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Abstract. This paper builds up a bridge between the formal and cog-
nitive modeling of human reasoning aspects. To this end, we focus on
empirical studies on playing a certain game, namely marble drop, that
involves reasoning about other minds, and build up a formal system that
can model the different strategic reasoning methods employed by the
participants in the empirical study. Finally, we show how the syntactic
framework of the formal system can aid in building up a cognitive model
of the participants of the marble drop game.

1 Introduction

In recent years, a lot of questions have been raised regarding the idealization
that a formal model undergoes while representing social reasoning methods (e.g.
see [3]). Do these formal methods represent human reasoning satisfactorily or
should we concentrate more on the empirical studies and models based on those
empirical data? Without going into this debate here, we combine empirical stud-
ies, formal modeling and cognitive modeling to study human strategic reasoning.
Our proposal is the following: rather than thinking about them as separate ways
of modeling, we can consider them to be complementary and investigate how
they can aid each other to bring about a more meaningful model of the real-life
scenarios.
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In [5], a formal framework has been introduced to model human strategic
reasoning as exemplified by certain psychological experiments focusing on a dy-
namic game scenario, namely the Marble Drop game [10]. In continuation of the
work done in [5], this paper builds on the formal framework to give a more realis-
tic reasoning model of the participants. Moreover, we propose to use a cognitive
model of these participants based on the formal framework.

For the experimental work, the advantage of using dynamic games to study
higher-order social reasoning is that they allow for repeated presentation, which
yields more observations than is typical in other paradigms such as, for example,



false-belief story and/or picture tasks. More observations yield more reliable
outcome measures such as accuracy of decisions and decision (or reaction) times
(RTs). Examples of dynamic games used in empirical studies are the Centipede
game [9], the matrix game [6], the road game [4], and Marble Drop [10,11].
These examples are all game-theoretically equivalent because they share the
same extensive form, namely that of the original Centipede game [17].

Previous empirical studies have shown higher-order social reasoning to be
far from optimal, and have argued that higher-order social reasoning is compli-
cated and cognitively demanding (e.g., [19]). However, Meijering et al. [10, 11]
demonstrated that performance improved to near ceiling if participants (1) were
assigned to stepwise instruction and training, (2) were asked to predict the other
player’s move, and (3) were presented with concrete and realistic games.

Based on empirical findings that show that the participants do not always
follow the backward induction method [13], in this paper a formal framework is
presented to model forward, backward as well as combined reasoning attempts of
the participants. As discussed in [15], in backward induction reasoning, a player,
at every stage of the game, only reasons about the opponents future behavior and
beliefs. On the other hand, in forward induction reasoning, a player, at every
stage, only considers the past choices of the opponents. Based on the formal
framework, a cognitive model is proposed as a better alternative to the model
proposed in [8]. The new model can represent these different reasoning methods
in the Marble Drop game.

Before proceeding into the main sections of this paper, we should mention
here that this paper should be considered as a preliminary report of a cognitive
model of strategic reasoning that is being constructed with the aid of a formal
framework. We still need to do the important tasks of predicting and testing the
strategies that have come to our notice based on the empirical findings in [10, 11]
and the eye-tracking study reported in [12]. The formal framework is introduced
to capture the findings of the eye-tracking experiment, so that it can provide an
easy, mechanical representation of the eye-tracking analyses to be used in the
construction of the cognitive computational model.

2 Empirical work

We provide here a short discussion of the experimental studies on which this
work is based. The first part gives a description of the Marble Drop game and
the second part provides an analysis of the eye-tracking experiment.

2.1 Marble drop game

Figure 1 depicts examples of a zeroth-, first-, and second-order Marble Drop
game. A white marble is about to drop, and its path can be manipulated by
removing trapdoors (i.e., the diagonal lines). In this example, the participant
controls the blue trapdoors and the computer controls the orange ones. Each
bin contains a pair of payoffs. The participant’s payoffs are the blue marbles
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Fig. 1. Examples of a zeroth, first-, and second-order Marble Drop game. The blue
marbles are the participant’s payoffs and the orange marbles are the computer’s payoffs.
The marbles can be ranked from light to dark, light less preferred than dark. For each
player, the goal is that the white marble drops into the bin with the darkest possible
marble of their color. The participant controls the blue trapdoors (i.e., blue diagonal
lines) and the computer the orange ones. The dashed lines represent the trapdoors that
both players should remove to attain the darkest possible marble of their color.

and the computer’s payoffs are the orange marbles. The marbles can be ranked
from light to dark, light marbles being less preferred than dark. For each player,
the goal is that the white marble ends up in the bin that contains the darkest
possible color-graded marble of their color.

