
A Framework towards the Veri�cation of

Emergent Properties in Spatial Multi-Agent

Systems

Isidora Petreska1, Petros Kefalas2, and Marian Gheorghe3

1 South East European Research Centre (SEERC),
24 Proxenou Koromila Str., Thessaloniki 54622, Greece,

ispetreska@seerc.org
2 CITY College, International Faculty of the University of She�eld,

2 Leontos Sofou Str., Thessaloniki 54626, Greece,
kefalas@city.academic.gr

3 University of She�eld, Dept. of Computer Science
Regent Court, 211 Portobello Str., She�eld S1 4DP, UK

m.gheorghe@dcs.shef.ac.uk

Abstract. Formal modelling of multi-agent systems (MAS) present many
interesting challenges. In this extended abstract we present a framework
of how formal modelling can lead towards identi�cation and veri�cation
of emergent properties of spatial biology-inspired MAS. We discuss the
problem in question as well as initial work done on the formal modelling
side and the visual animation of these formal models.

Key words: Biology-inspired MAS, formal modelling, emergence, vi-
sual animation

1 Introduction

Veri�cation of the emergent behaviour of multi-agent systems is an extremely
complex task. It is not only the fact that the veri�cation process, formal or
model checking, leads to combinatorial explosion, but also the fact that emergent
properties should be identi�ed �rst before there is an attempt to be veri�ed. The
latter is not always straightforward. It is therefore desirable to combine several
formal with informal techniques that would be able to join forces towards the
veri�cation of MAS.

In agents that operate in a 2 or 3-dimensional space, such as biology or
biology-inspired agents, emergence is characterised by a pattern appearing in
the agents con�guration at some instance during the operation of the system.
Trivial examples are colonies of social insects, like ants, birds, �sh etc. The
type of emergence observed is related to the positioning in space, for example
line formation, �ocks, schools, herds etc. Modelling such agents would require
modelling of their position and veri�cation would require the exploration of a
state space developed by the combination of all agent positions evolved through
time.

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS
ISBN 978-86-7031-188-6, pp. 37 - 44, 2011

37

Someone could apply formal veri�cation techniques, such as model checking,
under the assumption that we know what emergent property we are looking
for. With biology agents this is known in advance, since it has been observed in-
vivo. With arti�cial agents it is not as simple, there is however an active research
that proposes a framework for empirical exploration of emergent formations [1].
Consider the following example, known as aggressor-defender game.

In the aggressor-defender game [2] there exist two teams of agents randomly
distributed in an environment: defenders (refer to them as friends) and aggres-
sors (or enemies). There are three di�erent sub-games involved:

� All the agents defend � at each turn everyone tends to position between a
friend and an enemy (such as they were defending the friend against the
enemy), Fig. 1 a).

� All the agents �ee � at each turn everyone tries to position in a way that a
friend is between themselves and an enemy (such as the friend protects them
from an enemy), Fig. 1 b).

� Some agents defend while the rest of the agents �ee.

Fig. 1. Rules for playing the aggressor-defender game.

Assuming that we can develop a formal model to be used for model checking,
it is interesting to consider what property to check for, that is, whether there
is an emergent behaviour in all the above three cases, if this MAS is massively
populated with similar agents.

This work aims to set up a framework of study concerning the above in-
teresting problems and more in particular to demonstrate preliminary results
in identifying emergent behaviour through the automatic transformation of a
formal model to an executable visual simulation.

2 A Proposed Research Framework

The proposed research framework is depicted in Fig. 2. At the top, we start
by formal modelling of agents. Such formal models should be able to clearly
distinguish modelling of various types of behaviours, such as spatial or other

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

38

behaviours, communication, dynamic organisation etc. By separating the vari-
ous behaviours within the same formal model, it is possible to apply di�erent
transformations which will facilitate further processing. On one hand, the spatial
behaviour determined by movement in space, can lead towards visual animation.
The latter is a useful informal tool which will help observing potential emergent
properties. On the other hand, suitable abstractions of spatial behaviour to-
gether with the rest of the behaviours can lead towards simulation and logging
of time series data. These could be used to identify patterns of behaviours which
combined with the visual animation produce a set of desired properties. Finally,
the desired properties (including emergence) can be veri�ed in the original spa-
tial agent model by model checking, as long as there is a way to transform the
original model into an equivalent, susceptible to formal veri�cation, model.

Fig. 2. A framework for validating emergent properties in spatial biology-inspired
MAS.

