
 Self-organized Multi-agent System for Service

Management in the Next Generation Networks

Mario Kusek and Gordan Jezic

 University of Zagreb, Faculty of Electrical Engineering and Computing,

Department of Telecommunications, Unska 3, HR-10000 Zagreb, Croatia
{gordan.jezic, mario.kusek}@fer.hr

1 Extended Abstract

Next Generation Networks (NGN) aim to offer a wide variety of advanced telecom-

munications and multimedia services. Introduction of these services will be enabled

mainly by two factors: increased bandwidth in the access network and convergence of

different legacy networks towards a universal all-IP core network. The offer of large

number of services in the NGN environment will arise the need for service provision-

ing and management procedures.

Service management on emerging telecommunication systems that are distributed

over a wide area is a hard task because it is not easy or even possible to perform final

testing on a remote target system, as well as on system in operation [1-3]. Experiences

show that it is possible for new software running on a target system to give a result

different from the one obtained on test system [4]. The reasons are mostly the struc-

tural and/or functional differences between both systems. Therefore, only implementa-

tion and testing on the actual target system can give the answer whether the new soft-

ware solves the problem (i.e., error, new operational circumstances, enhancement, and

maintainability improvement) or not. Service management and software configuration

operations in distributed systems become very demanding tasks as the number of

computers and/or geographical distances between them grow. The situation gets worse

with an increase in the complexity of the network and the number of nodes.

This paper describes a method for service provisioning in an environment with a

large number of distributed network servers and different versions of services placed

across them. We have developed the agent based system called Remote Maintenance

Shell (RMS) capable for remote control and management of services. To be specific,

we present solutions for getting the service to the right place, starting it, and providing

maintenance (upgrading with new versions). We have defined possible service distri-

bution strategies for execution of operations and in this paper we consider applying of

self-organized agents as a possible solution for this problem.

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS
ISBN 978-86-7031-188-6, pp. 18 - 24, 2011

18

1.1 RMS System

RMS represents a protected environment for service control, manage and mainte-

nance based on mobile agents [5]. It includes the following remote operations that

support service maintenance: delivering service to a remote system, remote installa-

tion/un-installation, program starting/stopping, tracing and trace data collection, main-

taining several versions of service, selective or parallel execution of two versions, and

version replacement [6].

The main advantages of RMS over similar tools for remote installations are the fol-

lowing:

• It provides the possibility to test and trace the software on the actual target

system where it must be deployed, which is the only way to make sure that

the software will work properly when put online;

• It provides selective and parallel software execution modes, which are par-

ticularly suitable for introducing new software or upgrading the existing

one without stopping the system.

MA-RMS (Multi-Agent RMS) is the upgraded version of RMS, which is based on

a multi-agent system paradigm. In RMS tasks have to be assigned one-by-one by the

human administrator, and they are performed by individual agents. MA-RMS makes it

possible for the human administrator to assign only the desired end-state of software

environment on one or several remote locations, which is then automatically processed

by the MA-RMS system. Input by the human administrator is analyzed and decom-

posed into a set of operations, which are then distributed to multiple mobile agents to

perform them. Those agents migrate to their respective locations, and continue to

communicate and coordinate in order to accomplish the given goals. This approach

makes it significantly easier to perform service provisioning in large distributed sys-

tems, since it allows automatic replication of the desired configuration across a large

number of servers instead of many individual installations.

The position of the MA-RMS in a network node of the distributed system is shown

in Fig. 1. The main role of the MA-RMS system is to provide the requirements for

service management in the distributed system and handle several versions of services

(verX) on multiple network nodes simultaneously, without suspending or influencing

normal services operation. MA-RMS system uses an agent platform as a base for

agent creation and management, and adopts all security mechanisms, as well as other

basic features from the agent platform.

In the environment with a large number of network nodes and different kinds and

versions of the heterogeneous services placed on the network nodes, MA-RMS system

is capable to remotely control and manage the service. Mobile agents are the carriers

of all operations. They offer several important advantages that make them especially

suitable for implementation in the distributed systems, as agents can be employed to

perform tasks as a team.

The limitations of this approach can be found in the fact that agent platform must

be installed and always started on all network nodes in the system. This will addition-

ally increase the load on the node, which can lead to some stability issues (particularly

on the nodes which are already running at or very near their projected capacity).

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

19

Moreover, Java Virtual Machine must be run on all of the nodes supporting MA-

RMS.

Fig. 1. MA-RMS in a network node

MA-RMS is based on three principles [7], as follows:

• Design for remote maintenance: An application should be designed ac-

cording to specific rules in order to fit the requirements for remote main-

tenance;

• Low resource implementation: Only MA-RMS parts needed for a specific

maintenance job are activated, all other remain inactive in order to save

the system resources for regular operation;

• Agent-supported maintenance session: Software agents support all remote

operations requested by a maintenance session and guided by user.