For example, at the start of the game in Figure 1c, Player I has to decide
whether to remove the left trapdoor (end) or to remove the right trapdoor (con-
tinue). Player I's marble in bin 2 is darker than in bin 1, but what will Player
IT decide if Player I continues? Player II may want to continue the game to the
last bin, as Player II’s marble in bin 4 is darker than in bin 2, but what will
Player I decide at the last set of trapdoors? Player I would stop the game in bin
3, as Player I’s marble in bin 3 is darker than in bin 4. Thus, Player II should
stop the game in bin 2, as Player II’s marble in bin 2 is darker than in bin 3.
Consequently, Player I should decide to continue the game from bin 1 to bin 2.

Marble Drop games provide visual cues as to which payoff belongs to whom,
who decides where, what consequences decisions have, and how a game con-
cludes. In matrix games [6], participants had to reconstruct this from memory.
Meijering et al. [10] hypothesized that the supporting structure of the represen-
tation of Marble Drop would facilitate higher-order social reasoning, and, in fact,
participants assigned to Marble Drop games performed better than participants
assigned to matrix games [11].

2.2 Eye-tracking study

Behavioral measures such as responses and reaction times shed some light on
higher-order social reasoning. However, they show the end result of higher-order
social reasoning, not the online process. The online process (i.e., the strategies
that participants use) may prove valuable in the study of higher-order social rea-
soning, because strategies determine to a great extent what cognitive resources



are employed. For example, an algorithmic strategy such as backward induction
puts a lesser strain on working memory than a strategy that explicitly models
mental states. Johnson, Camerer, Sen, and Rymon [7] used a novel approach
to measure online higher-order social reasoning. In their sequential bargaining
games, information displayed on a computer screen was masked with boxes and
participants could uncover parts of that information by clicking on the boxes with
the mouse. This approach allowed Johnson et al. to investigate the sequence in
which participants uncovered information during reasoning.

A concern with this approach is that participants may have felt disinclined to
click on the information repeatedly and would rather adopt an artificial strategy
that involves fewer mouse clicks but puts a higher strain on working memory.
To avoid that, Meijering, Van Rijn, Taatgen, and Verbrugge [12] conducted a
study in which they used eye-tracking, which is not as obtrusive as Johnson et
al.’s method of masking information. Participants’ eye movements were recorded
while they were playing Marble Drop games. The eye movement data yielded
insight into the comparisons that participants made and the sequence of those
comparisons during each game.

The proportions of fixations at bins 1 to 4 are depicted in Figure 2. The
proportions were averaged over games, and plotted against position in the total
fixation sequence. In other words, Figure 2 shows the general increase or decrease
of fixations at a particular bin over time spent in a game. The results showed that
participants did not seem to use backward induction, at least, initially. Figure
2(a) shows that, on the first position, the proportion of fixations at bins 1 and 2
was higher than at bins 3 and 4. In contrast, backward induction would yield a
higher proportion of first fixations at bins 3 and 4, as backward reasoning starts
with a comparison of the payoffs in bins 3 and 4. However, as of position 4 in
Figure 2(a), the fixation patterns seem to correspond with backward induction:
the proportion of fixations at bins 3 and 4 was higher than the proportion of
fixations at bins 1 and 2, and the way that the proportions change over time
(i.e., they decrease for bins 3 and 4, and increase for bins 1 and 2) correspond
with eye movements that go from right to left.

The patterns are less obvious in Figure 2(b), because the figure shows fixa-
tions that were averaged over another set of games. Where Figure 2(a) (bottom
panel) depicts mean proportions for games in which a rational participant should
end the game because the computer would continue, Figure 2(b) (bottom panel)
depicts mean proportions for games in which a rational participant should con-
tinue because the computer would continue. Differential fixation sequences imply
that participants did not use pure backward induction, because backward induc-
tion works independently of the payoff values.

