integer program is NP-hard to solve. Nevertheless,
since this way of modelling is so powerful, a lot of research
has been done to find and improve algorithms that tackle
integer programs and make them solvable at least for moderate
problem sizes or specific well-understood classes of programs.

How can integer linear programming techniques be used to
decode binary linear codes and to add some surplus to the
state-of-the-art knowledge in channel coding?

Jon Feldman was one of the first researchers who addressed
this question intensively. To this end, he reformulated the ML
problem (2) and interpreted it as an integer programming
problem: Under the assumption of a memoryless channel,
i.e. the error distributions are independent for subsequent bits,
it can be calculated as

c∗ = arg maxc∈C

(
n∏
i=1

p(c̃i|ci)

)

= arg minc∈C

(∑
i:ci=1

ln

(
p(c̃i|0)

p(c̃i|1)

))
.

The quotient

yi = ln

(
p(c̃i|0)

p(c̃i|1)

)
(3)

is called the log likelihood ratio (LLR) of the i-th input bit.
It only depends on the parameters of the channel, which are
assumed to be known, and the signal c̃ that was received.
So, yi is known to the decoder. From the above calculation it
follows that c∗ = arg minc∈C (

∑n
i=1 yici).

ML decoding can be achieved by minimizing this linear
objective function over all codewords c that satisfy (1); in
other words,

min

n∑
i=1

yici

such that H · c ≡ 0 mod 2

c ∈ {0, 1}n.

Due to the modulo constraints, this is not exactly an integer
programming model of the ML decoding problem. However,
there exist several integer programming re-formulations of this
optimization problem. For example, Jon Feldman introduced
a formulation in which the number of both variables and
constraints grows exponentially in the number of ones per

row [2]. Among others, this exponential growth led us to
the development and investigation of the following improved
integer programming model with less constraints and variables
by the introduction of artificial variables z ∈ Zm (one for each
row of H)

min

n∑
i=1

yici

such that H · c− 2z = 0

c ∈ {0, 1}n, z ∈ Zm

(4)

The j-th row of the constraint system reads
∑n
i=1Hi,j ·

ci − 2zj = 0. Since zj is required to be integral, this
equation ensures that an even number of entries of ci is set
to 1. So, indeed this is a simple, general, and sparse integer
programming problem for the ML decoding problem [3]. For
any given code specified by a parity check matrix H , the
solution to this problem is the maximum likelihood codeword.

It should be emphasized that this problem is difficult to
solve (it is NP-hard in general). Therefore, the integrality
requirements on the variables c and z are dropped in order
to get the so-called LP-relaxation of this IP which can be
considered an approximation of the original problem.

Our IP formulation proved to be beneficial in several ways.
First, in [4], we solved this IP formulation by a commercial

all-purpose solver and compared its results with those of five
other IP formulations existing in the literature. To sum it up,
our formulation had the fewest number of variables as well as
constraints and the solution time was the least.

Second, this formulation allows for an efficient procedure
to approximately solve this problem (this is important if
commercial solvers are not efficient enough or cannot be
used due to some constraints). In [3], a separation algorithm
was proposed utilizing the structural properties of this IP
formulation. This algorithm works as follows: First, the LP
solution is computed and checked for integrality. If it is
integral, it is obviously also the optimal IP solution and the al-
gorithm terminates. Otherwise, the IP-formulation is improved
by adding additional linear constraints λT c ≤ λ0, (λ, λ0) ∈ Λ
where Λ ⊂ Rn+1 is a set depending on some polyhedral
properties of the code (which shall not be specified due to
intended brevity of this article). However, these constraints
ensure that if the LP obtained by adding this constraint is
solved, then the previous LP solution is infeasible and the
new LP solution is closer to the IP solution. Applying this
idea iteratively yields an algorithm which approximates the IP
solution. Consequently, the LP to be solved repeatedly is of
the form

min

n∑
i=1

yici

such that H · c− 2z = 0

λT c ≤ λ0 (λ, λ0) ∈ Λ

0 ≤ ci ≤ 1, i = 1, . . . , n.