1.2 RMS Architecture

RMS is a distributed system comprising two main components: RMS Console and

RMS Maintenance Environment (RMS ME). RMS Console is the client part of the

RMS, which offers a GUI through which the administrator performs management

actions on the remote systems. RMS Maintenance Environment is the server part of

RMS, which must be preinstalled on the remote systems in order for them to be man-

aged by RMS. RMS is implemented in Java, so it can be installed on any operating

system with Java Virtual Machine installed. It should be noted that, although RMS can

be used for client-side software management, it is designed primarily for the use on

servers. All operations in RMS are executed by mobile agents. A mobile software

agent is a program that represents its user in the network. The most important charac-

teristic of mobile agents is their ability to migrate autonomously between the network

nodes. RMS uses JADE as the underlying agent system [8]. Once the administrator

defines the operations to be performed at the remote system(s), they are assigned to

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

20

one or several mobile agents, which then migrate to the remote system(s) and perform

the operations at the actual target system.

Mobile agents are used because they offered several important advantages that

made them especially suitable for implementation of a centralized system for remote

software management, such as RMS. Namely, the use of mobile agents produces the

following benefits in RMS.

• Completely decentralised operation execution – only operations assignment

is centralized in the management station, while the actual execution of the

operations takes place at the target remote system(s).

• Increased parallelism – agents can do their jobs in parallel, since they are

completely autonomous after they are sent into the network and they don't

have to be controlled by the management station.

• Increased asynchrony – once the administrator defines the desired operations

and the agents are sent into the network, it is no longer necessary to maintain

a permanent connection with the remote systems.

• Reduced sensibility to network latency – since the agents migrate to the re-

mote system, none of the interactions during software maintenance are made

over the network. Instead, they are carried out locally at the remote system.

• Fexible configuration of remote testing procedures – since the testing is per-

formed by a mobile agent, it is possible to dynamically reconfigure that agent

and thus adapt the testing procedure without changing the RMS Maintenance

Environment itself.

1.3 RMS Features

RMS features can be roughly divided in two main categories: basic and advanced.

What separates them is the amount and type of additional work that has to be done for

the software to be managed with RMS using these features.

Basic features are those related to deployment, maintenance and execution control

(software migration, installation, starting, stopping and basic version handling). They

include the mechanisms for bringing the software to the targeted remote systems,

configuring it properly on each of them, starting and stopping it. Basic version han-

dling offers the possibility to stop the old version and replace it with the newer one. It

is possible to maintain several versions of the same software and switch between them,

but only one can be active at any given time (in the normal execution mode).

Advanced features are tracing, testing and advanced version handling. As men-

tioned before, tracing and testing are performed on the actual target system. Besides

normal execution mode, in which only one version is active, RMS also provides paral-

lel and selective execution modes.

1.4 Agent Distribution Strategy

When deploying services at a large number of remote locations using software

agents, two parameters significantly affect the deployment time. The first one is the

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

21

number of agents in the team. Increasing number of agents produce bigger load in the

network. The second parameter affecting deployment time defines which service

should be assigned to which agent. The two parameters are defined by service distri-

bution strategies [9]. We have currently defined the following service distribution

strategies:

R1: a single agent executes all services on all nodes;

2. R2: an agent executes a single service on only one node;

3. R3: an agent executes all services on only one node;

4. R4: an agent executes a specific service on all nodes;

5. R5: an agent executes a specific service only once on all nodes;

6. R6: services are assigned to the agents in order to exploit maximal parallel-

ism in service execution. Mutually independent services are assigned to dif-

ferent agents, in order to execute them simultaneously on nodes with parallel

execution supported;

7. R7: a hybrid solution combining R4 and R3. An agent is responsible for a

specific service on all nodes; all other agents execute all other services, each

on a different node;

8. R8: a hybrid solution combining R5 and R3 (specialization of R7 in the way

R5 is specialization of R4).

For example the R3 service distribution strategy distributes all the services, which

have to be executed, on one node to one agent. This strategy has proven to be the best

strategy when executing services in networks where the network bandwidth is large

compared to the size of the components each service is made of. In order to perform

fast analysis on different network topologies we developed a MAN Simulator [10, 11].

Current service distribution strategies used by the MA-RMS are only optimal for

some network topologies with certain network parameters, such as the R3 strategy

mentioned before. The current service distribution selector first analyzes the network

topology and network conditions. It then selects the service distribution strategy,

which will most likely yield best solution according to the analysis. The problem with

real networks is that their conditions change and are never ideal [9].

1.5 Genetic algorithm for optimizing service distributions

The genetic algorithm is used by researchers to solve a variety of search and opti-

mization problems. All of these problems have one thing common, exact algorithms

cannot find an optimal solution in a reasonable time. Genetic algorithms do not always

yield the optimal solution due to randomness in implemented operators. However, it

guarantees that it will find a suboptimal solution in a reasonable time. This is satisfac-

tory for us since an exact algorithm will take too long to find a solution. In [chapter]

we have designed genetic algorithm for optimizing service distribution to software

agents. We have compared results with different strategies and different network link

bandwidth.

From the previous experiments [9] we know that the R3 distribution strategy al-

ways performs the best in scenarios where the time needed to migrate all service com-

ponents is significantly smaller then time needed to deploy these services. However,

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

22

when the link speed was reduced the genetic algorithm was able to generate a better

distribution then the R3 strategy.