Instead of backward induction, participants may have applied forward rea-
soning, or a mix of backward and forward reasoning. Figure 2(a) hints at the
latter possibility as participants fixated from left to right during the first four
fixations, and from right to left during later fixations. To test what strategies
participants may have used, we construct cognitive computational models (cf.
Section 4) that implement various strategies, and use these models to predict
eye movements that we can test against the observed eye movements. To aid in
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Fig. 2. The bottom panel depicts mean proportions of fixations at bins 1, 2, 3, and 4,
calculated separately for position in the total fixation sequence. In (a), Player I should
end the game in bin 1, because given the chance, Player II would continue, and the
game would end with a lesser payoff for Player I . In (b), Player I should continue the
game, because given the chance, Player II would continue, and the game would end
with a better payoff for Player I . The games in the top panel are examples of the
former and latter type of games. We did not depict standard errors, because we fitted
(non-)linear models instead of traditional ANOVAs, which typically include contrasts
between (successive) positions of fixations.

the construction we build up a formal framework (cf. Section 3) and show how
the formal and cognitive modeling can interplay to provide a better model for
strategic reasoning (cf. Section 4.2). As mentioned in the introduction, we are
presently at the phase of building up this cognitive model and predicting and
testing strategies are our next steps.

3 A formal framework

In this section, we present a formal system to represent the different ways of
strategic reasoning that the participants of the Marble Drop game (cf. Section
2.1) undertake, suggested by the eye-tracking study described in Section 2.2.
We extend the system developed in [5] by adding special propositional variables
representing players’ payoffs and comparison of such payofls, inspired by [2].



3.1 Strategy specifications

Following the lines of work in [16, 14], a syntax for specifying partial strategies
and their compositions in a structural manner involving simultaneous recursion
has been proposed in [5]. The main case specifies, for a player, what conditions
she tests for before making a move. The pre-condition for the move depends on
observables that hold at the current game position as well as some simple finite
past-time conditions and some finite look-ahead that each player can perform in
terms of the structure of the game tree. Both the past-time and future conditions
may involve some strategies that were or could be enforced by the players. These
pre-conditions are given by the following syntax.

Below, for any countable set X, let BPF(X) (the boolean, past and future
combinations of the members of X) be sets of formulas given by the following
syntax:

BPF(X):=xe X | =¢ |91 v [{a" ) |{a" ).

where a € X, a finite set of actions.

Formulas in BPF(X) can be read as usual in a dynamic logic framework
and are interpreted at game positions. The formula {a™ ) (respectively, (a™ )
talks about one step in the future (respectively, past). It asserts the existence
of an a edge after (respectively, before) which ¢ holds. Note that future (past)
time assertions up to any bounded depth can be coded by iteration of the cor-
responding constructs. The “time free” fragment of BPF(X) is formed by the
boolean formulas over X. We denote this fragment by Bool(X).

Syntax Let P* = {p{,pi,...} be a countable set of observables for i € N and
P =U;en P?. To this set of observables we add two new kinds of propositional
variables (u; = ¢;) to denote ‘player 4’s utility (or payoff) is ¢;” and (r < ¢) to
denote that ‘the rational number r is less than or equal to the rational number
q’. The syntax of strategy specifications is given by:

Strat'(P?) := [t = al* | m1 +m2 | n1 - 12,

where ¢ € BPF(P?). For a detailed explanation see [5]. The basic idea is to use
the above constructs to specify properties of strategies as well as to combine
them to describe a play of the game. For instance the interpretation of a player
i’s specification [p + a]® where p € P?, is to choose move “a” at every game
position belonging to player ¢ where p holds. At positions where p does not hold,
the strategy is allowed to choose any enabled move. The strategy specification
1m1 + 72 says that the strategy of player i conforms to the specification n; or ns.
The construct 7; - 72 says that the strategy conforms to specifications 7 and 7.
Let X = {ay,...,an}, we also make use of the following abbreviation.

— null' = [T = a1]+ -+ [T = an].

It will be clear from the semantics (which is defined shortly) that any strategy
of player ¢ conforms to null’, or in other words this is an empty specification.
The empty specification is particularly useful for assertions of the form “there
exists a strategy” where the property of the strategy is not of any relevance.



Semantics We consider perfect information games as models. Let M = (T,V)
with T = (S7=>,so,3\,1/{), where (S,=>,so73\) is an extensive form game tree,
U : frontier(T) x N — Q is a utility function. Here, frontier(T) denotes the
leaf nodes of the tree T. Finally, V : S — 2F is a valuation function. The truth
of a formula ¢ € BPF(P) at the state s, denoted M, s = 1, is defined as follows:

— M,skEpiff pe V(s).

