
Nonlinear Finite Element Simulation 

of Thin Dielectric Elastomer Structures 
Sandro Zwecker

 #1
, Sven Klinkel

 #2
, R. Müller

*3
 

#
 Statik und Dynamik der Tragwerke, TU Kaiserslautern 

Paul-Ehrlich-Str. 14, 67663 Kaiserslautern, Germany 
1
zwecker@rhrk.uni-kl.de 

2
klinkel@rhrk.uni-kl.de 

*
 Lehrstuhl für Technische Mechanik, TU Kaiserslautern 

Postfach 30 49, 67653 Kaiserslautern, Germany 
3
ram@rhrk.uni-kl.de 

 
Abstract— To simulate the behavior of thin dielectric elastomer 

structures a finite solid shell element formulation is presented. 

Dielectric elastomers belong to the group of electroactive 

polymers and their use as actuators is caused by the efficient 

coupling between electrical energy input and mechanical energy 

output. Also the large elongation strain of 120-380% of the 

dielectric elastomer actuators and their light weight are 

advantages that make the material very attractive. Regarding the 

electro-mechanical coupling a constitutive model is expounded. 

For the definition of an electric stress tensor and a total stress 

tensor the electrical body force and couple are considered in the 

balance of linear momentum and angular momentum, 

respectively. The governing constitutive equations are derived 

and incorporated in a solid shell element formulation based on a 

Hu-Washizu mixed variational principle considering six fields: 

displacements, electric potential, strains, electric field, 

mechanical stresses, and dielectric displacements. This 

formulation allows large deformations and accounts for physical 

nonlinearities to capture the main characteristics of dielectric 

elastomers. 

I. INTRODUCTION 

In recent years dielectric elastomers (DE) have become 

popular for the usage in actuators. The efficient 

transformation of electrical energy in mechanical energy and 

the ability to maintain large strains makes them very attractive. 

A Constitutive model, which describes the specific material 

behavior, is introduced by Dorfmann and Ogden [1], 

Steigmann [2] and the references therein. The numerical 

treatment in the context of the finite element method is 

presented by Vu et al. [3], who provide a brick element 

formulation, which incorporates the nonlinear constitutive 

model. In the present work a shell finite element formulation 

for DE is presented. It is motivated by the fact that the most 

DE devices are thin structures, which have a very high length 

to thickness ratio. The electromechanical coupling is 

considered in the body force and the couple density, see e.g. 

Eringen and Maugin [4] or Müller et al. [5]. The angular 

momentum equation is fulfilled by assuming a Maxwell stress 

tensor. The linear momentum equation is approximately 

fulfilled by the finite element method. A mixed solid shell 

element formulation is introduced. It incorporates specific 

interpolations for the displacements, strains, stresses as well as 

for the electric potential, electric field and dielectric 

displacements. As nodal degrees of freedom three 

displacements and the electric potential are assumed. The 

mixed formulation allows for a consistent finite element 

approximation to avoid electromechanical locking effects. The 

element formulation is able to simulate large deformations. 

Some numerical examples show the applicability of the 

proposed solid shell element. 

II. KINEMATICS 

Let Φ be a deformation that point maps  ⃗⃗  of the reference 

configuration   to  ⃗⃗  of the current configuration    at time  , 
see Figure 1. The deformation gradient   is declared as the 

tangent to Φ and given by 

    
  ⃗⃗ 

  ⃗⃗ 
 . (1) 

With this definition for the deformation gradient the right 

Cauchy-Green deformation tensor   reads, 

        . (2) 

Followed by the Green-Lagrange strain tensor   defined as 

    
 

 
 (   ) . (3) 

 

 

Fig. 1  Reference and current configuration with position vectors  ⃗⃗  and  ⃗⃗  

 

To describe the shell formulation convective coordinates    
are introduced, where   and    are the in-plane coordinates 

and    is the coordinate in thickness direction. The covariant 



tangent vectors are obtained in the reference and current 

configuration as  ⃗⃗   
  ⃗⃗ 

   
,  ⃗⃗   

  ⃗⃗ 

   
 respectively. The 

contravariant basis vectors are defined in a standard manner 

by  ⃗⃗    ⃗⃗ 
    

 
and  ⃗⃗    ⃗⃗ 

    
 
, where   

 
 is the Kronecker-

delta. With this convective description the deformation 

gradient also reads    ⃗⃗    ⃗⃗  . 