D D D+Input

+

+

+

Out 2

Out 1

Fig. 6. A convolutional encoder with 3 memory registers.

The constraints λT c ≤ λ0, (λ, λ0) ∈ Λ, are derived from the
current LP solution based on some combinatorial reasoning
and the indicator variables z allow for a very fast generation of
these constraints. Moreover, these constraints can be classified
with respect to optimization theory: although they are derived
in a combinatorial manner, they correspond to what is known
as Gomory cuts. Additionally, it turned out that the formulation
(4) offers another possibility which leads to an algorithm with
enhanced performance: The representation of the code in terms
of a parity check matrix H is not unique. In our separation
algorithm, alternative parity check matrices of the code are
generated during the execution as soon as the current one does
not allow for further improvement of the solution.

To sum it up, this formulation enabled the development of
an algorithm which
• is applicable to any binary linear block code in contrast

to existing heuristics which are tailored to one specific
type of code,

• yields a better error-correcting performance than other
algorithms, and

• employs properties of binary linear codes to improve the
algorithmic treatment.

Besides this general purpose formulation, we have also in-
vented and investigated specialized approaches for an impor-
tant subclass of codes, as described below.

III. LINEAR PROGRAMMING FOR TRELLIS-BASED CODES

A class of codes that have gained tremendeous interest since
their invention in 1993 are the so-called turbo codes. A turbo
code is built by the parallel concatenation of two convolutional
codes that are separated by an interleaver. Convolutional codes
have an inherent graph structure by their trellis representation
which faciliates the processes both of encoding and decod-
ing. This structure is partly inherited by the more complex
turbo codes, which allowed us to invent a powerful integer
programming formulation, as well as several approximation
algorithms, for this special set of codes.

The encoder of a convolutional code is built by a number
of delay shift registers (D) and several XOR (binary addi-
tion) gates, as shown in Figure 6. The registers comprise
the memory of the encoder, and the (binary) content of the
registers define its state. Thus, an encoder with k registers has
2k possible states. By the XOR gates, the current state of the
encoder, together with the current input bit, determines both
the two current output bits at Out 1 and Out 2 and new state
for the next step. This process can be visualized by the trellis
graph of the code, where each vertex represents a state at a

0 0

2

0

1

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

0

1

1

2

3

1

3

Fig. 7. Excerpt from a trellis graph with 4 states.

input Ca

π

Cb

Out 1

Out 2

Out 3

Fig. 8. Turbo encoder with two convolutional encoders Ca, Cb and
interleaver π.

specific step, and there are two types of arcs for zero and one
inputs, respectively, that model the transition of one state to
another (see Figure 7 for a trellis with 4 states). One usually
assumes that initially all registers contain a zero, therefore at
the first step there is only one possible state. Arcs representing
a zero input bit are drawn in a dashed style, where solid arcs
correspond to a one at the input.

In a trellis, a codeword corresponds to a path from the initial
state to the left to the end state at the right (which is not
visible in the figure). It is possible to assign a cost attribute
to each arc, based on the LLR values from (3), in a way that
the ML codeword can be found by computing the path of
minimum cost—a task for which very fast algorithms exist.
Therefore, for a simple convolutional code, ML decoding can
be accomplished efficiently.

The encoder of a turbo code uses two convolutional en-
coders. The first one processes the input bits as described
above. A copy of the input is sent into the second encoder after
passing an interleaver π. The interleaver permutes the bits in a
pseudo-random way before they enter the second encoder. This
way, the input (and thus also the output) is different for both
decoders. By this additional complexity, the theoretical error-
correcting performance of a turbo code is vastly increased
compared to single convolutional encoding, as vital research
over the past decades has revealed. The downside of this is
that also the decoding complexity, the effort to compute the
ML codeword for a given received signal, increases. Speaking
in terms of trellis graphs, a turbo code can be modelled by
two trellises which are synchronized by the constraint that in
a given step, the path in the first trellis must use the same type
of arc (zero or one) as the corresponding step in the second
trellis which is determined by the interleaver function. The
ML codeword is now represented by two paths (one for each
trellis) of minimum cost that match this additional constraints
defined by the interleaver. Unfortunatelly, it turns out that this
problem is much harder than the single, unconstrained min-

cost path in the case of a convolutional code. However, we
can formulate the synchronized trellises as an integer linear
program, where the interleaver constraints are of the form∑

a∈Si1,1

xa =
∑

a∈Sπ(i)
2,1

xa. (5)

