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Preface  

In many cases competitiveness of modern products is defined by the degree of customization, i.e. 
the ability of a manufacturer to adapt a product according to customer requirements. Knowledge-
based configuration methods support the composition of complex systems from a set of adjustable 
components. However, there are two important prerequisites for a successful application of 
knowledge-based configuration in practice: (a) expressive knowledge representation languages, 
which are able to capture the complexity of various models of configurable products and (b) powerful 
reasoning methods which are capable of providoing services such as solution search, optimization, 
diagnosis, etc. The Configuration Workshop aims to bring together industry representatives and 
researchers from various areas of AI to identify important configuration scenarios found in practice, 
exchange ideas and experiences and present original methods developed to solve configuration 
problems.  

The workshop continues the series of successful Configuration Workshops started at the AAAI’96 
Fall Symposium and continued on IJCAI, AAAI, and ECAI since 1999. During this time the focus of 
the events broadened from configuration approaches applied to traditional products such as cars, 
digital cameras, PC, telecommunication switches or railway interlock systems to configuration of 
software and services available on the Web. In parallel, research in the field of constraint 
programming, description logic, non-monotonic reasoning, fundamentals of configuration modeling 
and so forth pushed the limits of configuration systems even further. 

The papers selected this year for presentation on the Configuration Workshop continue a recent 
trend in the research community and focus on modeling and solving of configuration and 
reconfiguration problems. The papers of the workshops strongly correlate with the topics of the two 
invited talks, which discuss application and evaluation of different knowledge representation and 
reasoning methods as well as the necessity of adequate information support for an end-user involved 
in the configuration process.  

 

Kostyantyn Shchekotykhin, Dietmar Jannach and Markus Zanker 
July 2011  
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Fabrizio Salvador  
Instituto de Empresa Business School, Madrid, Spain 
 
Understanding configuration process proficiency: Interactive effects of information 
provisioning and learning  

Anecdotal evidence and case-based research point to the importance of the 
effective management of information on feasible product configurations in order to achieve good 
responsiveness. However, no empirical, large-sample test of this contention has been done as yet. 
This study begins to close this research gap by testing a theory-derived model of how information 
relating to product configuration determines the responsiveness in serving customers. We find that 
availability of information supporting the product configuration task indeed allows companies to serve 
their clients faster and more accurately. We also find these benefits to be mediated by the availability 
to learn from past product configurations.  

 

Gerhard Friedrich  
Alpen-Adria Universität, Klagenfurt, Austria 
 
Configuration – a reality check for knowledge representation and reasoning  

It is more than 30 years that knowledge representation and reasoning (KRR) 
methods have been applied to solve configuration problems. Therefore, it is not 

surprising that the history of knowledge based configuration reflects almost all tops and flops of KRR. 
Indeed many successful applications based on KRR methods were deployed showing the utility of 
KRR to solve practically highly relevant problems. However, this success may mislead to the 
conclusion that configuration is solved. In this talk I will show by a very simple though relevant 
configuration example that on the one hand current reasoning methods discovered valuable yet 
unknown solutions but on the other hand many interesting research questions have to be answered 
in order to expand the applicability of KRR for practical configuration problems. In particular, I will 
focus on the effects of different knowledge representation formalisms, different models, variants of 
symmetry breaking constraints and local versus complete search. Interestingly, it turned out that 
folklore knowledge may be a false friend.  

 



A Graphical Framework for Supporting Mass Customization ∗

Dario Campagna
Dept. of Mathematics and Computer Science

University of Perugia, Italy
dario.campagna@dmi.unipg.it

Abstract

Many companies deploying mass customization
strategies adopt product configuration systems to
support their activities. While such systems focus
mainly on configuration process support, mass cus-
tomization needs to cover the management of the
whole customizable product cycle. In this paper,
we describe a graphical modeling framework that
allows one to model both a product and its pro-
duction process. We first introduce our framework.
Then, we outline a possible implementation based
on Constraint Logic Programming of such prod-
uct/process configuration system. A comparison
with some existing product configuration systems
and process modeling tools concludes the paper.

1 Introduction
Product configuration systems are software of interest for
companies deploying mass customization strategies, since
they can support them in the management of configuration
processes. In the past years many research studies have been
conducted on this topic (see, e.g., [Sabin and Weigel, 1998]),
and different software product configurators have been pro-
posed (see, e.g., [Fleischanderl et al., 1998; Junker, 2003;
Configit A/S, 2009; Myllärniemi et al., 2005]).

Process modeling tools, instead, allows one to effectively
deal with (business) process management. In general, they
allow the user to define a description of a process, and
guide she/he through the process execution. Also within
this field it is possible to find tools and scientific works
(see, e.g, [White and Miers, 2008; ter Hofstede et al., 2010;
Pesic et al., 2007]).

Mass customization needs to cover the management of the
whole customizable product cycle, from product configura-
tion to product production. Current product configuration
systems and researches on product configuration, focus only
on product modeling and on techniques for configuration pro-
cess support. They do not cover product production process
problematics, despite the advantages that coupling of product
with process modeling and configuration could give.

∗This work is partially supported by GNCS and MIUR projects.

Inspired by the works of Aldanondo et al. (see, e.g., [Al-
danondo and Vareilles, 2008]), we devised a graphical frame-
work for modeling configurable products, whose producible
variants can be represented as trees, and their production pro-
cesses. The intent of our framework is to allow the propa-
gation of consequences of product configuration decision to-
ward the planning of its production process, and the propaga-
tion of consequences of process planning decision toward the
product configuration.

The paper is organized as follows. First, we introduce our
framework in Sect. 2. Then, in Sect. 3 we show how a config-
uration system based on Constraint Logic Programming can
be implemented on top of it. A comparison with some of the
existing product configuration systems and process modeling
tools is outlined in Sect. 4. An assessment of the work done
and of future research directions is given in Sect. 5.

2 A Graphical Framework for
Product/Process Modeling

In this section, we present the PRODPROC graphical frame-
work (cf. Sections 2.1 and 2.2). Moreover, we provide a
brief description of PRODPROC semantics in terms of model
instances (Sect. 2.3).

A PRODPROC model consists of a product description, a
process description, and a set of constraints coupling the two.
To better present the different modeling features offered by
our framework, we will exploit a working example. In partic-
ular, we will consider a bicycle with its production process.

2.1 Product Modeling Features
We are interested in modeling configurable products whose
corresponding (producible) variants can be represented as
trees. Nodes of these trees correspond to physical compo-
nents, whose characteristics are all determined. The tree
structure describes how the single components taken together
define a configured product.

Hence, we model a configurable product as a multi-graph,
called product model graph, and a set of constraints. Nodes of
the multi-graph represent well-defined components of a prod-
uct (e.g., the frame of a bicycle). While edges model has-
part/is-part-of relations between product components. We
require the presence of a node without entering edges in the
product model graph. We call this node root node. A prod-
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uct model represents a configurable product. Its configura-
tion can lead to the definition of different (producible) prod-
uct variants.

Each node/component consists of a name, a set of variables
modeling configurable characteristics of the component, and
a set of constraints (called node constraints) involving vari-
ables of the node and variables of its ancestors in the graph.
Each variable is endowed with a finite domain (typically, a
finite set of integers or strings), i.e., the set of its possible val-
ues. Constraints define compatibility relations between con-
figurable characteristics of a node and of its ancestors. The
graphical representation of a node (cf. Fig. 1) consists of a
box with three sections, each containing one of the elements
constituting a node.

Node 
constraints

Node 
variables

Node name

Node 
constraints

Node 
variables

Node name
Edge label

Card
Cardinality 
constraints

Figure 1: Graphical representation of nodes and edges.

In the description of a configured product, physical com-
ponents are represented as instances of nodes in the product
model graph. An instance of a node NodeName consists
of the name NodeName, a unique id, and a set of variables
equals to the one of NodeName. Each variable has a value
assigned. The root node will have only one instance, such
instance will be the root of the configured product tree.

Let us consider, for example, the node Frame of the (frag-
ment of) product model graph for a bicycle, depicted in
Fig. 2.1 The section Frame variables may contain the fol-
lowing couples of variables and domains:

〈FrameType, {Racing bike,Citybike}〉,
〈FrameMaterial, {Steel,Aluminum,Carbon}〉.

While in Frame constraints we may have the constraint

FrameType = Racing ⇒ FrameMaterial �= Steel.

This constraint states that a frame of type racing can not be
made of steel. An example of instance of Frame is the triple
〈Frame, 1, {FrameType = Racing, F rameMaterial =
Carbon}〉. Note that values assigned to node instance vari-
ables have to satisfy all the node constraints. For the node
Wheel (that also appears in Fig. 2) we may have the variables

〈WheelType, {Racing bike,City bike}〉,
〈SpokeNumber, [18, 28]〉,

and the constraints

WheelType = 〈FrameType, Frame, [ ]〉, (1)

〈FrameType, Frame, [rear wheel]〉 = Racing bike ⇒
⇒ SpokeNumber > 20.

(2)
These constraints involve features belonging to an ancestor of
the node Wheel, i.e., the node Frame. We refer to variables

1The depicted product model graph is one of the possible graphs
we can define with our framework. We chose this one for presenta-
tion purposes only.

Frame 
constraints

Frame 
variables

Frame

Wheel 
constraints

Wheel 
variables

Wheel
front wheel 1

rear gears 
constraints

rear wheel 1

Gear 
constraints

Gear
variables

Gearsrear gears ⟨Card,{0,1}⟩

Figure 2: Fragment of bicycle product model graph.

in ancestors of a node using meta-variables, i.e., triples of
the form 〈V arName,AncestorName,MetaPath〉. This
writing denotes a variable V arName in an ancestor node
AncestorName (e.g., FrameType in Frame). The third
component of a meta-variable, MetaPath, is a list of edge
labels (see below) describing a path connecting the two nodes
in the graph (wildcards ‘ ’ and ‘�’ can be used to represent ar-
bitrary labels and a sequence of arbitrary labels respectively).
MetaPaths are used to define constraints that will have ef-
fect only on particular instances of a node. For example, the
constraint (2) for the node Wheel has to hold only for those
instances of node Wheel which are connected to an instance
of node Frame through an edge labeled rear wheel. In-
tuitively, a node constraint for the node N has to hold for
each instance of N , such that it has ancestors connected with
it through paths matching with the MetaPaths occurring in
the constraint.

An edge e = 〈label,N,M,Card, CC〉 of the product
model graph is characterized by: a name (label), two node
names denoting the parent (N ) and the child node (M ) in the
has-part relation, the cardinality (Card) of such relation (ex-
pressed as either an integer number or an integer variable),
and a set (CC) of constraints (called cardinality constraints).
Such constraints may involve the cardinality variables (if any)
as well as variables of the parent node and of its ancestors (re-
ferred to by means of meta-variables). An edge is graphically
represented by an arrow connecting the parent node to the
child node (cf. Fig. 1). Such an arrow is labeled with the
edge name and cardinality, and may have attached an ellipse
containing cardinality constraints.