A potential   is used to describe the electric field  ⃗⃗ . With 

  satisfying the Laplace’s equation  ⃗⃗  reads 

  ⃗⃗   
  

   
  ⃗⃗   . (4) 

Applying the pull-back operation the physical electric field 

 ⃗    ⃗⃗     is observed. The displacement vector  ⃗⃗  is defined 

by 

  ⃗⃗   ⃗⃗   ⃗⃗  . (5) 

Boundary conditions for  ⃗⃗  and   are given on     and 

   , respectively. 

III. FORCE AND COUPLE DENSITY 

To get a macroscopic representation of force and couple 

density a close look on the microscopic level is presented. 

Therefore the physical model will start with a particle    of 

the current configuration    to deduce electric force in the 

presence of electromagnetic matter and in absence of a 

magnetic field. 

 

 
Fig. 2  Physical model for the microscopic description; left: the current 

configuration    with a particle   ,right: the zoomed inner structure of the 

particle. 

 

Relative to the mass center    eccentric by  ⃗    not to be 

confused with the convective coordinates    are the point 

charges     and the point masses    , as shown in Figure 2. 

In an electric field a force is acting on each point charge     

called Lorentz force and it is defined by      ⃗ . The 

gravitation field  ⃗⃗  is acting on each point mass producing the 

Newton force given by      ⃗⃗ . Summing over   leads to the 

resultant force on the particle: 

  ⃗⃗    ∑      ⃗⃗       ⃗   . (6) 

The position of a point within the particle    can be 

described by  ⃗⃗      ⃗⃗     ⃗   . Assuming the gravitation to 

be constant it follows:  ⃗⃗ ( ⃗⃗   )    ⃗⃗ ( ⃗⃗  ). This assumption and 

expanding the external field in a Taylor series  

 ⃗ ( ⃗⃗   )    ⃗ ( ⃗⃗  )    ,    ⃗ -    ⃗      by neglecting higher 

order terms results in 

 ⃗⃗    (∑     )  ⃗⃗  (∑     )  ⃗  ,    ⃗ -  (∑     ⃗    ) . 

  (7) 

After defining the resultant mass    ∑    
 , charge 

   ∑     , and polarization  ⃗⃗   ∑     ⃗     of the particle 

   and performing a simple space averaging       ∑    , 

      ∑    ,  ⃗⃗      ∑  ⃗⃗    leads to the macroscopic body 

force density 

  ⃗⃗      ⃗⃗     ⃗   ⃗⃗  ,    ⃗ -     ⃗⃗   ⃗  , (8) 

where  ⃗  combines the electric contribution to the body 

force density. Deriving the corresponding couple density with 

the same arguments the resultant couple of the particle    

with respect to the mass center    reads 

  ⃗    ∑  ⃗         ⃗⃗  ∑  ⃗         ⃗  . (9) 

Here it is assumed that the mass dipole moment 

∑  ⃗         ⃗⃗ . With the resultant polarization  ⃗   

∑     ⃗     and a space averaging it follows the macroscopic 

couple density 

  ⃗    ⃗⃗   ⃗  . (10) 

IV. BALANCE LAWS AND STRESS TENSOR 

The balance laws incorporating the electric force, couple, 

and power densities are summarized. After that the global 

integral forms and the local field equations are presented. The 

Cauchy stress tensor and an electric stress tensor are 

introduced. Conservation of mass 
 

  
∫       

  , with 

       is assumed. Localization of the material description 

results in      . In quasi static processes the integral form 

of the balance of linear momentum is given as 

    ∫  ⃗⃗     ∫      
     

 , (11) 

where  ⃗⃗  is the body force density (8) and    the traction 

vector on    . With the Cauchy stress tensor   the traction is 

determined by a linear map of the normal vector      ⃗⃗ , 
according to Cauchy’s stress theorem. Considering 

conservation of mass, applying the divergence theorem and 

the localization theorem, the field equation along with the 

jump condition are observed as 

       ⃗⃗   ⃗⃗  in    , (12) 

    ⃗⃗     on      . (13) 

