
A Software Language Approach to
Derivative Contracts in Finance

Dipl.-Inf. Jean-Marie Gaillourdet

Software Technology Group, Department of Computer Science, University of Kaiserslautern, Germany

Abstract— Financial derivatives are an important tool of to-
day’s finance sector. Despite their often negative public perception
after the crisis of 2008, they are a tool originally developed to
reduce risks in trading real goods. Understanding and evaluating
derivatives is an important problem in practice. We present a
declarative language of derivative contracts which is independent
of pricing models. We also present a denotational semantics,
enabling a calculus of contracts. The given denotational semantics
enables also the application of abstract interpretation and static
analysis techniques developed in the programming language
community.

I. INTRODUCTION

Financial derivatives are an important tool of today’s finance
sector. Despite their often negative public perception after the
crisis of 2008, they are a tool — originally — developed to
reduce risks in trading real goods such as wheat or copper. But
at the same time financial derivatives introduce possibilities
to speculate over the value of something without owning the
actual something. Both uses lead eventually to their important
role in banking and investment. Naturally, financial derivatives
are a well studied topic in economics and mathematics, e.g.
[1], [2]. Both mathematics and economics often use extensive
software systems to analyze financial derivatives. Therefore,
the apparent lack of intensive research in informatics seems
surprising, notable exceptions are: [3], [4], [5], [6], [7].

But the interest to investigate financial contracts from a
language perspective seems to be growing. In 2010 the U.S.
Securities and Exchange Commission published a “concept
release” with a request for comments, which included a
proposal to require the publication of Python programs which
represent the contract of Asset Backed Securities, a special
kind of financial derivative contracts.

But what are financial derivatives? At first they are con-
tracts, i.e. legal documents defining rights and obligations
of two or more parties. Second, they are derived, i.e. the
rights and obligations defined by the contract depend on
some external variables. We call these external variables:
Observables. They differ from values defined in a contract
by their ability to change over time. E.g. possible observables
are the temperature at Kaiserslautern or the course of some
shares at some stock exchange. This notion of observables
was already used in [3].

Henceforth, financial derivative contracts are contracts
which are based upon observables describing rights and obli-
gations in terms of payed money from one party to another.

We will further restrict this notion to contracts between two
parties. One of them is the holder, he becomes the holder

by acquiring the derivative contract. The other party remains
anonymous as we will always analyze contracts from the view
point of the holder.

The last restriction we place on the notion of derivatives, is
that the contracts under consideration may grant the right to
choose between alternatives only to the holder of the contract.

The contributions of this article are:

1) An overview of work done in informatics, especially
from a software language point of view, on financial
derivatives.

2) A formal definition of a language — based on [3]
— which is capable of expressing financial derivatives
themselves and not some derived notion.

3) A denotational semantics of this language, which en-
ables to a notion of equality of derivative contracts,
which strives to model the ideal of a contract and not
its syntactic representation.

Section II covers the sparse related work in informatics.
Section III defines our language of derivative contracts, which
is an extension of the language of [3]. Section IV presents
our denotational semantics of contracts and an equality notion
of contracts. In Section V we will discuss shortly possible
applications of and future work on our language and semantics.

II. RELATED WORK

The earliest attempt at defining a software language for
financial products, as far as we know, is a joint academic
and industrial project resulting in the definition and imple-
mentation of RISLA. It is based on the insight, “that a product
can be characterized by describing its cash flows.” [4, p. 2].
Its purpose was to simplify the integration of new financial
products into the existing business software systems of banks.
Therefore, the project developed a compiler from RISLA to
COBOL, which generated the necessary routines to integrate a
financial product into the existing software infrastructure. The
focus on integrating financial products into business software
systems lead to a language design containing information
about the expected user interface in the business software
system. RISLA was not used to analyze the contract or perform
pricing1 on it. From the very sparse publicized documentation
of it, it is not clear whether choices of the holder of a derivative
are expressible or not.

1Pricing is a mathematical analysis which defines a notion of a fair price,
see e.g. [2] for some recent results on pricing options.

In 2000, Peyton-Jones and Eber [3] presented a domain-
specific language to declare derivatives in Haskell. Their
language was implemented as combinator library in Haskell.
They sketched a valuation semantics of derivatives and gave
some hints on their implementation of a generic pricing
mechanism. The valuation semantics of [3] is tied to the
pricing or valuation approach of [1].

In [5] Mogensen introduces a language for cashflow reengi-
neering, which was adopted by a non-disclosed “major Danish
bank“. The author presents a language, which is similar to
data flow languages in programming, and a linear type system,
which ensures that every amount of cash is spent only once.