An instance of an edge labeled label connecting a node N
with a node M , is an edge connecting an instance of N and
an instance of M . It is labeled label too.

Let us consider the edges front wheel and rear gear de-
picted in Fig. 2. The former is the edge relating the frame
with the front wheel, its cardinality is imposed to be 1, and
there is no cardinality constraint. Hence, there must be (only)
one instance of the node Wheel connected to an instance of
the node Frame through an edge labeled front wheel. The
latter edge, rear gears, represents the has-part relation over
the frame and the rear gears of a bicycle. Its cardinality is
a variable named Card, taking values in the domain {0, 1}.
Hence, we may have an instance of the node Gears connected
to an instance of the node Frame through an edge labeled rear
gears. Among the cardinality constraints of the edge rear
gears we may have the following one:

FrameType = Racing ⇒ Card = 1.

Intuitively, a cardinality constraint for and edge e has to hold
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for each instance of the parent node N in e, such that N
has ancestors connected with it through paths matching with
MetaPaths occurring in the constraint.

As mentioned, we model a product as a graph and a set
of constraints. Such constraints, called model constraints,
involve variables of nodes not necessary related by has-
part relations (node model constraints), as well as cardi-
nalities of different edges exiting from a node (cardinal-
ity model constraints). Moreover, global constraints like
alldifferent [van Hoeve, 2001] can be used to define
node model constraints. In node model constraints, variables
are referred to by means meta-variables. A MetaPath in a
node model constraint represents a path connecting a node to
one of its ancestors in the graph. MetaPaths are used to
limit the effect of a node model constraint to particular tuples
of node instances. An example of node model constraint for
the bicycle is the following one:

〈GearType,Gears, [rear gears]〉 = Special ⇒
⇒ 〈SpokeNumber,Wheel, [rear wheel]〉 = 26.

(3)

This constraint states that if the type of rear gears chosen is
“Special”, then the rear wheel must have 26 spokes. Intu-
itively, a node model constraint has to hold for all the tuples
of node variables of node instances reached by paths match-
ing with the MetaPaths occurring in the constraint.

2.2 Process Modeling Features
Processes can be modeled in PRODPROC in terms of activi-
ties and temporal relations between them. More precisely, a
process is characterized by: a set of activities, a set of vari-
ables (as before, endowed with a finite domain of strings or of
integers) representing process characteristics and involved re-
sources; a set of temporal constraints between activities; a set
of resource constraints; a set of constraints involving product
elements; a set of constraints on activity durations. A process
model does not represent a single production process. In-
stead, it represents a configurable production process, whose
configuration can lead to the definition of different executable
processes.

PRODPROC defines three kinds of activities: atomic activi-
ties, composite activities, and multiple instance activities. An
atomic activity A is an event occurring in a time interval. It
has associated a name and the following parameters.

• Two integer decision variables, tstart and tend, denoting
the start and end time of the activity. They define the
tine interval [tstart, tend], and are subject to the implicit
condition tend ≥ tstart ≥ 0.

• A decision variables d = tend − tstart denoting the du-
ration of the activity.

• A flag exec ∈ {0, 1}.

We say that A is an instantaneous activity if d = 0. A is
executed if exec = 1 holds, otherwise (i.e., if exec = 0) A
is not executed. A composite activity is an event described
in terms of a process. It has associated the same parameters
of an atomic activity, and a model of the process it repre-
sents. A multiple instance (atomic or composite) activity is
an event that may occur multiple times. Together with the

Activity 
duration 
constraints

Activity name

(a)

Activity 
duration 
constraints

Activity name

(b)

Activity 
duration 
constraints

Activity name

inst

(c)

Figure 3: Graphical representation of activities.

usual parameters (and possibly the process model), a multi-
ple instance activity has associated an integer decision vari-
able (named inst) representing the number of times the ac-
tivity can be executed. Note that the execution/non-execution
of activities determines different instances of a configurable
process. Figures 3a, 3b, and 3c, show the graphical represen-
tation of atomic activities, composite activities, and multiple
instance activities, respectively.

Temporal constraints between activities are inductively de-
fined starting from atomic temporal constraints. We consider
as atomic temporal constraints all the thirteen mutually exclu-
sive relations on time intervals introduced by Allen in [Allen,
1983] (they capture all the possible ways in which two in-
tervals might overlap or not), and some other constraints in-
spired by constraint templates of the language ConDec [Pesic
et al., 2007]. Some examples of atomic temporal constraints
are listed as follows (for lack of space we avoid listing all
of them), where A and B are two activities. Fig. 4 shows
their graphical representations (we used a slightly different
graphical notation for activities, i.e., we omitted the activity
duration constraint sections).

1. A before B to express that A is executed before B (cf.
Fig. 4a);

2. A during B to express that A is executed during the
execution of B (cf. Fig. 4b);

3. A is−absent to express that A can never be executed
(cf. Fig. 4c);

4. A must−be−executed to express that A must be exe-
cuted (cf. Fig. 4d);

5. A not−co−existent−with B to express that it is not
possible to executed both A and B (cf. Fig. 4e);

6. A succeeded−by B to express that when A is executed
then B has to be executed after A (cf. Fig. 4f).

The constraints 1 and 2 are two of the relations presented
in [Allen, 1983]. The constraints 3-6 have been inspired by
the templates used in ConDec [Pesic et al., 2007]. A temporal
constraint is inductively defined as follows.

• An atomic temporal constraint is a constraint.

• If ϕ and ϑ are temporal constraint, then ϕ and ϑ and
ϕ or ϑ are temporal constraints.

• If ϕ is a temporal constraint and c is a constraint on pro-
cess variables, then c → ϕ is an if-conditional temporal
constraint, stating that ϕ has to hold whenever c holds.
Also, c ↔ ϕ is an iff-conditional temporal constraint,
stating that ϕ has to hold if and only if c holds.

3



beforeA B

(a)

duringA B

c

(b)

cA

(c)

A

(d)

BA

(e)

BA

(f)

before

during
A B

(g)

Figure 4: Graphical representation of temporal constraints.

A conjunction of atomic constraints between two activities
can be depicted by representing each constraint of the con-
junction. Fig. 4g shows the graphical representation for a
disjunction of atomic temporal constraints between two ac-
tivities (i.e., for the constraint A before B or A during B).
An if-conditional and an iff-conditional temporal constraint
with condition c are depicted in Fig. 4b and 4c, respectively.
Finally, a non-atomic temporal constraint can be depicted as
an hyper-edge connecting the activities involved in it, and la-
beled with the constraint itself.

The truth of atomic temporal constraints is related with
the execution of the activities they involve. For instance,
whenever for two activities A and B it holds that execA =
1 ∧ execB = 1, then the atomic formulas of the forms 1 and
2 must hold. A temporal constraint network CN is a pair
〈A, C〉, where A is a set of activities and C is a set of tem-
poral constraints on A. Fig. 5 shows the temporal constraint
network of the bicycle production process.

Construction of 
bicycle 

components
DeliveryBicycle assembly

Frame 
construction

Handlebar 
construction

Partial assembly

Wheels 
construction

Construction of 
other 

components

beforebefore

before before

Gears 
construction

during

Gears = 0

Figure 5: Temporal constraint network of the bicycle produc-
tion process.

Resource constraints [Laborie, 2003] are quadruple
〈A,R, q, TE〉, where A is an activity; R is a variable en-
dowed with a finite integer domain; q is an integer or
a variable endowed with a finite integer domain, defining
the quantity of resource R consumed (if q < 0) or pro-
duced (if q > 0) by executing A; TE is a time ex-
tent that defines the time interval where the availability
of resource R is affected by A. The possible values for
TE are: FromStartToEnd, AfterStart, AfterEnd,
BeforeStart, BeforeEnd, Always, with the obvious
meaning. Another form of resource constraint defines initial
level constraints, i.e., expressions determining the quantity of
a resource available at the time origin of a process. The ba-
sic form is initialLevel(R, iv), where R is a resource and
iv ∈ N. Examples of resource constraints for the bicycle pro-
duction process are:

〈Wheel construction, Aluminum,−4, AfterStart〉,
〈Frame construction,Workers,

qW ∈ [−1,−2], F romStartToEnd〉.
The first constraint states that activity “Wheel construction”
consumes 4 unit of aluminum once its execution starts. The
second constraints states that activity “Frame construction”
needs 1 or 2 workers during its execution. As for tem-
poral constraint, we can define if-conditional (i.e., c →
〈A,R, q, TE〉) and iff-conditional (i.e., c ↔ 〈A,R, q, TE〉)
resource constraints. Their meaning are similar to the ones
defined above for temporal constraints.

An activity duration constraint for an activity A, is a con-
straint involving the duration of A, process variables, and
quantity variables for resources related to A. The following
is an example of an activity duration constraint for the ac-
tivity “Frame construction” in the bicycle production process
(where FrameMult is a process variable)

d = 2·FrameMult
|qW |

PRODPROC also allows one to mix elements for model-
ing a process with elements for modeling a product, through
constraints involving process variables and product variables.
This is an example for the bicycle model

〈FrameType, Frame, []〉 = Racing ⇒ FrameMult = 4.

It relates the variable FrameType of the node Frame with
the process variable FrameMult. Another example is the
following:

〈rear gears, Frame,Gears, Card〉 = Gears.

This constraint relates the process variable Gears with the
cardinality of the edge rear gears of the bicycle product
model graph. The cardinality is represented by the quadru-
ple 〈rear gears, Frame,Gears, Card〉, where the first ele-
ment is an edge label, the second one is the name of the parent
node of the edge, the third one is the name of the child node
of the edge, and the last one is the name of the cardinality.

Product related constraints are another type of constraints
coupling product elements with process elements. They make
it possible to define resource constraints where resources are
product components. More precisely, a product related con-
straint is a constraint on activities and product nodes that im-
plicitly defines resource constraints, and constrains on pro-
cess and product variables. A product related constraint has

4



the form A produces n N for B, where A and B are ac-
tivities, n ∈ N

+, and N is the name of a node in the prod-
uct model graph, having (at least) one incoming edge having
associated a cardinality variable. Such a product related con-
straint corresponds to the following PRODPROC constraints:

〈A,RN , qA ∈ DRN , AfterEnd〉, 〈B,RN ,−n,AfterStart〉,
initialLevel(RN , 0), aggConstraint(sum,CEN ,=, RN ),

where RN is a resource variable whose domain DRN
is

defined as DRN
=

[
0,
∑

C∈CEN
max(DC)

]
(DC de-

notes the domain of C, and CEN is the list of cardi-
nality variables of edges entering in N ). The constraint
aggConstraint(sum,CEN ,=, RN ) is a global constraint
stating that

∑
C∈CEN

= RN has to hold. An example of
product related constraint for the bicycle is

Wheel construction produces
2 Wheel for Bicycle assembly.