With    as a prescribed traction on the boundary     . The 

boundaries with a given traction and a given displacement 

satisfy         ⋃     and       ⋂    . The global 

form of the balance of angular momentum reads 

    ∫  ⃗⃗   ⃗⃗   ⃗     ∫  ⃗⃗       
     

 , (14) 



where  ⃗  is the couple density Using the integral 

theorem, considering conservation of mass and the linear 

momentum balance along with the localization theorem 

results in the field equation 

      ⃗   ⃗⃗   in    . (15) 

For dielectric materials the conservation of charge in 

integral form with the surface charge density    on      reads 

    ∫       ∫           
 . (16) 

The dielectric displacement vector is denoted by  ⃗⃗  and 

determined by Gauss’ law  ⃗⃗   ⃗⃗    . Applying the 

divergence theorem results in the field equation along with the 

jump condition 

     ⃗⃗       in    , (17) 

  ⃗⃗   ⃗⃗   
 
 on      . (18) 

Here,  
 

 is a prescribed surface charge. For the total 

boundaries with a given electric potential and a given surface 

charge it holds         ⋃     and       ⋂    . 

With the constitutive equations in matter the dielectric 

displacements are given as  ⃗⃗     ⃗   ⃗⃗ , where    is the 

permittivity in vacuum and the polarization depends on the 

considered material. An electric stress tensor is introduced as 

     ⃗   ⃗⃗     ⃗   ⃗  
 

 
   ⃗   ⃗    , (19) 

such that       ⃗  and      ⃗ . It is remarked that 

   ⃗   ⃗  
 

 
   ⃗   ⃗    is also known as Maxwell stress tensor. 

With  it follows that the total stress tensor     has to be 

symmetric. The remaining field equations and boundary 

conditions are 

    (   )     ⃗⃗   ⃗⃗  in    ,  

    ⃗⃗     on      ,  

     ⃗⃗       in    ,  

  ⃗⃗   ⃗⃗   
 
 on      .  

Considering the 2
nd

 Piola-Kirchhoff stress tensor          
and         , the pull-back of the dielectric displacement 

 ⃗⃗       ⃗⃗  and the transformation of the densities by   leads 
to the material description 

    , (   )-     ⃗⃗   ⃗⃗  in   ,  

     ⃗⃗   ⃗⃗  on     ,  

     ⃗⃗      in   ,  

  ⃗⃗   ⃗⃗    on     .  

Where  ⃗⃗  is the traction with respect to the reference 

configuration. 

V. CONSTITUTIVE EQUATIONS 

Introducing the energy function 

      
 

 
   ( ⃗⃗   ⃗⃗ )     

 

 
   [( ⃗⃗   ⃗⃗ )    ]    , 

  (28) 

where   is a function of   to fulfill material objectivity, 

here an Ogden-type material is chosen, and the susceptibility 

of the material is denoted by  , the total stress and the 

dielectric displacements are derived as 

     
  

  
 , (29) 

  ⃗⃗   
  

  ⃗⃗ 
 . (30) 

VI. WEAK FORMULATION 

In this section a mixed variational formulation is introduced. 

Let the set {  ⃗⃗  ,  ( )-    ⃗⃗   ⃗⃗        } be the space of 

admissible displacement variations and {   ,  ( )-  

           } be the space of admissible electric potential 

variations. Further let *      ,  ( )-
 + , *   

,  ( )- +  the spaces of admissible variations of the total 

stresses and strains and {  ⃗⃗  ,  ( )-
 } , {  ⃗⃗  ,  ( )-

 } 
the spaces of admissible variations of the dielectric 

displacement and the electric field. Since the variations are 

arbitrary the field equations (24)-(27), the constitutive 

equations (29), (20), and the kinetic field equations (3), (4) are 

rewritten as 

 ∫ (   , (   )-    ⃗⃗ ) 
   ⃗⃗       ,  

 ∫ (    ⃗⃗   ) 
        ,  

 ∫ (
  

  
 (   ))

 
         ,  

 ∫ .
  

  ⃗⃗ 
  ⃗⃗ /

 
   ⃗⃗       ,  

 ∫ (   
 

 
 (   ))

 
 (     )      ,  

 ∫ ( ⃗⃗     ) 
   ⃗⃗       .  

Applying integration by part, using the divergence theorem and 
considering the boundary conditions the weak formulation 
reads 

   ∫
 

 
 (         )  (   )        ⃗⃗   

  ⃗⃗   ⃗⃗          ∫   ⃗⃗   ⃗⃗        
  

 

∫ (     ) 
 

 
 (     )     ⃗⃗         

 

∫    
  

  
   ⃗⃗  

  

  ⃗⃗ 
    (   )    ⃗⃗   ⃗⃗  

 

(     )     ⃗⃗   ⃗⃗       ,  



with         ⃗⃗ ,    
 

 
 (         ) , and   ⃗⃗  

      . 