Andersen, et al. present in [6] a language for compositional
specification of contracts. That work is also based on [3]. Their
focus is on specifying the exchange of resources between any
number of involved parties. While our work represents every
resource by its monetary value. Additionally, they give de-
notational and operational semantics for that language, which
allows e.g. to decide whether a trace of steps in the real world
conforms to a specified contract or not. In comparison to our
language, this language is broader as it allows not only to
specify derivative contracts, but general contracts, e.g. as they
occur when you buy goods in store which provides the right
to return the good under certain circumstances.

In [7] Reitz and Nögel present their work in the COMDECO
project. That includes an XML based language for derivative
contracts. They argue for the use of active documents instead
of other approaches to develop applications, which perform
pricing of derivatives.

III. A LANGUAGE OF DERIVATIVE CONTRACTS

A. Design Goals

The language for contracts we are going to present has been
designed to enable standard mathematical analysis, like option
valuation, on contracts written in that language. But at the
same time, we did not want to include any assumptions which
are introduced by a certain approach of analysis. The language
should also allow to resolve any ambiguities about contracts,
such might occur e.g. in a text document describing a contract,
but must not be possible in this language.

Such a formally defined language should also be amenable
to a mathematical treatment of contracts. Such a treatment
should include a notion of equality of contracts, that corre-
sponds to our intuition about contracts in real life. Neverthe-
less, it has to be a mathematical equality, i.e. enabling the
substitution of equals and the formulation of mathematical
laws on derivative contracts.

Last but not least, a language of contracts should be
composable and support abstraction, i.e. support the naming of
recurring patterns of contracts. The goal to support composi-
tion and abstraction is compatible with the design, we present
later in this section, but we will not discuss it in this paper.
Instead we will focus on the goals mentioned before.

B. Examples
Before we come to the language definition of derivative con-

tracts, we will have a look at several examples of derivatives
specified in it.

1) Zero Coupon Discount Bond: A zero coupon discount
bond is a contract granting the holder the right to receive an
amount of money k at a specified time t in the future. This
example has been taken from [3]. This is not a derivative
contract as it does not depend on external unknown variables.

When (At t) (Scale (Const k) One)

The meaning of this contract is the following. At time t, the
holder acquires the contract Scale (Const k) One). Which is
a contract granting the right to immediately receive k units of
money. For a more detailed description of the keywords, see
Section III-C.

2) European Put Option: A european put option is a
derivative contract granting the holder the right but not the
obligation to sell one item of e.g. a share of Siemens at a
previously fixed price, here 100, at a predefined time, in this
example 5.

When (At 5)
(Or

(Scale (Lift2 (−) (Unknown ”Siemens”) (Const 100)))
Zero)

3) Barriers: The previous derivative contains the possibility
to achieve very high pay-offs when the value of a Siemens
share drops to almost zero. Therefore, it is common to include,
barriers into derivatives. E.g. a derivative contract could state,
when the value of one Siemens share gets below 50, the
complete option is void. This is easily expressed with Until :

Until (Comp < (Unknown ”Siemens”) (Const 50))
(When (At 5)

(Or
(Scale (Lift2 (−) (Unknown ”Siemens”) (Const 100)))
Zero))

4) History dependent observables: So called asian variants
of options use the mean of price of a share to determine the
payoff. In order to construct an observable expression which
represents the average of some observable, we have to add the
values of observable at different times. In order to allow this,
our language contains the constructor Reduce.

Lift2 /
(Reduce + (Between (5,10)) (Unknown ”Siemens”))
(Const 5)

The observable above computes the average price of one
Siemens share between time 5 and 10. Reduce collects all
values of the third argument at times at which the second
argument evaluates to true. These values are summed — the
first argument. The initial value is the left neutral element of
the given operation. The operation here is addition, therefore
it is zero in this example.

These history dependent observables are not expressible in
the language in [3].

m ∈ {<,>,>=, <=,==, 6=}
s ∈ {+,−, ∗,min,max}
u ∈ {−, abs, log, ...}
b ∈ {+,−, ∗, /}
o ::= Unknown n

| Const k
| Time t
| Lift u o
| D2C o
| C2D o
| Lift2 b o1 o2
| Comp m o1 o2
| At t
| Between (t1,t2)
| Reduce s o1 o2

Fig. 1. Syntax of observables

C. Syntax Definition and Language Description

Our language for derivatives is based on the language in [3].
Their language is given as a set of Haskell functions with type
signatures. 2 The language itself remains very similar with the
exception of some simplifications and one addition, which we
will discuss later in this section.