— M, s = — iff M,s = .

- M,S ':1/}1 V¢2 iﬁMaS ':1[)1 or M75 |=1/)2

M, s = {a* Y iff there exists an s’ such that s=s’ and M, s’
M, s |= {a~ Y iff there exists an s’ such that s'=s and M, s’

= .
= .

The truth definition for the new propositions are as follows:

- M,s = (u; =q) it U(s, i) = q;.
— M, s = (r < q) iff r < ¢, where r, g are rational numbers.

Strategy specifications are interpreted on strategy trees of T'. We also assume
the presence of two special propositions turn; and turns that specify which
player’s turn it is to move, i.e. the valuation function satisfies the property

— for all i € N, turn; € V(s) iff A(s) = i.

One more special proposition root is assumed to indicate the root of the
game tree, that is the starting node of the game. The valuation function satisfies
the property

— root € V(s) iff s = so.

A partial strategy o, say of player i, can be viewed as a set of total strategies
of the player [14] and each such strategy is a subtree of T.

The semantics of the strategy specifications are given as follows. Given the
game T = (S,=,s0,\,U) and a partial strategy specification n € Strat’(P?),
we define a semantic function [], : Strat'(P?) — 29(T) where each partial
strategy specification is associated with a set of total strategy trees.

For any 7 € Strat'(P"), the semantic function [1], is defined inductively as
follows:

— [ = al'], =T € 22°(T) satisfying: € T iff y satisfies the condition that,
if s € S, is a player i node then M, s |= 1 implies out,(s) = a.

= Im+mnlr=Inlrolnlr

= -2l =Imle o lnelr

Above, out,(s) is the unique outgoing edge in p at s. Recall that s is a player
1 node and therefore by definition of a strategy for player i there is a unique
outgoing edge at s.

To model players’ responses, we introduce the formula 77¢ in the syntax
of BPF(P'), where 7 denotes the opponent of i. The intuitive reading of the
formula is “player 7 is playing according to a partial strategy conforming to the
specification ¢ at the current stage of the game”, and the semantics is given by,

— M, s E=17¢ iff 3T such that T’ € [(], and s € T".



3.2 Marble Drop game: a test case

We now express the empirical strategic reasoning performed by the participants
of the Marble drop game described in Section 2.1. The game form is structurally
equivalent to the Centipede game tree. Figure 3a gives the corresponding tree
structure, and figures 3b and 3c correspond to example cases.

/ r / \ / r
(s1,s2) u, 1 1,2) u, 1 (1,2) u, 1
(p1, p2) (91, 92) 21 4,3) 21 (4.3)
(a) (b) (c)

Fig. 3. Example trees.

Using the strategy specification language introduced in Section 3.1, we ex-
press the different reasoning methods of participants that have been validated
by the experiments described in Section 2. The reasoning is carried out by an
outside agent (participant) regarding the question:

How would the players 1 and 2 play in the game, under the assumptions
that both players are rational (thus will try to maximize their utility),
and that there is common knowledge of rationality among the players.

We abbreviate some formulas which describe the payoff structure of the game.

ey ((ur = p1) A (u2 = p2)) = a (two r moves and one [ move lead to (p1,p2))

{rXryry((ur = q1) A (u2 = q2)) = B (three r moves lead to (g1, g2))

rXD((ur = s1) A (uz = s2)) = v (one r move and one [ move lead to (s1,s2))

(w1 =t1) A (u2 = t2)) = 6 (one I move leads to (t1,t2))

A formula describing backward reasoning giving the correct answer corre-
sponding to the game tree given in Figure 3b is:

©1: ([an BArXryturng A (2 <4) Ay Adriturny A (2 < 3) AToot A
turn; AdA (3 <4) > 7] [aABAE X r)turng A (2 < 4) Ay A{r)turng A
(2<3) > 1% [a A B ArXrturng A (2 <4) - 1]t

‘If the utilities and the turns of players at the respective nodes are as in
Figure 3b, then player 1 would play r at the root node, player 2 would
continue playing r at his node, after which player 1 can finish off by
playing r.’

Another formula describing forward reasoning giving a wrong answer correspond-
ing to the game tree given in Figure 3b is:



2 : ([root A turny A § A (r)turny Ay A (1 <3) - []})

‘If the utilities at the first two leaf-nodes of the game are as Figure 3b,
and players 1 and 2 move respectively in the first two non-terminal nodes,
then player 1 would play | at the root node finishing it off.’