In scenarios with the bottleneck in the network the genetic algorithm produced the

best results. The reason for this is because the time needed to migrate service compo-

nents was comparable to the time needed to execute them. In such cases, the genetic

algorithm was able to produce distributions in which the first agent had more services

assigned to it then the second agents.

The same applies in situation where there are dependencies between different ser-

vices. Most distributions generate a solution in which agents have to wait for other

agents due to long migration times. The genetic algorithm is capable of optimizing the

order agents deploy each service increase of parallelism in service execution and

avoiding the waiting times.

In this experiment we have proved that the genetic algorithm can give better results

then the other strategies but we have not calculate the time for executing the genetic

algorithm into account. The second disadvantage of genetic algorithm and defined

strategies is that in planning process the planning agent needs to have all relevant data

from the network and when the condition in the network changes dynamically the

agents does not adapt. That is the reason why we consider using self-organizing

agents.

1.6 Self-organizing agents

There is no unique definition of self-organization but there is list of properties that

usually include [12]:

• System appears to have spontaneous order.

• The overall state of such system is an emergent property.

• Interconnected components are organized in productive way based on local in-

formation.

• Complex system can self-organize.

• The process of self-organization is near the “edge of chaos”.

By some scientists the evolution is combination of natural selection (e.g. in evolu-

tionary algorithms) and self-organization. The self-organized agents use local data to

make its decisions. The main idea is to have agents that are committed to the goal and

each agent itself chooses specific actions. The user gives list of operations to all

agents in the team. Each agent then decides (e.g. random) to which operation will

execute. After that agents goes to the node where action must be executed and checks

if the action is executed or not. If action is not executed then it executes. If the action

is already executed then the agent chooses another operation from the set of opera-

tions that should be executed on the same local network. If that operation is also exe-

cuted then it tries to execute another operation on the same local network. If all opera-

tions on that local network are executed then the agent chooses operation on another

network. The job is finished when all agents find that all operations are finished.

This is not optimal solution because all agents have to go to each node from the ini-

tial list. We will have to investigate some mechanisms to reduce number of nodes that

each agent visits. One solution is to have blackboard on each node and when one

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

23

agent enters the node it checks the blackboard and updates its list of executed opera-

tions and updates the blackboard. Then it chooses the next operation for execution.

The second solution is threshold value. If the chosen operation is already executed

then the agent updates its threshold value and if the threshold value is over boundary

then it aborts execution of operations in that local network. There could be also the

threshold for local networks as well. If agent aborts its execution it informs user agent

upon its findings and if all agents are aborted and all jobs are not executed then the

user agent can choose different strategy for remaining jobs.

References

1. Pigosky, T.M, Practical Software Maintenance, Wiley, New York (1996)

2. IEEE Std. 1219: Standard for Software Maintenance, Los Alamitos, CA, IEEE Computer

Society Press (1993)

3. Canfora, G., Cimitile, A, Software Maintenace, Chapter 2 of Handbook of Software Engi-

neering and Knowledge Engineering, Volume 1, World Scientific Publishing Company,

1st edition (2002)

4. Lovrek, I., M. Kos, B. Mikac, "Collaboration between academia and industry: Telecom-

munications and informatics at the University of Zagreb", Computer communications. 26,

5; pp. 451-459 (2003)

5. Jezic, G., M. Kusek, I. Ljubi, "Mobile Agent Based Distributed Web Management", Proc.

4th Int. Conference on Knowledge-Based Intelligent Engineering Systems & Allied Tech-

nologies, Vol. 2, pp. 679-682, Brighton (2000)

6. Jezic, G., M. Kusek, I. Ljubi, K. Jurasovic, Mobile Agent-Based System for Distributed-

Software Maintenance, L.C. Jain, N.T. Nguyen (Eds.): Knowl. Proc. & Dec. Mak. in

Agent-Based Sys., SCI 170, pp. 43–69.

7. Java Agent DEvelopment Framework – JADE, http://jade.tilab.com/

8. Lovrek, I., Caric, A., Huljenic, D.: Remote Maintenance Shell: Software Operations using

Mobile Agents. In: ICT 2002, International Conference on Telecommunications, Beijing

(2002)

9. Kusek, M., K. Jurasovic, I. Lovrek, V. Sinkovic, G. Jezic, Performance Models for Multi-

agent Systems and Mobile Agent Network, A. Hãkansson, R. Hartung, N.T. Nguyen

(Eds.): Chapter 1 of Agent And Multi-Agent Technology For Internet And Enterprise Sys-

tems: Studies in Computational Intelligence (2010), Vol. 289, pp. 1-24, Springer

10. Xuan, P., V. Lesser: Multi-Agent Policies: From Centralized Ones to Decentralized Ones.

Proceedings of the 1st International Joint Conference on Autonomous Agents and Multi-

agent Systems Part 3 (2002), pp. 1098–1105

11. Koriem, S.M.: Development, analysis and evaluation of performance models for mobile

multi-agent networks. Comput. J. 49(6) (2006) pp. 685–709

12. Kennedy, J., R. C. Eberhart, Y. Shi: Swarm Intelligence, Morgan Kaufmann, 2001.

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

24