VII. FINITE ELEMENT APPROXIMATION 

In this section a solid shell element is introduced. The finite 

element approximation is constructed in the sense that the 

whole domain is divided in element domains with   

⋃   
     
    

, where       is the total number of elements. The 

geometry, displacements, and electric potential are 

approximated as  ⃗⃗  
  ∑    ⃗⃗  

 
   ,  ⃗⃗  

  ∑    ⃗⃗  
 
   , and 

  
  ∑     

 
    with the same interpolation functions 

   
 

 
 (    

   )(    
   )(    

   ) ,          at 

nodes            . The vectors  ⃗⃗   and  ⃗⃗   contain the nodal 

coordinates and displacements, respectively. Arranging    in 

the matrix   ,                       -  with 

       ,           - , the virtual quantities are 

interpolated as 

   ⃗⃗   [
  ⃗⃗  

 

   
 ]     ⃗⃗   ,  

where  ⃗⃗  
  [ ⃗⃗  

   ⃗⃗  
   ⃗⃗   

    ⃗⃗  
 ] is the vector of nodal 

degrees of freedom  ⃗⃗  
  , ⃗    ⃗    ⃗   - . 

Accordingly,   ⃗⃗   is the vector of the virtual values. 

The gradient fields are defined with respect to the curvilinear 

coordinates   . The constitutive equations  and  will 
be given with respect to a local orthonormal coordinate system 
 ⃗  . This necessitates a transformation of the strains and the 
electric field. Introducing the transformation matrix  

   

[
 
 
 
 
 
 
(   )

 (   )
 (   )

                      
(   )

 (   )
 (   )

                      
(   )

 (   )
 (   )

                      
                                                            
                                                            
                                                            ]

 
 
 
 
 
 

 , 

   

where      defined with    ,     and      ⃗⃗    ⃗   

and  ⃗   
 ⃗⃗  

‖ ⃗⃗  ‖
,  ⃗   

 ⃗⃗    ⃗⃗  

‖ ⃗⃗    ⃗⃗  ‖
,  ⃗    ⃗    ⃗  . The Jacobian 

matrix is denoted by    ⃗⃗    ⃗  . For the sake of a compact 
notation the contravariant components of the virtual strain 
tensor and the virtual electric field vector are arranged in a 
generalized vector 

   ⃗   [
  
   

    
]  

[
 
 
 
 
 
 
 
 
 
 
 

  ⃗⃗    ⃗⃗  
  ⃗⃗    ⃗⃗  
  ⃗⃗    ⃗⃗  

  ⃗⃗    ⃗⃗    ⃗⃗     ⃗⃗  
  ⃗⃗    ⃗⃗    ⃗⃗     ⃗⃗  
  ⃗⃗    ⃗⃗    ⃗⃗     ⃗⃗  

 
   

  ⃗  

 
   

  ⃗  

 
   

  ⃗  ]
 
 
 
 
 
 
 
 
 
 
 

 .  

The approximation on element level of the virtual gradient 
field   ⃗   reads 

   ⃗      ⃗⃗   ,  

with   ,             -  and    [
  
  

   
 ] . 

The matrix   
  is defined with some ANS interpolations in [6] 

and reads 

  

  
    

  

[
 
 
 
 
 
 
 
 
       ⃗⃗  

  

      ⃗⃗  
  

∑
 

 
(       )(       )      ⃗⃗  

    
   

      ⃗⃗  
         ⃗⃗  

  

 

 
(    ) .     

  ⃗⃗  
        

  ⃗⃗  
  /  

 

 
(    ) .     

  ⃗⃗  
        

  ⃗⃗  
  /

 

 
(    ) .     

  ⃗⃗  
        

  ⃗⃗  
  /  

 

 
(    ) .     

  ⃗⃗  
        

  ⃗⃗  
  /]

 
 
 
 
 
 
 
 
 

 , 

   

where       denotes the partial derivative of the shape function 

with respect to the curvilinear coordinates. The matrix   
 

 at 

the node   is determined as 

   
 
    ,               - .  