The last formula describes forward reasoning giving a correct answer correspond-
ing to the game tree given in Figure 3c is:

@3 : ([root A turn; A § A (r)turny Ay A (1 <5) - []})

‘If the utilities at the first two leaf-nodes of the game are as Figure 3c,
and players 1 and 2 move respectively in the first two non-terminal nodes,
then player 1 would play | at the root node finishing it off.’

These are just some examples to show that one can actually list possible
ways of reasoning that can be performed by human reasoners in the Marble
Drop game. Such a list aids in developing the cognitive models of the reasoners,
as we shall see in the next section.

4 Cognitive modeling

Analyses of eye movements are challenging because they have to deal with great
variability typically found in eye-movement data. Salvucci and Anderson [18]
suggested using a cognitive computational model to predict eye movements,
which can be compared with observed eye movements. This method helps to
disentangle explained (i.e., hypothesized) variance from unexplained variance
(due to e.g. measurement errors).

Van Maanen and Verbrugge [8] suggested a cognitive model that implemented
backward induction. However, the eye-tracking study conducted by Meijering et
al. [12] suggests that participants did not use pure backward induction. Thus,
in this paper we present preliminary ideas about a more generic cognitive model
that implements backward and forward reasoning as well as possible mixtures of
the two. Before going into the specific details of our construction of the cognitive
computational model, we first provide a general description of the model that
we are going to develop.

4.1 ACT-R modeling

The model that we propose has been implemented in ACT-R, which is an inte-
grated theory of cognition as well as a cognitive architecture that many cognitive
scientists use to model human cognition [1]. ACT-R consists of modules that link
with cognitive functions (e.g., vision, motor processing, and declarative process-
ing) and map with specific brain regions. Each module has a buffer associated
with it, and the modules communicate among themselves via these buffers.



A very important property of ACT-R is that cognitive resources are bounded,
because each buffer can store just one piece of information at a time. Conse-
quently, if a model has to keep track of more than one piece of information,
it has to move it back and forth between two important modules: declarative
memory and the problem state. Moving information back and forth comes with
a time cost, and could cause a so-called cognitive bottleneck.

The declarative memory module represents long-term memory and stores in-
formation encoded in so-called chunks (i.e., knowledge structures). For example,
a chunk can be represented as some expression with a defined meaning (e.g.
formal expressions). Each chunk in declarative memory has an activation value
that determines the speed and success of its retrieval. Whenever a chunk is used,
the activation value of that chunk increases. As the activation value increases,
the probability of retrieval increases and the latency of retrieval decreases. For
example, whenever the chunk of a successful formula is used, its activation value
increases. As the activation value of a successful formula increases, its probability
(and speed) of retrieval increases.

Anderson [1] provided a formalization of the mechanism that produces the
relationship between the probability and speed of retrieval. As soon as a chunk is
retrieved from declarative memory, it is put into the module buffer. As mentioned
earlier, each ACT-R module has a buffer that may contain one chunk at a time.
On a functional level of description, the chunks that are stored in the various
buffers are the knowledge structures the cognitive architecture is aware of.

The problem state module (sometimes referred to as ‘imaginal’) slightly al-
leviates bounds on cognitive resources, as it also contains a buffer that can hold
one chunk. Typically, the problem state stores a sub-solution to the problem
at hand. In the case of a social reasoning task, this may be the outcome of a
reasoning step that will be relevant in subsequent reasoning. Storing information
in the problem state buffer is associated with a time cost (typically 200ms). The
cognitive model that we present relies on the declarative and problem state mod-
ules. More specifically, it retrieves relevant information from declarative memory
and moves that information to the problem state buffer whenever it requests the
declarative module to retrieve new information, which the declarative module
stores in its buffer.

A central procedural system recognizes patterns in the information stored
in the buffers, and responds by sending requests to the modules, for example,
‘retrieve a fact from declarative memory’. This condition-action mechanism is
implemented in production rules. For example, the following production rule
represents comparing the last two payoff values in order to decide whether to
end or continue a Marble Drop game:

IF the goal is to compare the last two payoff values,
AND the first is greater than the second,
THEN respond end the game.

Here, the first line refers to the goal buffer, the second line to the problem state
buffer, and the third line to a manual action. With this brief introduction to
ACT-R modeling, we now move on to the specific model construction.