In general, constraints involving both product and process
variables may allow one to detect/avoid planning impossibil-
ities due to product configuration, and configuration impossi-
bilities due to production planning, during the configuration
of a product and its production process.

2.3 PRODPROC Instances
A PRODPROC model represents the collection of single (pro-
ducible) variants of a configurable product and the processes
to produce them. A PRODPROC instance represents one of
such variants and its production process. To precisely define
this notion we need to introduce first the notion of candidate
instance. A PRODPROC candidate instance consists of the
following components:
• A set N I of node instances, i.e., tuples of the form
N I

i = 〈N, i,VNI
i
〉 where N is a node in the product

model graph, i ∈ N is an index (different for each in-
stance of a node), VNI

i
= VN (VN is the set of variables

of node N ).
• a set ANodes of assignments for all the node instance

variables, i.e., expressions of the form V = value where
V is a variable of a node instance and value belongs to
the set of values for V .

• A tree, called instance tree, that specifies the pairs of
node instances in the relation has-part. Such a tree is
defined as IT = 〈N I , EI〉, where EI is a set of tuples
eI = 〈label,N I

i ,M
I
j 〉 such that there is an edge e =

〈label,N,M,Card, CC〉 in the product model graph,
and N I

i , M I
j are instances of N and M , respectively.

• A set ACards of assignments for all the instance cardinal-
ity variables, i.e., expressions of the form ICe

NI
i

= n

where N I
i is an instance of a node N , e is an edge

〈label,N,M,Card, CC〉, ICe
NI

i
= Card, and n is the

number of the edges 〈label,N I
i , C

I
j 〉 in the instance tree,

such that M I
j is an instance of M .

• A set AI of activity instances, i.e., pairs AI
i = 〈A, i〉

where A is the name of an activity with execA = 1, and
i ∈ N is a unique index for instances of A.

Variables
Frame, ID=1

Variables
Wheel, ID=1

front wheel
rear
wheel

Variables
Whee, ID=2

Variables
Gears, ID=1

rear gears

Figure 6: Instance tree for a bicycle.

• A set E = {execA | A is an activity ∧ execA 
= 1}.

• A set AProc of assignments for all model variables and
activity parameters (i.e., time instant variables, duration
variables, execution flags, quantity resource variables,
instance number variables), that is, expressions of the
form P = value where P is a model variable or an
activity parameter, and value ∈ Z or value belongs to
the set of values for P .

Fig. 6 depicts a fragment of the instance tree for a bicycle.
The tree consists of an instance of node Frame, an instance
of the node Gears, and two instances of node Wheel.

A PRODPROC instance is a candidate instance such that the
assignments in ANodes ∪ ACards ∪ AProc satisfy all the con-
straints in the PRODPROC model (node constraints, temporal
constraints, etc.), instantiated with variables of node instances
and activity instances in the candidate instance.

The constraint instantiation mechanism, given a (partial)
candidate instance (a candidate instance is partial when there
are variables with no value assigned to), produces a set of
constraints on candidate instance variables from each con-
straint in the corresponding PRODPROC model. A candidate
instance has to satisfy all these constraints to qualify as an
instance. We give here an intuitive description of how the
instantiation mechanism works on different constraint types.
Let us begin with node and cardinality constraints. Let c be a
constraint belonging to the node N , or a constraint for an edge
e between nodes N and M . Let us suppose that N1, . . . , Nk

are ancestors of N whose variables are involved in c, and let
p1, . . . , pk be MetaPaths such that, for i = 1, . . . , k, pi is
a MetaPath from Ni to N . We define Ln as the set of k-
tuple of node instances 〈N I

j , (N1)
I
j1
, . . . , (Nk)

I
jk
〉 where: N I

j

is an instance of N ; for i = 1, . . . , k (Ni)
I
ji

is an instance of
Ni, connected with N I

j through a path pIi in the instance tree
that matches with pi. For each k-tuple t ∈ Ln, we obtain
a constraint on instance variables appropriately substituting
variables in c with variables of node instances in t. For ex-
ample, the constraints (1) and (2) for the node Wheel, lead
to the following constraints on variables of node instances in
Fig. 6 (〈V,N I

ID〉 denotes the variable V of the instance with
id ID of node N ).

〈WheelType,WheelI1〉=〈FrameType,FrameI1〉, (4)
〈WheelType,WheelI2〉=〈FrameType,FrameI1〉, (5)

〈FrameType,FrameI1〉=Racing bike⇒
⇒〈SpokeNumber,WheelI2〉>20. (6)

The instantiation of (1) leads to the constraints (4) and
(5), since it can be instantiated on both the couples of
node instances appearing in Fig. 6 〈WheelI1, F rameI1〉 and
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〈WheelI2, F rameI1〉. Instead, the instantiation of (2) leads to
only one constraint, i.e. (6), because it can be instantiated
only on the couple 〈WheelI2, F rameI1〉.

Node model constraints are instantiated in a slightly differ-
ent way. Let c be a node model constraint. Let us suppose that
N1, . . . , Nk are the nodes whose variables are involved in c,
let p1, . . . , pk be MetaPaths such that, for i = 1, . . . , k, pi
is a MetaPath that ends in Ni. We define Lnmc as the set
of ordered k-tuples of node instances 〈(N1)

I
j1
, . . . , (Nk)

I
jk
〉,

where for i = 1, . . . , k (Ni)
I
ji

is an instance of Ni connected
by a path pIi with one of its ancestors in the instance tree,
such that pIi matches with pi. For each k-tuple t ∈ Lnmc, we
obtain a constraint on instance variables appropriately substi-
tuting variables in c with variables of node instances in t. If c
is an alldifferent constraint, then we define an equiva-
lent constraint on the list consisting of all the node instances
of N1, . . . , Nk, connected with one of their ancestors by a
path matching with the corresponding MetaPath. As an ex-
ample, let us consider the constraint (3) for the bicycle, it can
be instantiated on the couple 〈WheelI2, GearsI1〉 and leads to

〈GearType,GearsI1〉 = Special ⇒
⇒ 〈SpokeNumber,WheelI2〉 = 26.

The instantiation of cardinality model constraints is very
simple. Let c be a cardinality model constraint for the car-
dinalities of the edges with labels e1, . . . , ek exiting from
a node N . Let N I

1 , . . . , N
I
h be instances of N . For all

i ∈ {1, . . . , h}, we instantiate c appropriately substituting the
cardinality variables occurring in it, with the instance cardi-
nality variables ICe1

NI
i

, . . . , ICek
NI

i

.
Let us now consider process constraints. Let A be an ac-

tivity, let AI
1, . . . , A

I
k be instances of A. Let r be the resource

constraint 〈A,R, q, TE〉, we instantiate it on each instance
of A, i.e., we obtain a constraint 〈AI

i , R, qi, TE〉 for each
i = 1, . . . , k, where qi = q is a fresh variable or an inte-
ger. Let c be an activity duration constraint for A, for each
i = 1, . . . , k we obtain a constraint substituting in c dA with
dAI

i
, and each quantity variable q with the corresponding vari-

able qi. Finally, let B an activity, let BI
1 , . . . , B

I
h be instances

of B. If c is a temporal constraint involving A and B, we
obtain a constraint on activity instances for each ordered cou-
ple 〈i, j〉, with i ∈ {1, . . . , k}, j ∈ {1, . . . , h}, substituting
in c each occurrence of A with AI

i , and of B with BI
j . This

mechanism can be easily extended to non-binary constraints.

3 CLP-based Product/Process Configuration
Constraint Logic Programming (CLP) [Jaffar and Maher,
1994] can be exploited to implement a configuration system
that, given a PRODPROC model (cf. Sect. 2), guide a user
through the configuration process to obtain a PRODPROC in-
stance (cf. Sect. 2.3). In this section, we first present a possi-
ble structure for such a system. Then, we briefly explain how
a configuration problem can be encoded in a CLP program.

A CLP-based system can support a configuration process
as follows. First, the user initializes the system (1) select-
ing the model to be configured. After such an initialization
phase, the user starts to make her/his choices by using the sys-
tem interface (2). The interface communicates to the system

engine (i.e., the piece of software that maintains a represen-
tation of the product/process under configuration, and checks
the validity and consistency of user’s choices) each data varia-
tion specified by the user (3). The system engine updates the
current partial configuration accordingly. Whenever an up-
date of the partial configuration takes place, the user, through
the system interface, can activate the engine inference pro-
cess (4). The engine instantiates PRODPROC constraints (cf.
Sect. 2.3) on the current (partial) candidate instance defined
by user choices, and encodes the product/process configura-
tion problem in a CLP program (encoding a Constraint Satis-
faction Problem, abbreviated to CSP). Then, the engine uses a
finite domain solver to propagate the logical effects of user’s
choices (5). Once the inference process ends (6), the engine
returns to the interface the results of its computation (7). In its
turns, the system interface communicates to the user the con-
sequences of her/his choices on the (partial) configuration (8).

From a PRODPROC model and a user defined (partial) can-
didate instance corresponding to it, it is possible to obtain a
CSP 〈V,D, C〉 where: V is the set of all the variables appear-
ing in the (partial) candidate instance; D is the set of domains
for variables in V; C is the set of constraints in the PRODPROC
model instantiated on variables of the (partial) candidate in-
stance. Such a CSP can be easily encoded in a CLP program
like the following one.
csp_prodProc(Vars) :- DOMS, CONSTRS.

In it, Vars is the list of variables in V , DOMS is the conjunc-
tion of domain constraints for domains in D, and CONSTRS is
the conjunction of constraints in C. Given a program with the
above-described characteristics, a finite domain solver can be
used to reduce the domains associated with variables, pre-
serving satisfiability, or to detect the inconsistency of the en-
coded CSP (due to user’s assignments that violate the set
of constraints or to inconsistencies of the original product
model). Moreover, it can be used to determine that further
node instances are needed, or that there are too many nodes
in the instance tree.

4 Comparison with Related Work
In order to point out strengths and limitations of the PROD-
PROC framework, we present in this section a brief compar-
ison with some of the most important product configuration
systems and process modeling tools.

Answer Set Programming (ASP) [Gelfond and Lifschitz,
1988] has been used to implement product configuration sys-
tems that are specifically tailored to the modeling of software
product families, e.g., Kumbang Configurator [Myllärniemi
et al., 2005]. Even if these systems result to be appealing for
a relevant range of application domains, they lack of general-
ity. In particular, they do not support global constraints, and
the so called grounding stage may cause problems in the man-
agement of arithmetic constraints [Myllärniemi et al., 2005].