As usual N denotes the natural numbers including 0, Z
denotes the positive and negative integers, R denotes the real
numbers and B denotes the set of boolean values. We use
V = Z ∪R∪ B as the values of observables. Every time t is
element of N . And S denotes the set of names of unknown
observables. These names are strings. We use the following
convention for variable names: t ∈ N , k, v ∈ V , and n ∈ S.

Fig. 1 contains the syntax definition of observable expres-
sions in a style which is common in the programming language
community. The single elements of the definitions are either
mathematical statements m ∈ {...} or are algebraic data type
declaration. In the following, o denotes, depending on the
context, the set of all observable expressions, or one concrete
expression.

• Unknown n is an observable representing an external
variable varying over time. In this work we will restrict
the language to unknown observables with R as value
domain.

• Const k is an observable of value k ∈ V for all times.
• Time is an observable with domain N . Its value is t at

every time t.
• Lift u o is the application of a unary operator u on o.
• Lift2 b o1 o2 is the application of a binary operator b on

o1 and o2.

2Although, we don’t present the language as an Haskell-embedded domain
specific language our implementation is done as an Haskell-embedded domain
specific language. We deliberately choose not to discuss such an embedding
and the resulting benefits in this paper. Such benefits would include added
expressiveness, modularization and abstraction capabilities, and a simplified
implementation.

• Comp m o1 o2 is the comparison of o1 and o2 with the
comparison operator m at every point in time.

• C2D o is the conversion of a continuous-valued observ-
able o, i.e. an observable with domain R, to a discrete-
valued observable, i.e. an observable with domain N .

• D2C o is the conversion of a discrete-valued observable
o, i.e. an observable with domain N , to a continuous-
valued observable, i.e. an observable with domain R.

• Reduce s o1 o2 is the fold with the binary function s over
the sequence of values of o2 at, when o1 evaluates to true.
The start value of the fold is the left neutral element of
the function s.

• At t is syntactic sugar for: Comp (==) Time (Const t).
• Between (t1,t2) is syntactic sugar for:

Lift2 (&&)
(Comp (<=) (Const t1) Time)
(Comp (<) Time (Const t2))

Fig. 2 defines the syntax of contracts. We’ll give an informal
description of the meaning of the constructs here:

• Zero is the contract which grants no rights and no
obligations.

• One is the contract which grants the holder the right to
receive one unit of money at the time of acquisition.

• Scale o c is a contract which is the same as c with every
payment multiplied by the value of the observable o at
the time of the payment.

• And c1 c2 is the contract which grants all rights and
obligations of both c1 and c2 at the same time.

• Or c1 c2 is the contract which grants the holder the right
to choose at time of acquisition to acquire either c1 or
c2.

• Cond o c1 c2 is the contract which grants depending
on the value of the boolean observable o at time of
acquisition either all rights and obligations of c1, if o
is true, or c2, if o is false.

• When o c is the contract which acquires the contract c at
the first time the boolean observable o becomes true.

• Anytime o c is the contract which grants the holder at
every time the boolean observable o is true the right to
decide whether he wants to acquire c and release the
complete contract Anytime o c or not.

• Until o c is the contract which grants the holder the right
to choose between keeping his contract or acquiring c
and releasing the complete contract. But this right is only
granted as long as the boolean observable o is false. When
o becomes true the whole contract becomes equivalent to
Zero identical.

The language for derivative contracts is typed. But, because
it has a completely standard type system, we omit a formal
definition. We describe it only informally:

Every observable expression o has a one of three types:
discrete, continuous, and boolean. Their value sets are Z , R,
and B. All unary operators take arguments of one type and

c ::= Zero
| One
| And c1 c2
| Or c1 c2
| Cond c c1 c2
| Scale o c
| When o c
| Anytime o c
| Until o c

Fig. 2. Syntax of contracts

return the same type. All binary and comparison operators
take two arguments of the same type. Binary operators return
the same type as their arguments and comparison operators
always return boolean. C2D and D2C are the only ways to
convert or cast observables. Contracts c have no type, the
observable arguments of the contract constructors are of type
continuous, if not given otherwise in the description of the
contract constructors above.