Here, Si1,1 are the one-arcs in the first trellis for step i, and
S
π(i)
2,1 are the one-arcs in the second trellis for the step to which

the interleaver maps i.
We have run numerical simulations, showing that this for-

mulation leads to greatly reduced computation time compared
to the generic one given in (4). This is because only a rather
small part of the problem definition, namely the interleaver
constraints (5), separate the problem from the easy problem
of unconstrained shortest path computation. Lagrangian relax-
ation can be used in such a situation of several “complicating
constraints”. We have adapted this technique to the case of
turbo codes [5]. The idea of Lagrangian relaxation is to remove
those constraints, but penalize their violation in the objective
function. In the context of turbo coding, this means that we
allow the two paths to use different types of arcs in the steps
that are interconnected by the interleaver, but each of this
violations increases the total cost of the path—the constraint
given in (5) leads to the term

ηi

 ∑
a∈Si1,1

xa −
∑

a∈Sπ(i)
2,1

xa


in the objective function which becomes larger the more the
two sums differ.

A central result of Lagrangian relaxation is that, for an
appropriate choice of penalty factors ηi, the optimal paths with
respect to the Lagrangian relaxation will converge to the LP
relaxation of the problem, where all additional constraints are
satisfied. However, in general no integral solution is obtained.

One of our approaches to finding integral solutions is based
on the following idea: Given the shortest path on one of
the trellises, it is rather unlikely that the corresponding path
on the other trellis (determined by the interleaver) is also
the shortest path for that trellis. However, the optimal global
solution corresponds to the k-th shortest path on one of the
trellises, and under certain assumtions k will be relatively
small k. We have adapted an efficient algorithm to compute
the k shortest paths on a graph to the trellis scenario, and
showed that, for low noise and not too large trellises, this can
be an efficient approach—especially in conjunction with the
modified objective function by the Lagrangian relaxation.

IV. RESULTS, IMPACT, & OUTLOOK

Remember that in practical communication systems the use
of an optimal decoder is very often not feasible, because
of its large complexity. So when implementing decoders on
a chip suboptimal algorithms are used. They are much less
complex than the optimal decoder, but also perform worse.
The algorithms are often iterative heuristics, that usually run

0 1 2 3 4 5 6 7 8
10−6

10−5

10−4

10−3

10−2

10−1

100

signal−to−noise ratio[db]

fr
am

e
er

ro
r

ra
te

WiMAX LDPC Code, block length n= 96

without channel code

suboptimal decoding for WiMAX code

optimal decoding for WiMAX code

performance of
hardware

implementation

optimal performance
measured with our

decoder

gap

Fig. 9. Comparison of suboptimal and optimal decoding

a fixed number of iterations or abort earlier according to
some stopping criterion. For example the decoding of LDPC
codes in practical applications is usually done with a special
iterative algorithm called belief-propagation, that is also used
in artificial intelligence [6].

Finding decoding algorithms with a good tradeoff between
hardware complexity and communications performance is an
important research area for hardware designers. To judge an
algorithm’s performance it can be compared to the optimal
decoding. This comparison also helps to estimate if further
research on new algorithms is promising or not. However the
problem is that for most linear block codes used in practice
the optimal decoding performance is unknown.

Our aim is to provide ML simulation results for practical
channel codes with larger blocklengths. Furthermore with
mathematical techniques we like to get further insight in
channel codes and their decoding procedure.