Product configuration systems based on binary decision
diagrams (BDDs), e.g., Configit Product Modeler [Configit
A/S, 2009], trade the complexity of the construction of the
BDD, for the simplicity and efficiency of the configuration
process. Despite their various attracting features, BDD-
based systems suffer from some significant limitations. First,
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they basically support flat models only, even though some
work has been done on the introduction of modules (see,
e.g., [van der Meer and Andersen, 2004]). Second, they
find it difficult to cope with global constraints. In [Nørgaard
et al., 2009] the authors combine BDD and CSP to tackle
alldifferent constraints. However, they consider flat
models only. We are not aware of any BDD system that deals
with global constraints in a general and satisfactory way.

Unlike ASP-based and BDD-based systems, CSP-based
product configuration systems are (usually) capable of deal-
ing with non-flat models and global constraints. Unfor-
tunately, the modeling expressiveness of CSP-based sys-
tems has a cost, i.e., backtrack-free configuration algo-
rithms for CSP-based systems are often inefficient, while
non backtrack-free ones need to explicitly deal with dead
ends. Moreover, most CSP-based systems do not offer
high-level modeling languages (product models must be
specified at the CSP level). Some well-known CSP-based
configuration systems, such as ILOG Configurator [Junker,
2003], which features various interesting modeling facili-
ties, and Lava [Fleischanderl et al., 1998], which is based
on Generative-CSP, seem to be no longer supported. A re-
cent CSP-based configuration system is Morphos Configura-
tion Engine (MCE) [Campagna et al., 2010]. As other CSP-
based systems, it makes it possible to define non-flat models.
Its configuration algorithm is not backtrack-free, but it ex-
ploits back-jumping capabilities, to cope with dead ends, and
branch-and-prune capabilities, to improve domain reduction.
From the point of view of process modeling, PRODPROC can
be viewed as an extension of MCE modeling language. In
particular, it extends MCE modeling language with the fol-
lowing features: (1) cardinality variables, i.e., has-part/is-
part-of relations can have non-fixed cardinalities; (2) product
model graph, i.e., nodes and relations can define a graph, not
only a tree; (3) cardinality constraints and cardinality model
constraints, i.e., constraints can involve cardinalities of rela-
tions; (4) MetaPaths, i.e., a mechanism to refer to particular
node instance variables in constraints.

PRODPROC can be viewed as the source code representa-
tion of a configuration system with respect to the MDA ab-
straction levels presented in [Felfernig, 2007]. PRODPROC
product modeling elements can be mapped to UML/OCL in
order to obtain platform specific (PSM) and platform inde-
pendent (PIM) models. The mapping to OCL of MetaPaths
containing ‘�’ wildcards and of model constraints requires
some attention. For example, the latter do not have explicit
contexts as OCL constraints must have. Since PRODPROC
does not support the definition of taxonomies of product com-
ponents, there will not be generalization hierarchies in PMSs
and PIMs corresponding to PRODPROC models.

In the past years, different formalism have been proposed
for process modeling. Among them we have: the Busi-
ness Process Modeling Notation (BPMN) [White and Miers,
2008]; Yet Another Workflow Language (YAWL) [ter Hofst-
ede et al., 2010]; DECLARE [Pesic et al., 2007].

Languages like BPMN and YAWL model a process as a
detailed specification of step-by-step procedures that should
be followed during the execution. BPMN and YAWL adopt
an imperative approach in process modeling, i.e., all possibil-

ities have to be entered into their models by specifying their
control-flows. BPMN has been developed under the coordi-
nation of the Object Management Group. PRODPROC has
in common with BPMN the notion of atomic activity, sub-
process, and multiple instance activity. The effect of BPMN
joins and splits on the process flow can be obtained using tem-
poral constraints. In PRODPROC there are no notions such as
BPMN events, exception flows, and message flows. How-
ever, events can be modeled as instantaneous activities and
data flowing between activities can be modeled with model
variables. YAWL is a process modeling language whose in-
tent is to directly supported all control flow patterns. PROD-
PROC has in common with YAWL the notion of task, multi-
ple instance task, and composite task. YAWL join and split
constructs are not present in PRODPROC, but using temporal
constraints it is possible to obtain the same expressivity. The
notion of cancellation region is not present in PRODPROC,
but our framework could be extended to implement it.

As opposed to traditional imperative approaches to process
modeling, DECLARE uses a constraint-based declarative ap-
proach. Its models rely on constraints to implicitly determine
the possible ordering of activities (any order that does not
violate constraints is allowed). With respect to DECLARE,
PRODPROC has in common the notion of activity and the use
of temporal constraints to define the control flow of a pro-
cess. The set of atomic temporal constraints is not as big as
the set of template constraints available in DECLARE, how-
ever it is possible to easily the available ones so as to define all
complex constraints of practical interest. Moreover, in PROD-
PROC it is possible to define multiple instance and composite
activities, features that are not available in DECLARE.

From the point of view of process modeling, PRODPROC
combines modeling features of languages like BPMN and
YAWL, with a declarative approach for control flow defini-
tion. Moreover, it presents features that, to the best of our
knowledge, are not presents in other existing process mod-
eling languages. These are: resource variables and resource
constraints, activity duration constraints, and product related
constraints. Thanks to these features, PRODPROC is suit-
able for modeling production processes and, in particular,
to model mixed scheduling and planning problems related
to production processes. Furthermore, a PRODPROC model
does not only represent a process ready to be executed as
a YAWL (or DECLARE) model does, it also allows one to
describe a configurable process. Existing works on process
configuration, e.g., [Rosa, 2009], define process models with
variation points, and aim at deriving different process model
variants from a given model. Instead, we are interested in
obtaining process instances, i.e., solutions to the schedul-
ing/planning problem described by a PRODPROC model.

With respect to the works of Mayer et al. on service pro-
cess composition (e.g. [Mayer et al., 2009]), PRODPROC is
more geared toward production process modeling and con-
figuration. However, certain aspects of service composition
problems can be modeled using PRODPROC too.

The PRODPROC framework allows one to model products,
their production processes, and to couple products with pro-
cesses using constraints. The only works on the coupling of
product and process modeling and configuration we are aware
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of are the ones by Aldanondo et al. (see, e.g., [Aldanondo
and Vareilles, 2008]). They propose to consider simultane-
ously product configuration and process planning problems
as two constraint satisfaction problems. In order to propa-
gate decision consequences between the two problems, they
suggest to link the two constraint based models using cou-
pling constraints. The development of PRODPROC has been
inspired by the papers of Aldanondo et al., in fact, we also
have separated models for products and processes and, con-
straints for coupling them. However, our modeling languages
are far more complex and expressive than the one presented
in [Aldanondo and Vareilles, 2008].

5 Conclusions
In this paper, we considered the problem of product and pro-
cess modeling and configuration, and pointed out the the lack
of a tool covering both physical and production aspects of
configurable products. To cope with this absence, we pre-
sented a graphical framework called PRODPROC. Further-
more, we shown how it is possible to build a CLP-based con-
figuration systems on top of it, and presented a comparison
with some of the existing product configuration systems and
process modeling tools.

We already implemented a first prototype of a CLP-based
configuration system that uses PRODPROC. It covers only
product modeling and configuration, but we are working to
add to it process modeling and configuration capabilities. We
also plan to experiment our configuration system on differ-
ent real-world application domains, and to compare it with
commercial products, e.g., [Blumöhr et al., 2009].
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Abstract

Product configuration systems play an important
role in the development of Mass Customisation.
The configuration of complex product families may
nowadays involve multiple design disciplines, e.g.
hardware, software and services. In this paper, we
present a conceptual approach for modelling the
variability in such heterogeneous product families.
Our approach is based on a framework that aims
to cater for the different stakeholders involved in
the modelling and management of the product fam-
ily. The modelling approach is centred around the
concepts of views, types and constraints and is illus-
trated by a motivation example. Furthermore, as a
proof of concept, a prototype has been implemented
for configuring a non-trivial heterogeneous product
family.

1 Introduction
In many companies, there has been an increasing need to
reduce the costs while offering highly customised products.
Indeed, today’s customers demand products with lower prices,
higher quality and faster delivery, but they also want products
customised to match their unique needs. Product configuration
systems (or configurators) have allowed the manufacturers to
adapt their business model to Mass Customisation [Pine, 1993]
and propose products with hundreds of product features and
options for a competitive price.

Model-based configuration is based on a strict separation
between the product knowledge (i.e. the data representing the
characteristics of the products) and the problem solving knowl-
edge (i.e. the mechanisms used to ensure the consistency of
the customised product). As the solving process is indepen-
dent from the product knowledge, this separation provides
a good robustness, compositionality and reusability, making
model-based systems the prime choice for configuring large
and more complex models [Sabin and Weigel, 1998].

Most of the research on product knowledge modelling has
concentrated on manufactured product families [Hvam et al.,
2008]. Moreover, configuration techniques have recently been
applied to other types of products, such as software variability
[Asikainen et al., 2007] or configurable services [Heiskala et

al., 2005]. However, many products nowadays are heteroge-
neous, i.e. different design disciplines are taken into account
within the same product family. Modelling such products
raises two main issues. One must first consider how to struc-
ture the different kind of knowledge that needs to be modelled.
A second issue concerns the evolution of the product fam-
ily. The set of features provided by a product family varies
according to where and when it is distributed.

In this paper, we present a framework for modelling hetero-
geneous product families, based on modelling views. This
framework synthesizes, unifies and extends different ap-
proaches to modelling configuration in the different design
disciplines, e.g. physical products, software or services. The
different views used in the approach are described using UML
metamodels, together with different types of constraints that
govern the dependencies both within and between views.

Section 2 and Section 3 introduce the necessary background
and the research problem behind our approach. Section 4, 5
and Section 6 present concepts and constraints involved in our
framework. Section 7 provides a brief overview of the proof
of concept for our work, while Section 8 discusses our results
and related work. Finally, Section 9 concludes the paper.

2 Background and Previous Work
This section provides a brief overview of different research
areas on which this work is based.

2.1 Product Configuration
Product configuration modelling is widely based on concepts
such as components, ports, resources and functions [Soini-
nen et al., 1998]. A configurable product is composed by
components that are connected together via ports to form a
hierarchical partonomy structure. Specialisation relations also
permits to create a taxonomy structure in the model. Resources
are balanced entities that can be produced or consumed by
components, while functions can be used to define the prod-
uct from the point of view of what functionalities it provides.
The model also contains constraints that limit the number of
possible variants, e.g. by restricting the combinations of val-
ues allowed for the different attributes of the product. The
traditional method for modelling products is the type-instance
approach: the model defines a number of types, that are then
instantiated as individuals during the configuration process to
store the final data.
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Several high-level modelling languages tailored for product
configuration have been proposed, including PCML [Tiihonen
et al., 2002]. Other languages such as UML have also been
studied for modelling product configuration [Felfernig et al.,
2002; Hvam et al., 2008]. Finally, product configuration has
also been successful in industry [Haag, 1998].