IV. SEMANTICS OF CONTRACTS

A. Introduction

In this section, we’ll give a formal denotational semantics
for our language of contracts, for an overview on denotational
semantics see e.g. [8]. A formal semantics allows to study
what it means to execute a contract, or in more natural
terms: to fulfill a contract. By establishing formal semantics
and removing all ambiguities — which are all too often
present in natural language texts —, we gain insight into the
contract itself. We can answer questions like: Is a sequence
of payments between the holder and its contract counter party
consistent with a certain contract? Is, for a given contract,
every consistent sequence of payments between two contract
parties of finite length? What is the maximal length of such a
sequence? Is the holder able to receive a payment at all under
a given contract? And so forth.

Semantics of formal language haven been studied for a
long time. The largest fraction of the literature on this topic
probably covers semantics of formally specified logics and
programming languages. Applying these techniques to other
kinds of languages is not new but certainly not widespread. In
the context of contract languages, we are aware of only one
previous article which gave formal denotational semantics for
a contract language: [6].

We choose to give a denotational semantics, because a
denotational semantics provides a straight forward notion of
equality, and because it is quite naturally defined for our
derivative contracts.

B. Denotational Semantics of Observables

A denotation of unknown observables is a function from
time to values, N → V . Therefore, an environment, i.e. a
mapping of names to their denotation, is a function from e :
S → N → V . An environment represents the values of all

unknown observables of a contract for all times. Therefore, the
denotational semantics of observable expression is a function:

J·K : o→ (S → N → V)→ (N → V)

We write JoKe to denote the semantics of an observable
expression o applied to an environment e. With an additional
time argument t we write JoKte.

J·K is defined as follows3:

JUnknown nKte = e n t
JConst kKte = k

JTimeKte = t
J Lift u oKte = u JoKte

JD2C oKte = JoKte
JC2D oKte = bJoKtec

JLift2 b o1 o2Kte = JoKte b JoKte
JComp m o1 o2Kte = JoKte m JoKte

JReduce s o1o2︸ ︷︷ ︸
d

Kte =

 init(s) if t < 0
JdKt−1e if Jo1Kte = false
JdKt−1e s Jo2Kte if Jo1Kte = true

init(s) denotes the left neutral element of s.

C. Denotational Semantics of Contracts

In the following the notation x̂ will denote a set of x. We
define the domain D of the denotation of contracts as the
largest fixed point of the following recursive algebraic data
type equation.

p = o 2 p̂

2 is the only constructor of this data type, it has two
arguments, the first is an element of V , the second is a finite set
of application of this constructor. Therefore, this data type co-
inductively defines the domain of all denotation of contracts.
It is a forest of infinite height n-ary trees which are marked
with elements of V . The depths of a node of the forest is the
time at which the mark of the node is payed to the holder of
a contract. E.g. {172 02 . . . } is the denotation of a contract
which grants the holder the right to receive a payment of 17
money units at time 0 and a payment of zero money units at
time 1.

The branching of the trees denotes the choices the holder
of the contract has.

The empty denotation which consists only of payments of
0 units of money is abbreviated as •. It is largest fixpoint of
the following equation:

• = {0 2 •}

We need the following auxiliary functions on D, before we
are able to define the denotational semantics.

p̂× q̂ =
¶
(p+ q) 2 (“p′ × q̂′)

∣∣∣(p 2“p′) ∈ p̂, (q 2 q̂′) ∈ q̂
©

o ∗te p̂ =
¶
(JoKte ∗ v) 2 (o ∗t+1

e
“p′)∣∣∣(v′ 2“p′) ∈ p̂

©
× adds two elements of D such that both arguments are
combined into one, as if they were both executed.

3We use a curried function application notation which does not use
parenthesis

∗te multiplies every payment of an element of D with the
current value of an observable expression.

Now, we are able to define the denotation of contracts,
which is the following function:

JcK : (S → N → V)→ N → D

JZeroKte = •
JOneKte = {1 2 •}

JAnd a bKte = JaKte × JbKte
JOr a bKte = JaKte ∪ JbKte

JScale o cKte = o ∗te JcKte
JCond c a bKte =

ß
JbKte if JcKte = false
JaKte if JcKte = true

JWhen b c︸ ︷︷ ︸
d

Kte =

ß
{0 2 JdKt+1

e } if JbKte = false
JcKte if JbKte = true

JAnytime b c︸ ︷︷ ︸
d

Kte =

ß
{0 2 JdKt+1

e } if JbKte = false
JcKte ∪ {0 2 JdKt+1

e } if JbKte = true

JUntil b c︸ ︷︷ ︸
d

Kte =

ß
JcKte ∪ {0 2 JdKt+1

e } if JbKte = false
• if JbKte = true

When we return to the example of Sec. III-B.2, we
can now determine the following: Let x be the price of
one Siemens share at time 5 as determined by e, i.e.
JUnknown ”Siemens”K5e = x, and let c be the referenced
example contract, then

JcKte = {02 {02 {02 {02 {02 (• ∪ {(x− 100)2 •})}}}}}

The denotation tells us that this European put option is a
contract, which can be described as a sequence of 5 payments
of zero amounts of money, followed either by an infinite
sequence of zero-valued payments or by a payment of value
x − 100 followed by an infinite sequence of zero-valued
payments.