The physical stresses and dielectric displacements are derived 
from the potential function and are arranged in the vector 

0
  

  ⃗  
 

  

  ⃗  
 

  

  ⃗  
   

  

  ⃗  
1
 

. Here,  ⃗   are independently 

assumed quantities for strain and electric field components and 
are approximated with the following interpolations, see Klinkel 
and Wagner [7]: 

  ⃗  
    

  ⃗⃗     
  ⃗⃗   ,  

with   
  [

   
   ⃗ 

] ,   
  [

   
   ⃗ 

] ,  ⃗⃗      , and 

 ⃗⃗      . The matrices    and   ⃗  are given as 

    (  
 ) 

[
 
 
 
 
 
 

                 

                 

                   

             

             

             ]
 
 
 
 
 
 

 , 

  

  ⃗    
 [

                 

                 

                 
] . 

  

Quantities, which are evaluated at the element center are 

denoted with the index   and   is a     identity matrix. The 

transformation matrix    is obtained by  considering 

    and    . The matrices    and   ⃗  are defined as 

    
      

    
(  

 )  

[
 
 
 
 
 
 
              

              

                      

           

           

          ]
 
 
 
 
 
 

 ,  

   



   ⃗  
      

    
  
  [

   
   
          

] . 

The approximation of the independent field   is defined as 

  ⃗⃗  
     ⃗⃗  ,  

with    [
   
   ⃗⃗ 

] and  ⃗⃗     . 

Here the matrix    is equivalent to    of , where instead 

of (  
 )  the transformation matrix (  

 )  is used. The 

interpolation   ⃗⃗  is identical to   ⃗ .  

The weak formulation of  will be approximated on 

element level as following: 

    
  ∫   ⃗  

  ⃗⃗  
    ⃗⃗  

  [
 ⃗⃗  
 
]      

 

  ∫   ⃗⃗  
  [ ⃗⃗

 

 
]       

 ∫   ⃗⃗  
   ⃗        

 

  ∫   ⃗  
  

  ⃗ 
   ⃗   ⃗⃗  

    ⃗⃗  
   ⃗       

 ,  

with   ⃗⃗  
  ,  ⃗⃗  

    - and  ⃗⃗  contains the components of  , 

 , and  ⃗⃗  accordingly to the vector notation. The weak form is 

solved iteratively by employing Newton-Raphson’s method. 

This requires the linearization 

  ,   
 -  ∫    ⃗  

  ⃗⃗  
       

 ∫   ⃗  
   ⃗⃗  

       
 

  ∫   ⃗  
   

  

  ⃗   ⃗ 
  ⃗  

    ⃗  
    ⃗⃗  

    ⃗⃗  
    ⃗  

       
 

 +∫   ⃗⃗  
    ⃗    

  

Considering the above interpolations  and  one obtains 

the following matrices: 

   
  
 ∫ (  

 ) 
   

  ⃗   ⃗ 
  
 
      

 ,  

    ∫ (  
 )         

 , 

    ∫           
 ,  

    ∫        
 ,  

where   is the matrix of [7] and vectors 

  ⃗⃗  
  ∫ (  

 ) .
  

  ⃗ 
  ⃗⃗  

 /       
 ,  

  ⃗⃗   ∫   
 ( ⃗     ⃗  

  )      
 ,  

  ⃗  
    ∫    ⃗⃗  

       
 , 

  ⃗  
    ∫    ⃗⃗̃       

 ∫    ̃        
 ,  

with       and      . In Eq. (59) the body and surface 

loads are determined by  ⃗⃗̃   ,  ⃗⃗    - and  ̃   0 ⃗⃗ 
 

  1. 

Having in mind that (50) is solved iteratively the following 

approximation on element level is obtained 

 ,    ,  -  (  ⃗⃗       ⃗    ⃗⃗ )- 
  

 

[
 
 
 
 
  ⃗⃗  
  ⃗⃗  

 

  ⃗⃗  
 

  ⃗⃗  ]
 
 
 
 
 

(

 
 

[
 
 
 
  ⃗
 
 
     ⃗  

   

 ⃗⃗  
 

 ⃗⃗  
 

 ⃗⃗  ]
 
 
 
 

 

[
 
 
 
      
   

    
     

   
    

   

  
    

   ]
 
 
 

[
 
 
 
 
  ⃗⃗  
  ⃗⃗  

 

  ⃗⃗  
 

  ⃗⃗  ]
 
 
 
 

)

 
 

 . 