2.2 Software Product Lines
Software product lines (SPL), also known as software product
families, is a set of software systems sharing a common set of
features that “satisfy the specific needs of a particular market
segment or mission and that are developed from a common set
of core assets in a prescribed way” [Clements and Northrop,
2001].

Some approaches consider software product lines from an
architectural point of view. Architecture description languages
(ADLs) have been proposed to describe the SPLs in terms
of their structure, including their components, interfaces, or
communication protocols; but few can handle variability in
SPLs. A few exceptions exist: Koalish [Asikainen et al., 2003]
for example extends Koala, an ADL based on components and
interfaces, by adding variability elements such as attribute
domains and constraints.

A more common method to model SPL is using features.
Feature modelling approaches are based on the concept of
features, that usually represent the visible characteristics of
the system, from an end-user point of view. Well-known fea-
ture modelling methods, such as FODA (Feature Oriented
Domain Analysis) [Kang et al., 1990] or FORM (Feature Ori-
ented Reuse Method) [Kang et al., 1998] use a feature model,
which represents a feature tree using different relations be-
tween features and subfeatures, including mandatory, optional
or alternative relations. Feature models have been extended to
support shared subfeatures, feature attributes and cardinalities
or feature groups [Czarnecki et al., 2005b].

Finally, Asikainen et al. [2007] recently proposed Kumbang.
Kumbang combines advanced feature modelling concepts with
the approach from Koalish, and adds support for advanced
constraint relations compared to traditional feature modelling
approaches.

2.3 Service Configuration
Configurable services represent services that can be cus-
tomised from a set of pre-defined options, in order to fit the
needs of individual customers. Research on configurable ser-
vices and how to model them is a relatively recent topic: sev-
eral authors have been discussing the configuration of different
types of services, e.g. IT services [Böhmann et al., 2003].

Other researchers [Akkermans et al., 2004; Heiskala et al.,
2005] propose more detailed conceptualisations for modelling
services. The most similar to our work, Heiskala et al. [2005],
presents a conceptual model following a type/instance ap-
proach using four viewpoints, called worlds: the needs world,
representing the customer’s needs; the service solutions world,
for the service’s specifications; the process world, related to
the service delivery; and finally the object-of-services world,
that is used to describe the service recipient and the environ-
ment in which the service will be supplied.

3 Research Problem
In this section, we define the Research Problem motivating our
work, and describe the example that illustrates our approach.

The Research Problem considered in this paper is: how
to uniformly support the configuration and management of
heterogeneous product families? What we refer to as a het-
erogeneous product family is a family of products integrating
separate design disciplines interacting with each others. In the
rest of the paper, we refer to these design disciplines as the
dimensions of such a product family.

Modelling variability in heterogeneous product families
yields various issues, due to the diversity of the product knowl-
edge necessary to address these different dimensions. Indeed,
the model of a heterogeneous product family can be very com-
plex, and involves several types of users with different skills
and objectives, making the need for uniformity of prime impor-
tance. The different dimensions in such a product family are
rarely independent, and it is primordial to take the interactions
between dimensions into account.

With this, we specify the main research problem in more
detail with the following Research Questions:

RQ1 What are the needs of the users of the model to be sup-
ported?

RQ2 What modelling constructs support addressing the het-
erogeneity?

RQ3 How to integrate together the different dimensions of
heterogeneity in the models?

RQ4 How to support the management of such product family
over time and for different market situations?

As a motivation example, we present in Figure 1 a sim-
plified version of a product family consisting of netbooks,
smartphones and tablet computers. The example represents a
configurable family of products consisting of: a set of physical
elements (a motherboard with hardware chips, a screen, ...);
the configurable software running on the devices (applications,
libraries, ...); and the services associated with the devices
(subscriptions, synchronisation services, ...).

This running example illustrates how complex the mod-
elling of a heterogeneous product family can be. Indeed, the
engineers responsible for modelling the variability in the phys-
ical parts of the system often possess a knowledge different
from the ones responsible for managing the software configu-
ration model, or creating the service model. As can be seen
in the previous section, although the modelling approaches
often use the same basis (types, partonomy, etc.), the high-
level concepts behind each type of modelling are different,
and thus require different mindsets. One can then assume that
the task of managing the variability of the hardware, software
and service parts for large products is delegated to separate
groups of knowledge engineers.

Configuring such a product family can be quite complex,
due to the amount of technical details represented in each
different aspects of the products. Those details are often not
very accessible to salespersons and end-customers, who prefer
viewing the features (or functions) of the product families, as
described in [Soininen et al., 1998]. Defining the feature set
of the product family may be enough in some cases.
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Figure 1: Running example. The product family represents
mobile devices and is configured according to three dimen-
sions, hardware, software and services, and need to be adapted
to different scenarios, e.g. tailored to distributors and markets.

However, we identified several scenarios that illustrate dif-
ferent situations where this feature set may need refinement:

• Market differentiation: The company selling the products
proposes different feature sets for different markets. In
our example, different markets, e.g. Europe and United
States, means different data signals to be handled by the
phones, as well as different regulations. The possible
combinations of features may just be restricted on those
different markets.

• Feature set evolution: The product family’s feature set is
evolving with time. Devices may not arrive fully featured
on the market, due to time constraints or strategic deci-
sions. A refined feature set may be needed for a specific
time, with additional constraints that may disappear (or
be modified) in future evolution of the product family.

• Distributors tailoring: The producing company is dis-
tributing the products to different intermediary vendors.
Products as our example may not be distributed directly
by the manufacturer. This producer may propose a fea-
ture set to vendors that can adapt it in order to forbid
specific combinations, or to create a more simple feature
set for the end-customer. For example, the example prod-
ucts may be sold by distributors by letting the customer
choose between different feature packages, limiting the
choices in configuration.

• Market analysis: The final customers can also be con-
sidered first (instead of the product family). A market
study identifies the different needs of the final customers
(or needs that the company wants to introduce in the
market) and build different feature sets to satisfy these
needs, aiming at creating a product family to fit those.
On the contrary to the first three scenarios, this scenario
considers the market needs as the basis for designing the
product family.

These scenarios provide a more concrete characterisation
of how the functionalities of the product family may need to
evolve depending on its use and distribution, as introduced in
Research Question 4.

4 Modelling Framework
Our approach is based on the concept of modelling views.
Those views are used to model different aspects of the product
family, according to the different roles of the modellers. The
main assumption is that each product family considered con-
sists of different dimensions, and that all those parts need (and
benefit from) configuration. Models are created and main-
tained by knowledge engineers from various informations
given by domain experts. However, heterogeneous product
families with multiple dimensions may require different kind
of domain experts with different roles and sets of skills, accord-
ing to the degree of technicality or the dimension considered.

In this section, we thus define three different types of views:
the feature views, the structure views and the realisation views,
depending on their intended audience and how they contribute
to the model of the product family through different levels of
abstraction. The views are characterised by a set of concepts
with a specific organisation. Most of the concepts presented
here are not new in themselves, but how they interact between
each others within and between views is of importance.

4.1 Feature Views
Feature views provide a view of a product family from a high
level of abstraction. These views are targeted at sales persons
or end-customers that need to have an understanding of what
the product individuals can do, instead of how they can do it.
In our conceptual approach, feature views are not separated
according to the different dimensions of the product family.
The relations between the concepts described in feature views
are related to the product individuals as a whole, and as such
should not be dimension-specific. Product individuals can
indeed be characterised by the features (or functions) they
provide, independently from the way they are structured.

A feature view is composed of feature types, organise in
partonomy (subfeatures) and taxonomy (subtypes) structures,
as shown in the UML metamodel in Figure 2(a). Variability is
defined in each feature type using attributes that can take dif-
ferent values. A feature subtype inherits all the properties of its
supertype, i.e. its attributes, subfeatures, and constraints. Two
types of constraints can be added to each type. Compatibility
constraints model dependencies between the feature view, i.e.
it specifies conditions that must hold in a valid configuration.
Implementation constraints model the dependencies between
different types of views, and will be detailed in Section 5.

Example: Consider our motivation scenario (Figure 3).
Feature types such as Input or Localisation can be used to
define the input type (touch input, keyboard features) or if
GPS localisation should be available on the device.

4.2 Structure Views
Feature views are implemented by structure views, which de-
fine the different design components that realise the described
features of the product family, and the relations between them.
Structure-based approaches for configuration are widely used
[Soininen et al., 1998], as the compositional structure of the
product families is often used to represent the product data
knowledge. The structure views communicate the aspects of
the architecture of interest to those involved in designing the
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Figure 2: UML metamodels for: (a) Feature views (b) Structure views (c) Realisation views

system. They provide more concrete models of a product fam-
ily, as it represents the specifications of the components of the
system. Structure views are thus mainly aimed at design or
maintenance and are for example targeted at product design
engineers, software architects or service contractors.

A structure view is composed of structure types, that can
be either component types or association types. As for feature
views, structure views are organised in partonomy and taxon-
omy structures (Figure 2(b)). Types can have attributes and
compatibility constraints as well.

The different concepts used in structure views have a spe-
cific meaning according to which dimension each view refers
to. For example, a physical structure view represents the
physical structure of the product family. Component types
are entities whose individuals are physical components in-
volved in the physical design, while association types are used
to model non-directional physical links between two compo-
nents. A software structure view describes the architecture of
the software system involved in the product family. Instances
of component types represent software components, and as-
sociation can be defined to model interfaces, whether they
provide software functions or require some. Also, a service
structure view describes the specifications of the service to be
delivered. Component types are service element types, and de-
scribes contractual agreements of what to be delivered, similar
to what is modelled in the service solutions world of Heiskala
et al. [2005].

Example: In our motivation scenario (Figure 3), the physi-
cal structure view contains a Screen and a TouchScreen com-
ponent types with a size attribute, while the software view
handles the User Experience (UX) framework and software
interfaces to the Middleware libraries. The service structure
view declares RepairCoverage or PhoneSubscription as types.

4.3 Realisation Views
Realisation views offer a detailed technical view of how the
product individuals are realised. Compared to structure views,
whose purpose is to represent the design of a specific dimen-
sion of the product family, realisation views are aimed at
describing the elements necessary for the concrete realisation
of the system for that dimension. They are thus targeted at
highly specialised engineers, e.g. product engineers, software
developers or service deliverers, and represent the lowest ab-
straction level in our conceptual modelling framework. Each
realisation view is associated with a dimension, which defines
its proper meaning: physical products use this view to repre-
sent manufacturing data, while software involve the solution
deployment, and services the delivery process.