4.2 A cognitive computational model of Marble Drop

The cognitive model that we propose here is based on the model presented pre-
viously by [8], but it is more generic because it is not based on a fixed strategy.
Instead, the model is based on formulas (cf. Section 3.2) that are selected from a
list provided by the logical framework. The formulas can either represent back-
ward reasoning, forward reasoning, or a mix of both (see examples 1, s, @3 in
Section 3.2).

Goal (p

Retrieve » Store Retrieve Compare
shift
Procedural | payoff shift payoff payoff ention payoff

attention
location value location values

Declarative | Payoff g g Payoff
. location . . location

Attending . . Attending

Visual N .
payoff . . payoff

Problem State . H Update problem state

Manual H . N N N . Respond

) L@ e ) L) i6a) | (6b)

Fig. 4. Flowchart of the ACT-R model.

The flowchart of the model is depicted in Figure 4. Throughout an entire
game, the goal buffer stores a chunk that represents which formula (represented
by ¢) is used. For each pair of payoffs that are compared in the formula, the
model iterates through the following steps: The model retrieves the location of
the first payoff from declarative memory (1). That location is represented in a
chunk, and the more often a location chunk is retrieved the faster that retrieval
will be, as the activation value of a chunk increases with each retrieval. As
soon as the location of the first payoff is retrieved from declarative memory, the
model shifts attention to that location (2). More specifically, the model requests
the visual module to shift attention to the location it has just retrieved. After
attending the payoff, the model stores the payoff value in the problem state buffer
(3). If the model does not store the payoff value in the problem state buffer, it
will be lost (i.e., replaced) when the model retrieves a new piece of information.
Whenever the payoff value is moved from declarative memory to the problem
state, the model retrieves the location of the second payoff from declarative
memory (4). After retrieving that location, the model shifts attention to it (5).
Now, the model has attended both payoffs, and it compares the payoff value
stored in the problem state with the payoff value stored in the visual buffer (6a).
After comparing the last pair of payoffs in the formula, the model produces a
response (6b).



At the start of each game, a new formula chunk is retrieved from declara-
tive memory. The model tags a formula chunk according to its success, that is,
whether the model’s response was correct or incorrect, which is indicated by the
task feedback presented after each game. The model learns to play Marble Drop
games better and faster, as it requests the declarative module to retrieve suc-
cessful formulas, and the more often those are retrieved and tagged, the higher
their activation value becomes. Higher activation value, in turn, increases the
probability and speed of retrieving a formula.

The model produces responses and associated reaction times, which we can
analyze and compare with the behavioral data. In addition, the model also pro-
duces fixations, which we can compare with the human eye movement data. By
comparing the model’s fixation sequences with the observed fixation sequences
in Marble Drop games (Meijering et al. [12]), we can determine what formulas
provide a good description of human higher-order social reasoning.

5 Conclusion

The eye-tracking study of Meijering et al. [12] has shown that participants did not
use a pure backward induction strategy in the Marble Drop game. We, therefore,
constructed a logical model to describe the game, and possible strategies. We use
the logical model as a basis for a cognitive computational model, implemented
in the cognitive architecture ACT-R.

We want to emphasize that the cognitive model can be considered as a virtual
human being. It can do the very same task presented to the participants in Mei-
jering et al.’s [10, 11] studies, and it produces responses and associated response
times. The cognitive computational model is useful for a better understanding
of higher-order social reasoning, because we can analyze the model output and
see which formulas are successful and how quickly the model learns to apply one
(set of ) formula(s) instead of other formulas.

An advantage of having cognitive models, besides having statistical models, is
that cognitive models can be broken down into mechanisms. Our ACT-R model
comprises cognitive functions (e.g., a declarative memory and a problem state
representation), and we can determine to what extent each cognitive function
contributes to the model’s behavior (i.e., the responses and response times) in
Marble Drop games.

Another advantage of a cognitive model is that we can compare the model’s
output with Meijering et al.’s human data, and acquire a better understanding of
individual differences. Higher-order social reasoning probably consists of multiple
serial and concurrent cognitive functions, and thus it may be prone to great
individual differences. Our cognitive model may help to determine what formulas
fit the responses of a particular (subset of) participant(s). This fit not only
concerns patterns in responses and response times, but also patterns in eye-
movements. The model’s execution of a formula yields eye movements, and we
can calculate the explanatory power of eye movement patterns in (subsets of)
the human data.
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