  

Taking into account that the finite element interpolations for 

the fields  ⃗⃗  and  ⃗  are discontinuous across the element 

boundaries a condensation on element level yields the element 

stiffness matrix and the right hand side vector 

            
      

    
  ,  

  ⃗    ⃗  
     ⃗  

        
      

   ⃗⃗       
   ⃗⃗   , 

with      
     

  (  
  )    

   and  ⃗⃗    ⃗⃗  
  

  
  (  

  )   ⃗⃗  
 . After assembly over all elements    

⋃    
     
   ,   ⃗⃗  ⋃   ⃗⃗  

     
    and  ⃗⃗  ⋃  ⃗  

     
    one 

obtains  

     ⃗⃗   ⃗⃗  ,  

with the unknown incremental nodal displacements and the 

electric potential. The update of the internal degrees of 

freedom reads 

   ⃗⃗  
    

    
   ⃗⃗     

   ⃗⃗   ,  

   ⃗⃗  
   (  

  )   ⃗⃗  
  (  

  )    
    ⃗⃗  

  ,  

   ⃗⃗     
      ⃗⃗  

    
   ⃗⃗   .  

VIII. NUMERICAL EXAMPLES 

Embedding the solid shell element formulation in a 

modified version of the program FEAP demonstrates the 

capturing of the characteristics of the DE material behavior. 

The ability of the shell element is shown in the following 

examples. 

A. Eigenvalue Problem 

To analyze the locking modes of the solid shell element an 

eigenvalue problem is solved. In this first example a cube 

form DE material with an edge length of           
    is examined. The cube is zero-stress supported. The data 

for the Ogden-type material are according to [8]          



                 ,              ,    
         ,               and                . 

The relative permittivity is given as    (   )    . 

In Table 1 it is shown that there is only eigenvalue number 

18 much greater than zero. This eigenvalue accounts for the 

volumetric locking mode which arises by incompressible 

materials like DE. At this point no other locking modes are 

observed. The result is also the same when taking an irregular 

non-cube element.  

TABLE I 

EIGENVALUES OF A DIELECTRIC ELASTOMER CUBE 

No. Eigenvalue No. Eigenvalue 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0.11E-02 

0.31E-02 

0.72E-02 

0.11E-01 

0.18E-01 

0.20E-01 

0.21E-01 

0.27E-01 

0.34E-01 

10 

11 

12 

13 

14 

15 

16 

17 

18 

0.50E-01 

0.62E-01 

0.75E-01 

0.85E-01 

0.87E-01 

0.97E-01 

0.10E+00 

0.10E+00 

0.57E+01 

 

B. Bending Actuator 

The second example is presented to demonstrate the valid 

reflection of the electro-mechanical coupling phenomenon of 

DEs. Therefore a square plate with the dimension of 

             is investigated. It is clamped on one side 

and consists of two layers with the thickness of       each, 

see Figure 3. The dataset of the material is the same as given 

in the first example.  

 

 
Fig. 3  Dimensions of the bending actuator 

 

To get a bending answer of the thin structure either the 

upper or lower layer is loaded by an electric field applied in 

thickness direction of the structure. Due to the electro-

mechanical coupling the loaded layer responds with an in-

plane extension. Because of the eccentricity the bending effect 

of the whole structure occurs. Figure 4 shows several 

deformed configurations. 

 
Fig. 4  Bending actuator - several deformed configurations 

In the simulation the surface charge is increased from    to 

           and decreases back to    again. Then the other 

layer is loaded in the same way. The tip deflection versus the 

applied voltage is shown in Figure 5. 

 
Fig. 5  Tip deflection versus voltage relations 

IX. SUMMARY AND OUTLOOK 

The presented element formulation is based on a mixed 

variational approach. It results in an independent interpolation 

of the displacement, electric potential, strains, electric field, 

stresses and dielectric displacements. The element possesses 

only four nodal degrees of freedom, displacements and the 

electric potential. It allows a consistent approximation of the 

electromechanical coupled problem. The governing field 

equations and boundary conditions are presented. The 

formulation accounts for geometric and material nonlinear 

behavior. Further tasks will be to embed the material 

formulation into an improved stabilized element formulation. 

For more accurate simulations other material models for the 

mechanical part should be discussed. 
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