3 Formal Modelling of Spatial Agents

We have been long experimenting with state-based modelling for agents and
MAS [3�5]. The state-based modelling method we use is X-Machines (XM). XM
are state machines with memory and instead of inputs triggering transitions,
they trigger functions which label the transitions. XM are able to communicate
through message exchange, thus forming Communicating X-Machines [6]. XM
can also be wrapped around cells inspired by P-Systems [7] which are responsible

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

39

for the dynamic con�guration of the MAS. This idea was successfully introduced
in the OPERAS framework (or more particularly OPERASXC) [8]. Although,
XM can treat movement in space as any other behaviour, we have developed a
number of arguments why this spatial behaviour must be separately modelled
and treated [3, 5].

spXMs represent a variation of Stream XMs by de�ning additional compo-
nents that allow speci�cation of the current position and direction of an agent,
as well as to formally specify a movement of an agent within its environment.
Formally, a spXM is a 13-tuple; spXM = (Σ, Γ , Q, q0, M, m0, π, π0, θ, θ0, E,
Φ, F) [3]), where:

� Σ is an input set of symbols,
� Γ is an output sets of symbols,
� Q is a �nite set of states,
� q0 is the initial state,
� M is an n-tuple called memory,
� m0 is the initial memory,
� π is a tuple of the current position, i.e. (x, y) when a 2D representation is
considered,

� π0 is the initial position,
� θ is an integer in the range 0 to 360, that represents a direction,
� θ0 is the initial direction,
� E is a set which contains elementary positioning operations: ei such as ei :

Π×Θ −→ Π×Θ, such as direction, moving forward and moving to a speci�c
position.

� Φ is a �nite set of partial functions ϕ that map a memory state, position,
direction and set of inputs to a new memory state, position, direction and
set of outputs:
ϕ: M × π × θ × Σ −→ M × π × θ × Γ ,

� F is a function that determines the next state, given a state and a function
from the type Φ,
F: Q × Φ �Q, and

A spXM model which demonstrates the third strategy is presented on Fig. 3.
The model's states are Q={DEFENDING, STAYING_STILL, FLEEING}. There
are three corresponding functions: to defend, to stay still and to �ee. The mem-
ory stores the game strategy of the agent, an agent's friend and enemy, as well as
its position and direction. The input consists of the friend's and the enemy's cur-
rent position. Finally, the output is the new position of the agent, because every
agent outputs its position to the other agents thus constructing a communicating
spX-machine system [6], [9].

spXMDL is the notation used to de�ne spXMs [3] and it is modi�ed version
of XMDL (see [10], [11]) used in the standard XM. The functions in spXMDL
are coded in the form:

#fun functor (($input$), ($memory tuple$),
($position$), ($direction$)) =

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

40

(($output$), ($memory tuple’$),
($position’$), ($direction’$)) =

where
$<list of operations including positioning>$

Considering Fig. 3, the function defend is:

#fun defend (((?x_fr, ?y_fr),(?x_en, ?y_en)),
(?strategy, ?friend, ?enemy),
(?my_xcor, ?my_ycor),
(?curr_direction)) =
(("move to ?new_xcor ?new_ycor"),
(?strategy, ?friend, ?enemy),
(?new_xcor, ?new_ycor),
(?curr_direction))
where
?new_xcor <- (?x_fr + ?x_en)/2 and
?new_ycor <- (?y_fr + ?y_en)/2.

Fig. 3. spXM model of the aggressor-defender game.

4 Visual Animation

As part of the �rst steps towards the achievement of formal veri�cation of emer-
gent properties, we have developed a tool for automatic translation of a spXM

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

41

model to NetLogo [3]. NetLogo is considered specialised into simulating nat-
ural and social phenomena, including modeling of complex systems [12], [13].
The platform supports hundreds of agents to operate independently, providing a
clear picture of the micro-level behavior of the agents, as well as the macro-level
patterns within the whole system. The translator is based on a set of mapping
between formal constructs of XM and language primitives of NetLogo as well as
a library supporting all the spatial behaviours.

For the aggressor-defender MAS, an executable counterpart is generated. The
output shows a visual animation with which the emergent spatial behaviour is
observable (Fig. 4), such as:

� The model in which all the agents defend, see Fig. 4 a), behaved as all the
agents quickly collapsed into a tight knot,

� The model in which all the agents �ee, see Fig. 4 b), behaved as a highly
dynamic group that expands over time towards the ends of the environment,
and

� The model in which the agents randomly choose whether to defend or to
�ee, see Fig. 4 c), exhibited there di�erent behaviours. In some situations the
agents were all collapsed into a tight knot (as the model from the defender
game) with the di�erence that this knot was now oscillating around the
environment (i), in others they were stationary, randomly distributed and
oscillating (ii), and in the last case the agents would form a �ocking (iii).

Fig. 4. NetLogo output of the aggressor-defender game.

The case of this game clearly demonstrated that visual animation aided in
discovery of the system's emergence and properties that could be veri�ed at a

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

42

later stage, which in turn proved that even the small changes within the indi-
vidual agent rules might cause a huge di�erence in behaviour of the system as a
whole.