The building blocks of a realisation view are realisation
types. There are three possible realisation types: item types,
operation types and resource types. Item types represent the
production components used to realise the products. It can
be a BOM item for manufactured parts, a software package
when dealing with software, or an object to be produced when
delivering a service (e.g. a contract or a bill). Operation
types are used to specify a set of operations needed during
the production of individuals (e.g. manufacturing operations,
software deployment, service processes). Resource types may
describe a machine, an operator, an information or anything
that may be necessary to complete the operations.

Contrary to structure views, realisation views are not start-
ing with a single root type. Instead, each realisation view is
associated with a structure view (from the same dimension),
and each item or operation type may be associated to a relevant
structure type via a mapping constraint. Types mapped to a
structure type defines their own tree of subitems, providing a
more detailed breakdown of the production components.
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Figure 3: Overview of the motivation example model and the different modelling views, depending on the three dimensions
(physical, software and services). Partonomy relations are shown using UML Aggregations, taxonomy relations using UML
Generalizations. For the sake of brevity, only a subset of the types and the base feature view in the hierarchy are shown.

Example: The Screen component type in the physical struc-
ture view of our motivation example can be mapped to differ-
ent manufacturing items. A specific mapping can be made if
TouchScreen is chosen instead, or when a specific configura-
tion is made (e.g. changing the value of the size attribute).

5 Dependencies and Constraints
Constraints can be used to specify dependencies within or
between views when other modelling mechanisms are not suf-
ficient to capture them. Constraints are written in a constraint
language, and involve types attributes and predicates using
pre-defined functions, such as Count(...) that returns the actual
cardinality in a partonomy relation. The full description of the
constraint language is out of the scope of this paper.

5.1 Compatibility Constraints
A compatibility constraint is specific to a particular view, and
can only involve properties of this view. The evaluation of
a constraint occurs during configuration, when types are in-
stantiated to individuals. Each instance of the context type in
which the constraint is declared must satisfy it.

Example: The following constraint, declared in the Input
component type, specifies that the physical keyboard feature
must be selected if one wants a backlit keyboard:

backlitKeys ⇒ keyboard

Constraints may also contain references to properties
that are not always present in the product individual being
configured, e.g. if a constraint accesses a subpart whose

cardinality is not fixed, or an attribute from a subtype that
may not be chosen (the property is said inactive). Each
compatibility constraint containing at least one inactive term
is evaluated to true during configuration.

5.2 Implementation Constraints
Implementation constraints are essential to our framework, as
they model the interaction between the base feature view and
the structure views (and in the feature views hierarchy, see
Section 6). They are composed of a left-hand side expression
L and a right-hand side expression R, related by an implication
or an equivalence operator. The expression L represents the
features to be implemented by the constraint, in a similar way
as in the compatibility constraints. On the other hand, the
expression R represents what is needed in the stucture view(s)
to implement the features specified by L.

Example: Consider the following constraint in the Input
feature type from the base feature view:
touchInput = “multitouch′′ ⇔

(Physical :: TouchScreen.type = “capacitive′′

∧ Software :: HandsetUX.touchFrmk = true)

This implementation constraint specifies that a device has a
multitouch input if there exists a capacitive touchscreen and
a touch framework is implemented in the software. Exis-
tential quantifiers are implicitly used in the semantics of the
expression R, as the feature may exist if there is at least one
combination of structural elements implementing it. Universal
quantifiers can also be explicitly used in some specific cases.
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5.3 Mapping Constraints
Mapping constraints are defined in realisation views to specify
under which conditions a realisation type should be included
in the configuration results. There exists indeed a mapping
between structure types and item and operation types, and the
latters should only be part of the final configuration if certain
conditions are met. Mapping constraints are declared in item
and operation types, and refers to attributes from the structural
type defined as context.

Example: The following mapping constraint is declared
in the Coating operation type and takes as context the Touch-
Screen component type from the physical structure view:
cmap(TouchScreen,Coating) : oleophobicCoating = true

A valid configuration thus ensures that the latter constraint is
true for each instance of the TouchScreen type, i.e. an instance
of the Coating operation type is present for each instance of
TouchScreen where the attribute oleophobicCoating is true.

6 Feature View Hierarchy
To address the management and evolution of the product fam-
ily (Research Question 4) and the scenarios discussed in the
Section 3, several feature views can be defined and organised
in a feature view hierarchy. A model defines a base feature
view, which will contain all the features available for the mod-
elled product family, and should be implemented by the struc-
tural views. This base feature view may then be specialised,
as different versions or evolutions of the product family may
require special restrictions to the set of available features (Mar-
ket differentiation and Feature set evolution scenarios), or even
more abstract feature views in order to be presented to final
customers (Distributors tailoring and Market analysis).

The feature view hierarchy defines a specialisation tree,
rooted by the base feature view. A feature view F ′ is the child
of another feature view F if F ′ is a specialisation of F . This
specialisation is done through different concepts:
• Implementation: A feature view F ′ can declare new

feature types and attributes, for example to define more
abstract feature groups and properties. As for the base
feature view, the types in F ′ must use implementation
constraints to associate their properties to the feature
view F , parent of F ′.

• Refinement and reference: Apart from defining new
feature types, feature views can refine feature types from
their parent view. A refined feature type can transform
the original type by: defining new attributes or subfea-
tures; refining referenced attribute or subfeature defini-
tions by restricting its cardinality, its domain or visibility
(attribute) or change it to one of its subtypes (subfeature);
changing the type from concrete to abstract to force the
use of its subtypes; or by adding compatibility constraints
to constrain the model even more.

Figure 4 shows the mechanism of feature types refinement.
Type F1 is refined: the attribute a1 in F1 is declared as hidden,
and a new attribute a5 is declared. The feat3 subfeature
cardinality is also refined to [1..2]. Finally, even though F1′ is
not directly modified, the type F4 is also refined: the domain
of a4 is reduced and a new subfeature is defined.
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Figure 4: Feature types refinement. Refined types are charac-
terised by the <refined> tag, while referenced definitions are
tagged with <ref>. The type F3 in the Refined Feature View
is shown with a dashed outline, as only the feat3 definition
is part of the refined view, while the feature type is not and is
just shown here for illustrative purpose.

7 Proof of Concept
A textual modelling language named ProCoLa has been de-
fined to support our modelling framework. The language
syntax is closely mapped to the different concepts described
in this paper. A language service has been implemented in
Visual Studio to support the ProCoLa language, providing an
important number of features for tool support, such as syn-
tax highlighting, syntax and semantic checks, automatic word
completion among others. The language is supported by a C#
compiler, and resembles that of an object-oriented program-
ming language. A formalism of the framework and model
analyses are currently being worked on in order to provide
additional tool support, such as the ability to see model-wide
dependencies of any change that may happen in a view, e.g.
the deletion of an attribute or type.

The semantics behind our modelling approach (and Pro-
CoLa) have been defined by implementing the translation
of models to Dynamic CSPs (DCSPs) [Bartak and Surynek,
2005] and Conditional CSPs (CondCSPs) [Mittal and Falken-
hainer, 1990] formalisms. DCSPs are used to handle the dy-
namic addition and removal of value assignments to attributes
during interactive configuration, while CondCSPs are used to
handle the notion of activity involved when dealing with dy-
namic cardinality or taxonomy structures for example, or the
existential (or universal) quantifiers implied by implementa-
tion constraints. During the configuration process, an end-user
first chooses which feature view he wants to use (if multiple
feature views exist in the hierarchy), and then can enter his
requirements through a user-interface by assigning values to
attributes, or connecting associations. A single CSP model is
usually used for all views, allowing a full propagation of the
choices to the other views. However, the user may also con-
sider configuring only a single view (using only compatibility
constraints). More details can be found in [Quéva, 2011].

A larger mobile device product family based on the mo-
tivation example presented in this paper has been modelled
using our conceptual framework and ProCoLa. The model
is split into 13 views, including three realisation views and
three structure views (one for each dimension), and a feature
views hierarchy of 7 views. It contains around 250 types, 200
attributes and over 300 constraints. During the modelling of
the product family, ProCoLa has provided a sufficient level
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of support to capture the different part of the family and their
dependencies, in a reasonable amount of time. The translation
into the CSP formalisms is very fast, while the consistency
checks at runtime are done within a few seconds at most.

8 Discussion and Comparison with Related
Work

The different views provides a modelling framework as a con-
tribution to address the Research Questions (RQs) exposed in
Section 3. The clear separation of concerns in the structural
and realisation data for each dimension is motivated by RQ1
(What are the needs of the users of the model to be supported?)
and previous work on modelling each dimension (Section 2).
Each view is targeted at a different audience: the structural
model of the software is handled by a software architect, while
a production engineer may be more adequate to handle bill-
of-materials and manufacturing operations. Moreover, we
argue that structural and realisation views from each dimen-
sion should be considered independently from each others,
and unified in the feature models they contribute to imple-
ment, defined in feature views. In Figure 3, the sales persons
working on the device features model the types of input that
the end-user may be interested in. How this feature is im-
plemented is dependent on several structural elements from
different parts of the system: the touch screen hardware and a
touch framework component in the user experience software.
Those two elements can however be chosen independently
from each others, but will only provide the feature if they are
both present in the final product.

The UML metamodels (Figure 2) provide a good basis in
order to address the problem of modelling the different di-
mensions of an heterogeneous product family, as raised in
RQ2 (What modelling constructs support addressing the het-
erogeneity?). Uniform modelling constructs and the differ-
ent types of inter-views constraints defined in the framework
also contribute to the issue posed in RQ3 (How to integrate
together the different dimensions of heterogeneity in the mod-
els?): the implementation and mapping constraints permit to
model the interdependencies between the views, allowing a
tight integration of the different dimensions of the product
family. Modelling these constraints requires communication
between the different stakeholders. The sales person responsi-
ble for the touch input feature inquires the product designer
in order to assess what hardware components are needed for
the requested feature. On the other hand, product designers
and production engineers need to confer on which items are
available to realise the structural design of the hardware.

Our modelling approach also extends the concept of feature
model to a feature view hierarchy, as a contribution to RQ4
(How to support the management of such product family over
time and for different market situations?). The refinement of
feature type’s attributes can be used to model scenarios such
as Market differentiation (by adding constraints for specific
markets), Feature set evolution (by creating multiple feature
views depending on the current capabilities of the product) or
Distributors tailoring (by allowing them to create their own
specialised views). In a Market analysis scenario, several spe-
cific feature views are created in order to match the product

feature sets to introduce in the market. These views may then
be joined into one base feature view, by gathering common ele-
ments or creating more abstract features that can be specialised
to fit the original views, via refinement or implementation. The
feature view hierarchy thus enables a unification of the product
family management and evolution at the feature level, inde-
pendently from the heterogeneity of the family, while each
dimension may have its own separate mechanism for coping
with this issue (e.g. product data management, ...).