In chapter I we presented the optimal decoding problem
as integer optimization problem. With help of the presented
techniques we built an optimal decoder, that is able to perform
ML decoding efficiently for larger block lengths. With this
decoder we measured the optimal performance of some short
channel codes used in the recent communication standard
WiMAX [7], which were previously unknown.

Figure 9 shows a LDPC code taken from WiMAX with
a block lengths of 96 bits. The suboptimal performance as
it may be implemented on a chip is shown. Additionally a
second curve is shown, which was simulated with the use
of our integer optimization decoder and shows the optimal
performance.

One can see that there is a gap of about 1 db between the
algorithm used in hardware and what is theoretically achiev-
able. This gap is quite large, if you consider that sometimes
a few tenths of a db are a good sales argument.

The work on ML decoding as an optimization problem
did not only lead to a better understanding of the decoding
performance of the suboptimal algorithms and new simulation

results. The study of different formulations also led to a new
stopping criterion for a iterative decoding algorithm. Stopping
criterions abort the iterative process early, if sufficient itera-
tions were made. Here we used a cost function to indicate,
when the iterations can be stopped. This leads to a faster
computation and a more power efficient decoding algorithm
in hardware.

The study of linear block codes gives rise to a lot of
new types of mathematical problems and structures that have
not been considered before, as well as interesting links to
different mathematical fields (like integer programming, graph
and network theory, finite algebra, matroid theory). If we use
integer programming for ML decoding, we are in the situation
that, for a given code, we solve the same program over and
over again, where only the cost vector varies. So far, only
little attention has been given to this special case, which might
allow for more efficient ways to solve the problem by re-using
information that was collected in previous problem instances.
As another example, by studying certain types of cyclic codes
we encountered a new type of network flow problem, where
the supply or demand of vertices is variable and thus a part
of the problem itself, but restricted to be a multiple of 2.
Also, the application of coding theory might arouse interest in
constraints of the form Ax ≡ b (mod q) in integer programs,
which have not yet been studied extensively.

The recently developed 3-dimensional turbo codes, which
are an extension of turbo codes that use a third convolutional
encoder in conjunction with a second interleaver, show that
the development of good Lagrangian relaxation techniques for
trellis-like graphs remains an important task for the area of
convolutional coding.

ACKNOWLEDGEMENT

We thank Horst W. Hamacher, Frank Kienle, Stefan Ruzika,
and Norbert Wehn for their constructive comments and sug-
gestions. We gratefully acknowledge financial support by the
Center of Mathematical and Computational Modelling of the
University of Kaiserslautern.

REFERENCES

[1] S. Lin and D. J. Costello, Error Control Coding, Second Edition. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 2004.

[2] J. Feldman, “Decoding error-correcting codes via linear programming,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2003.

[3] A. Tanatmis, S. Ruzika, H. Hamacher, M. Punekar, F. Kienle, and
N. Wehn, “A separation algorithm for improved LP-decoding of linear
block codes,” Information Theory, IEEE Transactions on, vol. 56, no. 7,
pp. 3277–3289, 2010.

[4] A. Tanatmis, S. Ruzika, M. Punekar, and F. Kienle, “Numerical Com-
parison of IP Formulations as ML Decoders,” in Communications (ICC),
2010 IEEE International Conference on. IEEE, 2010, pp. 1–5.

[5] A. Tanatmis, S. Ruzika, and F. Kienle, “A lagrangian relaxation based
decoding algorithm for LTE turbo codes,” in Turbo Codes and Iterative
Information Processing (ISTC), 2010 6th International Symposium on.
IEEE, 2010, pp. 369–373.

[6] T. Richardson and R. Urbanke, “The Renaissance of Gallager’s Low-
Density Pariy-Check Codes,” IEEE Communications Magazine, vol. 41,
pp. 126–131, Aug. 2003.

[7] IEEE 802.16, Local and metropolitan area networks; Part 16: Air Interface
for Fixed and Mobile Broadband Wireless Access Systems; Amendment
2:Physical and Medium Access Control Layers for Combined Fixed and
Mobile Operation in Licensed Bands.