5 Discussion and Conclusions

The contribution of this paper is to present the overall picture of a framework
towards the veri�cation of emergent behaviour of spatial MAS. We have also
reported progress so far, that is, a de�nition of spXM and a tool for automatic
transformation to NetLogo. Using this experience, the next steps in the frame-
work are instantiated (Fig. 2) as follows:

�

spXM can be transformed into a simulation tool that can generate a time
series data. Such tool may be FLAME [14, 15] which is used to animate XM
models with thousands of agents. FLAME, however, does not deal with the
spatial behaviour, which we have already covered by NetLogo.

� The logged time series data could be used as an input to a tool identifying
patterns, such as DAIKON [16]. The output would be interesting properties
that combined with the emergent properties from visual animation could aid
us forming the logic temporal formulae to verify.

� The spXM can be suitably transformed into an equivalent model in SPIN,
PRISM or SMV [17�19], which given the temporal formulae will verify that
all the desired properties hold in the original model.

Of course the above would assume that a correct transformation from the
original model to equivalent models is possible, something which is an interesting
problem by itself.

References

1. O.Paunovski, G.Eleftherakis, A.J.Cowling: Disciplined exploration of emergence
using multi-agent simulation framework. Computing and Informatics 28(3) (2009)
369�391

2. E.Bonabeau: Agent-based modeling: methods and techniques for simulating hu-
man systems. Proceedings of the National Academy of Sciences (2002) 7280�7287
Washington, United-States.

3. I.Petreska, P.Kefalas, I.Stamatopoulou: Extending x-machines to support repre-
sentation of spatial agents. Work in progress (2011)

4. I.Petreska, P.Kefalas, M.Georghe: Population p systems with moving active cells.
Twelfth International Conference on Membrane Computing (CMC12) (2011) In
Print.

5. I.Petreska, P.Kefalas, M.Georghe: Informal veri�cation by visualisation of state-
based formal models of bio-agents. Proceedings of the 6th Annual SEERC Doctoral
Student Conference (DSC 2011) (2011) In Print.

6. P.Kefalas, G.Eleftherakis, E.Kehris: Communicating x-machines: A practical ap-
proach for formal and modular speci�cation of large systems. Information and
Software Technology 45 (2003) 269�280

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

43

7. Gh.P un: Membrane Computing: An Introduction. Springer, Berlin (2002)
8. I.Stamatopoulou, P.Kefalas, M.Gheorghe: Operas: A framework for the formal

modelling of multi-agent systems and its application to swarm-based systems. In:
ESAW, Berlin, Heidelberg, Springer-Verlag (2007) 158�174

9. I.Stamatopoulou, M.Gheorghe, P.Kefalas: Modelling dynamic con�guration of
biology-inspired multi-agent systems with Communicating X-machines and Popu-
lation P Systems. Volume 3365:389-401 of LNCS. Springer-Verlag, Berlin (2005)

10. P.Kefalas, M.Holcombe, G.Eleftherakis, M.Gheorge: A formal method for the de-
velopment of agent based systems. In V.Plekhanova, ed.: Intelligent Agent Software
Engineering, Idea Group Publishing Co. (2003) 68�98

11. F.Ipate, M.Holcombe: Speci�cation and testing using generalised machines: a pre-
sentation and a case study, Software Testing, Veri�cation and Reliability (1998)
61�81

12. U.Wilensky: NetLogo Segregation model. Center for Connected Learn-
ing and Computer-Based Modeling, Northwestern Univ., Evanston, IL. (1997)
http://ccl.northwestern.edu/netlogo/models/Segregation.

13. U.Wilensky: NetLogo. Center for Connected Learning and
Computer-Based Modeling, Northwestern Univ., Evanston, IL. (1999)
http://ccl.northwestern.edu/netlogo/.

14. M.Pogson, R.Smallwood, E.Qwarnstrom, M.Holcombe: Formal agent-based mod-
elling of intracellular chemical interactions. Biosystems 85 (2006) 37�45

15. R.Smallwood, M.Holcombe, D.Walker: Development and validation of computa-
tional models of cellular interaction. Journal of Molecular Histology 35 (2004)
659�665

16. D.E.Michael, G.G.William, K.Yoshio, D.Notkin: Dynamically discovering pointer-
based program invariants. Technical Report UW-CSE-99-11-02, University of
Washington Department of Computer Science and Engineering, Seattle, WA
(November 1999) Revised March 17, 2000.

17. G.J.Holzmann: The model checker spin. IEEE IFans. on Software Engineering
(1997) 279�295

18. M.Kwiatkowska, G.Norman, D.Parker: Prism: Probabilistic symbolic model
checker. In Proc. PAPM/PROBMIV'01 Tools Session (2001) 7�12

19. K.L.McMillan: Symbolic Model Checking. Kluwer Academic Publishers, Engle-
wood Cli�s (1993)

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

44