Modelling concepts from our approach are based on pre-
vious work, mainly in product configuration [Soininen et al.,
1998]. The four worlds from Heiskala et al. [2005] can also
be compared with the modelling views of our framework: the
needs world concerns the customer’s needs (in an abstract
way), and is thus close to our feature views, which describes
the abstract features that the customer may require; the service
solution world denotes the set of elements used to establish
the service’s specifications, as the structure views; the process
world describes how the service will be delivered, or realised,
as in our realisation views. Note that there is nothing in our
conceptual approach that is similar to the object-of-services
world from [Heiskala et al., 2005], which specifies the service
recipients or the environment relevant to those recipient. From
a modelling point of view, all these worlds are based on the
same metamodel, using different types and attributes, as well
as taxonomy and partonomy structures, as in our approach.
However, dependencies between types of different worlds are
simply modelled using classical constraints, while we use im-
plementation and mapping constraints. Also, our framework
is centered on the configured product, and thus the services de-
scribed in the services dimension are seen from the configured
product’s point of view, while the external environment is not
considered. Another type of view may thus be necessary in our
framework to define externally controlled elements (such as,
in the running example, access to company specific services
or credentials, data transfer from an old device, etc.).

Feature modelling approaches such as cardinality-based
models [Czarnecki et al., 2005a] also have similarities to our
feature views, although the richness of constraints and the
partonomy/taxonomy structures used in our models is some-
what more complex than with the classic feature-oriented re-
lations. Multi-view models in feature modelling have also
been studied. Czarnecki et al. [2006] sketches a model where
different levels of customisation are modelled (including fea-
ture and design view). Reiser and Weber [2006] and work
from Zaid et al. [2010] propose feature models with different
perspectives, although they are all centered on software vari-
ability and feature modelling techniques only, and the lack of
specialisation hierarchy may make the task of implementing
the unification with different structured views difficult.

Kumbang [Asikainen et al., 2007] is the closest to our work
on the software variability side, including their type-instance
approach. We consider our work to be an extension of Kum-
bang, as we use implementation constraints to unify structure
views from the different dimensions (including manufactured
products and services), as well as we model realisation data.
Thus the main contribution of our work is to provide concep-
tual and practical mechanisms to bring the different dimen-
sions together and unify them under feature models.
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9 Conclusion
In this paper, we present an approach to help with the issue
of modelling a product family consisting of different design
disciplines (or dimensions). The presented framework has
been motivated by a four research questions and illustrated by
several scenarios.

Our framework is based on modelling views and synthesizes
the concepts from different approaches from product config-
uration, software variability and service configuration, and
unify them around feature views using implementation mech-
anisms. We also describe a feature view hierarchy and refine-
ment mechanisms to cope with the evolution and adaptation of
the product family, which remains an important issue [Krebs,
2008].

The approach has been motivated by the use case of a mo-
bile devices product family, and has been implemented in a
language prototype as a proof of concept. However, we have
yet to perform an in-depth case study with industrial data in
order to test the feasibility of implementing a real-life product
family with our framework, as well as completing the formal-
ism and tool support for the language, which is planned as
future work.
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Abstract
Reconfiguration is an important activity for compa-
nies selling configurable products or services which
have a long life time. However, identification of
a set of required changes in a legacy configura-
tion is a hard problem, since even small changes
in the requirements might imply significant modi-
fications. In this paper we show a solution based
on answer set programming, which is a logic-based
knowledge representation formalism well suited for
a compact description of (re)configuration prob-
lems. Its applicability is demonstrated on simple
abstractions of several real-world scenarios. The
evaluation of our solution on a set of benchmark in-
stances derived from commercial (re)configuration
problems shows practical applicability.

1 Introduction
Reconfiguration is an important task in the after-sale life-
cycle of configurable products and services, because require-
ments for these products and services are changing in parallel
with the customers’ business [6; 2]. In order to keep a product
or a service up-to-date a re-engineering organization has to
decide which modifications should be introduced to an exist-
ing configuration such that the new requirements are satisfied
but change costs are minimized.

Following the knowledge based configuration approach,
we formulate reconfiguration problem instances as exten-
sions of declaratively defined configuration problem in-
stances where configurations are represented by facts and re-
quirements are expressed by logical descriptions. These re-
quirements may be partitioned into customer requirements
and system specific configuration requirements. A configu-
ration is simply defined as a subset of a logical model of the
requirements. Informally, a reconfiguration problem instance
is generated by an adaption of the requirements resulting in
a new set of requirements and therefore a new instance of
a configuration problem is formulated. Subsequently, given
legacy configurations have to be adapted to configurations for
the new requirements. In our approach, the knowledge base

∗This work has been developed within the scope of the project
RECONCILE (reconciling legacy instances with changed ontolo-
gies) and was funded by FFG FIT-IT (grant number 825071).

comprises two parts, the description of the new configura-
tion problem instance and transformation knowledge regard-
ing reuse and deletion of parts of a legacy configuration. The
first part is a usual instance of a configuration problem where
all valid configurations are specified by the set of adapted re-
quirements. The second part describes a mapping from the
pieces of the legacy configuration to the ontology of the new
configuration problem instance. Technically speaking this is
a mapping from facts describing the legacy configuration to
facts in the ontology of the new configuration problem in-
stance. For generating a reconfiguration the problem solver
has to decide which parts of the legacy configuration are ei-
ther reused or deleted and which new parts have to be created.

We introduce general definitions for (re)configuration
problems employing Herbrand-models of logical descrip-
tions. Based on these definitions it is simple to see that config-
uration and reconfiguration problems fall into the same com-
plexity classes. Because of the remarkable advances of an-
swer set programming (ASP) [8; 5] we base our implemen-
tation on this reasoning framework. ASP was first applied to
configuration problems by [9]. In particular, we provide mod-
eling patterns for configuration and reconfiguration which al-
low the generation of optimized reconfigurations exploiting
standard ASP solvers. Finally, our evaluation shows that the
proposed method solves reconfiguration problem instances
which are practically interesting for industrial applications.

In Section 2 we present an introductory example of a
configuration problem and some reconfiguration scenarios.
Then, configuration problems are defined in Section 3. In
Section 4 a review of the basic concepts of ASP is given fol-
lowed by an exemplification of modeling in Section 5. Sec-
tion 6 provides the definition of reconfiguration problems.
Subsequently, modeling patters and an example of their appli-
cation are provided in Section 7. Finally, we show the results
of an evaluation in Section 8 and conclude in Section 9.

2 Example
Let us exemplify different configuration and reconfiguration
scenarios on a problem which is a simple abstraction of sev-
eral configuration problems occurring in practice, i.e. entities
may be contained in other entities but some restrictions must
be fulfilled. We employ the ontology comprising the concepts
person, thing, cabinet, and room where persons are related to
things, things are related to cabinets, cabinets are related to
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Figure 1: Solution of the sample house configuration prob-
lem. The house configuration includes rooms 15 and 16, two
cabinets 9 and 10, and six things numbered from 3 to 8

rooms, and rooms are related to persons. These relations are
modeled either by roles, associations, or predicate symbols
depending on the modeling language (e.g. description logic,
UML, or predicate logic).

As input to the configuration problem an ownership rela-
tion between persons and things is provided. We call this
input a customer requirement since it reflects the individual
needs of a customer using a configuration system whereas
configuration requirements specify the properties of the sys-
tem to be configured. Each person can own any number of
things but each thing belongs to only one person. The prob-
lem is to place these things into cabinets and the cabinets into
rooms of a house such that the following configuration re-
quirements are fulfilled:
• each thing must be stored in a cabinet;
• a cabinet can contain at most 5 things;
• every cabinet must be placed in a room;
• a room can contain at most 4 cabinets;
• a person can own any number of rooms;
• each room belongs to a person;
• and a room may only contain cabinets storing things of

the owner of the room.
In order to keep the example simple we only consider con-
figuration of one house and represent all individuals using
unique integer identifiers.

Informally, a configuration is every instantiation of the re-
lations which satisfies all requirements.

Let a sample house problem instance include two persons
such that the first person owns five things numbered 3 to 7
and the second person owns one thing 8. A solution for this
house configuration problem instance is shown in Figure 1.

Reconfiguration is necessary, whenever the customer re-
quirements or configuration requirements are changed. For
instance, it becomes necessary to differentiate between long
and short things with the following new requirements:
• a cabinet is either small or high;
• a long thing can only be put into a high cabinet;
• a small cabinet occupies 1 and a high cabinet 2 of 4 slots

available in a room;
• all legacy cabinets are small.

The customer requirements, in this case, define for each thing
if it is long or short. For instance, the customer provides infor-
mation that the things 3 and 8 are long; all others are short.

Figure 2: Reconfiguration initial state

Figure 3: Reconfiguration solution 1

Moreover, the first person gets an additional long thing 21.
The changes to the legacy configuration are summarized in
Figure 2 showing an inconsistent configuration, where thing
21 is not placed in any of the cabinets, and cabinets 9 and 10
are too small for things 3 and 8.

To obtain a solution which is shown in Figure 3 the recon-
figuration process changes the size of cabinets 9 and 10 to
high and puts the new thing 21 into cabinet 9. A new small
cabinet 22 is created for thing 7.

In our reconfiguration process every modification to the ex-
isting configuration, i.e. reusing/deleting/creating individuals
and their relations, is associated with some cost. Therefore
the reconfiguration problem is to find a consistent configu-
ration by removing the inconsistencies and minimizing the
costs involved. Different solutions will be found depending
on the given modification costs. If, for example, the costs for
adding a new high cabinet are less than the cost for changing
an existing small cabinet into a high cabinet, then the previ-
ous solution should be rejected as its costs are too high. One
of the solutions with less reconfiguration costs (see Figure 4)
includes two new cabinets 22 and 23, because this is cheaper
than converting the existing small cabinets into high cabinets.
Also it contains the empty cabinet 10 because it’s cheaper to
keep the cabinet than to delete it. Note, this behavior can be
controlled by the domain specific costs.

Figure 4: Reconfiguration solution 2
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3 Configuration problems
We employ a definition of configuration problems based on
logical descriptions [9; 3]. The basic idea is that every finite
Herbrand-model contains the description of exactly one con-
figuration.