D. Derived Notions

We define the equality of two contracts a and b, now as
follows:

a = b if and only if ∀e.JaK0e = JbK0e

Now, we have a notion of equality which is not tied to the
syntax of contracts or observables, instead we claim it is tied
to the intended meaning, we associate with a contract. Yet, we
have a mathematical definition of this equality notion.

Most contracts in real life have a maximal life time. The
same is true for derivative contracts in finance. We are going
to define a notion of a horizon, which will be the earliest time
after which nothing interesting may happen.

The smallest time t for which the following equation holds
is called the horizon of a contract c.

∀t′.t′ > t =⇒ ∀e.∃p̂i∈{1...n}.JcKt
′

e = {0 2 “p1, . . . , 0 2 p̂n}

Note: Such a horizon t doesn’t have to exist for every
contract c, while most practical contracts do have a defined
horizon. The following contract does not have a defined

horizon, because there is no time at which we can guaranty,
that the price of a Siemens share has been at least once smaller
than the price of a Daimler share.

When
(Comp < (Unknown ”Siemens”) (Unknown ”Daimler”))
One

V. APPLICATIONS, FUTURE WORK AND CONCLUSIONS

As we said in Sec. III-A, we wanted to design a language
which can be used to do option pricing, but which is not tied
to one approach. So far, we have implemented option pricing
for a subset with help of Qian Liang and Stefanie Müller based
on [3],[2], and [1]. We plan to add Monte-Carlo based option
pricing to our implementation.

Our language and denotational semantics could also be used
to apply abstract interpretation or some specialized variants of
it to derivative contracts. That could allow to compute worst
or best case scenarios. Or it could allow to determine whether
there is horizon, at which times decision have to be made by
the holder, and much more.

The semantics itself allows to develop a calculus of con-
tracts, which allows to transform contracts in order to simplify
other analysises for example.

We have designed a language to express financial deriva-
tives, which is more general than the language of [3] and more
specific than the language of [6]. We believe this is a useful
middle ground to work with derivatives and not with more
general contracts. We have given a formal semantics which
captures the intuitive meaning in a formal definition, which
allows to apply the substitution principle. We don’t have to
resort to bisimulation of processes or similar approaches in
order to show the equivalence of two contracts.

REFERENCES

[1] J. C. Cox, S. A. Ross, and M. Rubinstein, “Option pricing: A simplified
approach,” Journal of Financial Economics, vol. 7, no. 3, pp. 229–263,
1979.

[2] S. Müller, “The binomial approach to option valuation.” [Online].
Available: http://kluedo.ub.uni-kl.de/volltexte/2010/2462/

[3] S. Peyton Jones, J.-M. Eber, and J. Seward, “Composing contracts:
an adventure in financial engineering (functional pearl),” in ICFP ’00:
Proceedings of the fifth ACM SIGPLAN international conference on
Functional programming. New York, NY, USA: ACM, 2000, pp. 280–
292.

[4] B. Arnold, A. V. Deursen, and M. Res, “An algebraic specification of
a language for describing financial products,” in ICSE-17 Workshop on
Formal Methods Application in Software Engineering. IEEE, 1995, pp.
6–13.

[5] T.Æ. Mogensen, “Linear types for cashflow reengineering,” pp. 823–845,
2003.

[6] J. Andersen, E. Elsborg, F. Henglein, J. G. Simonsen, and C. Stefansen,
“Compositional specification of commercial contracts,” International
Journal on Software Tools for Technology Transfer (STTT), vol. 8, no. 6,
pp. 485–516, November 2006.

[7] M. Reitz and U. Nögel, “Components: A valuable investment for financial
engineering,” in PPPJ ’06: Proceedings of the 4th international sympo-
sium on Principles and practice of programming in Java. New York,
NY, USA: ACM, 2006, pp. 153–162.

[8] D. A. Schmidt, Denotational Semantics. Allyn And Bacon, Inc., 1986.