The description of a configuration is defined by relations
expressed by a set of predicates PS. This set of predicates
is called the solution schema. For our example the solu-
tion schema consists of the four unary predicates �������,
�	
�����, ����	��� and 
����� representing the individu-
als and the four binary predicates, namely �	
������������,
�	
�����
�����, 
���������	��� and ����	����������

representing the relations. An instantiation of this solution
schema corresponds to a configuration. A fragment of this
instantiation is presented below.
��	
������� ��������� 
�������� ����	�����
����	�������������� �	
����������������

���������	�������� �	
�����
��������������

Note, this description of a configuration generalizes the
component/port models or variable/value based descriptions
of a configuration.

We assume that every predicate symbol is unique in a logi-
cal theory and has a unique arity. The set of Herbrand-models
is specified by a set of logical sentences REQ, which usually
comprises the individual customer requirements and the con-
figuration requirements. Configuration requirements reflect
the set of all allowed configurations for an artifact, whereas
customer requirements may comprise facts and logical sen-
tences specifying the individual needs of customers. The
same configuration requirements are a basis for different sets
of customer requirements. E.g. the component library of a
technical system is stable for some time.
Definition 1 (Instances of configuration problems) A con-
figuration problem instance 〈REQ,PS〉 is defined by a set
of logical sentences REQ representing requirements and PS

a set of predicate symbols representing the solution schema.
For optimization purposes an objective function f(S) �→ N

maps any set of atoms S to positive integers where S contains
only atoms whose predicate symbols are in PS.

Let HM(L) denote the set of Herbrand-models of a set of
logical sentences L for a given semantics.
Definition 2 (Configuration) S is a configuration for a con-
figuration problem instance CPI = 〈REQ,PS〉 iff there is a
Herbrand-model M ∈ HM(REQ) and S is the set of all
the elements of M whose predicate symbols are in PS and S
is finite, i.e. S = {p(t)|p ∈ PS and p(t) ∈ M)}. By p(t)
we denote a ground instance of p with a term vector t.
S is an optimal configuration for CPI iff S is a configu-

ration for CPI and there is no configuration S′ of CPI s.t.
f(S′) < f(S).
Definition 3 (Configuration problems) Let the instances of
configuration problems be defined by 〈REQ,PS〉 and objec-
tive functions f(·).
Decision problem: Given a set of atoms S. Decide if S is a
configuration for a configuration problem instance.
Generation (optimization) problem: Generate a set of atoms
S s.t. S is a configuration (an optimal configuration) for a
configuration problem instance.

The set of Herbrand-models depends on the semantics of
the employed logic. In this paper, we apply answer set
programming and a stable model semantics for knowledge
representation and reasoning because this approach allows a
concise and modular specification, assures decidability, and
avoids the inclusion of unjustified atoms (e.g. unjustified
components) in configurations [9].

4 Overview on answer set programming
ASP is based on a decidable fragment of first-order logic en-
hanced with default negation and aggregation. We give a brief
summary of the employed ASP variant and language con-
structs as needed. A detailed discussion of ASP can be found
in [5; 4].

We start our introduction with rules without variables and
introduce logical variables afterwards. A rule has the struc-
ture C0 ← C1, . . . , Cn. Elements C1, . . . , Cn on the right-
hand-side (the body of a rule) are either literals or weight con-
straints. A literal is either an atom or a default negated atom.
Default negation is expressed by not. C0 (head of the rule) is
either an atom or a weight constraint. We do not consider de-
fault negation on the left-hand-side and in weight constraints.
If all Ci are literals then such a rule is called a normal rule.

To be able to express the requirements of our example
domain we introduce a simplified version of weight con-
straints and their special case – cardinality constraints [9;
8; 4]. Weight constraints are of the form l ≤ {a1 =
w1, . . . , an = wm} ≤ u where ai are atoms, wj are integers
representing weights of corresponding atoms and l, u are inte-
gers specifying lower and upper bounds. Given a set of atoms
M representing a Herbrand-interpretation, the interpretation
of a weight constraints evaluates to true iff the sum of weights
of literals a1, . . . , an which are contained in M is between l
and u. E.g. 0 ≤ {a = 1, b = 2} ≤ 2 is satisfied by ∅, {a} or
{b} but not by {a, b}. Missing lower or upper bounds express
the fact that there are no limits. Cardinality constraints are of
the form l ≤ {a1, . . . , an} ≤ u where each weight is consid-
ered to be equal 1. As usually (negated) atoms in the body of
the rule are true if they are (not) in M.

The semantics of a set of rules is defined by a stable model
semantics. We give a brief informal description of this seman-
tics for the restricted version employed in this paper and refer
the reader to [8] for an in-depth exposition. A set of ground
atoms M is a stable model for a set of rules RU iff two prop-
erties are fullfiled: (1) M satisfies all rules in RU and (2)
every atom in M is justified by a reduced rule set RUM. A
rule is satisfied by a set of ground atoms M iff M satisfies
C0 or there exists a literal C1, . . . , Cn which is not satisfied
by M. An empty body of a rule is always satisfied. A rule
with empty head is satisfied iff one literal in the body is not
satisfied. The precise semantics of justification is expressed
by a reduction of the rule set RU. Given RU and depend-
ing on the set of atoms M, the reduct RUM is generated as
follows. In our simplified version, default negated atoms are
replaced in the rules RU according to their truth value w.r.t.
M, i.e. not a is true iff a /∈ M. Rules in RU are deleted if
the head does not include an atom of M or some of the upper
bounds are violated. Note, weight constraints in the head of a
rule may comprise several atoms. Roughly speaking an atom
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in M is justified iff it is contained in the head of a rule and all
atoms and weight constraints of this rule are justified. True
is always and false is never justified. A weight/cardinality
constraint in the body of a rule is justified if enough atoms
contained in the weight/cardinality constraint are justified s.t.
the lower bound is met. Facts are rules with true as body. Jus-
tifications must be acyclic. For instance, 0 ≤ {a, b} ≤ 1 ← c
is satisfied by {a} but {a} is not justified. However, if we add
the fact c to the knowledge base, {c}, {c, a}, and {c, b} are
stable models.

In order to allow logical variables and functional symbols
but to guarantee decidability the set of allowed rules is re-
stricted. Potassco [4] requires level-restricted programs. The
basic idea is that for each variable V in a rule there is an
unnegated atom a in the body s.t. the potentially derivable
ground instances of a are limited. If such an atom is avail-
able the ground terms to which V needs to be instantiated are
known a-priori. I.e. every variable in a rule must be bound
to a finite set of ground terms via a predicate that is not sub-
ject to a positive recursion (recursion over unnegated atoms)
through that rule.

For a succinct specification of facts in our example we
use so-called intervals, e.g. person(1..2). corresponds to the
facts person(1). person(2). To exemplify the application of
cardinality constrains, let an ASP program contain the facts:

thing(3..4). cabinetDomain(9..10).

In order to formulate weight constraints concisely, so
called conditional literals are supported. The basic idea is
that conditional literals serve as a generator for producing a
set of atoms. The constraint

1{cabinetTOthing(X, Y): cabinetDomain(X)}1
← thing(Y).

where cabinetTOthing(X, Y) : cabinetDomain(X) is a
conditional literal, which is expanded to

1{cabinetTOthing(9, 3), cabinetTOthing(10, 3)}1
← thing(3).

1{cabinetTOthing(9, 4), cabinetTOthing(10, 4)}1
← thing(4).

expressing that things 3 and 4 must be connected to exactly
one of the cabinets 9 and 10. Conditional literals can be used
in weight constraints in place of atoms, where the conditional
part (e.g. cabinetDomain(X)) is a (conjunction of) domain
predicate(s) preceded by the main part. As usual, strings
starting with upper case letters are logical variables. The in-
stantiation of domain predicates is defined by non-recursive
normal rules and ground facts. For instantiating conditional
literals we have to distinguish between local and global vari-
ables. A variable is local iff it appears only in a conditional
literal, e.g. X is local in our example. All other variables are
global, e.g. Y . During grounding of the rules, global variables
are instantiated first. Then the main part of the conditional
literal is expanded for the instantiations of the local variables
where the conditional part is fulfilled.

Note, in Potassco [4] weight constraints are declared by
square brackets l ≤ [L1 = w1, . . . , Ln = wn] ≤ u, where Li is

a literal and wi is a numerical value representing its weight.
Literals Li could be equal. Curly brackets are employed to
define cardinality constraints where duplicated literals are re-
moved.

Answer set programming solvers like [8; 5; 4] of-
fer optimization services. In particular, the statement
#minimize[L1 = w1@p1, . . . , Ln = wn@pn]. allows mini-
mization. The minimization statement is similar to the
weight constraints with a possibility to assign a priority level
pi to each weighted literal. Instead of #minimize also
#maximize could be used. An answer set is optimal iff the
sum of the weights of literals which are satisfied in this an-
swer set is minimal (maximal) among all answer sets of a
given program. Optimization is performed in the order of pri-
orities starting from the highest priority value.

5 Defining configuration problem instances
In [9] various modeling patterns based on weight constraints
were introduced. A fixed set of ground facts define the indi-
viduals which are employed for a configuration. This fixed
set of ground facts in conjunction with the level-restriction
place an upper bound on the size of the number of grounded
rules and therefore decidability is guaranteed. At the current
state of research such an upper bound on the number of in-
dividuals is necessary for many applications. In particular, it
is well known from database theory that so called tuple gen-
erating dependencies lead to undecidability even under rather
strict syntactical restrictions [1]. A tuple generating depen-
dency is ∀X∀Y φ(X,Y ) → ∃Zψ(X,Z) where φ(X,Y ) and
ψ(X,Z) are conjunctions of atoms and X,Y , and Z are rep-
resenting vectors of logical variables. Unfortunately, such
rules may occur in configuration problem instances. E.g. if a
condition holds, a specific individual of some type must exist
and this individual must be connected to some other individ-
uals.

However, in many cases it is undesirable to consider only
a fixed number of individuals employed in a configuration.
Guessing the right number is for configuration generation
problems or optimization problems quite hard and often im-
possible. Therefore we apply the following modeling pattern.

Let pLower and pUpper represent the upper and lower
number of individuals of type p. Such a type is called
bounded. We require each individual of a configuration, rep-
resented by its unique identifier, to be a member of exactly
one bounded type. To each bounded type a domain pDomain
is associated, representing the set of possible individuals of
the bounded type. We employ numbers as identifiers, start-
ing from some offset. For every bounded type p we add the
following axioms:

pDomain(pOffset+ 1 .. pOffset+ pUpper).

pLower{p(X) : pDomain(X)}pUpper.
p(X) ← pDomain(X), pDomain(Y), p(Y), X < Y.

The first rule instantiates the maximal required number of
unique individuals of p in pDomain. The second rule makes
sure that at least pLower, but at most pUpper individuals of
p are asserted. The third rule breaks the symmetry of asser-
tions. By these rules the required number of p individuals
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are asserted, in order to find a configuration within the given
upper and lower bounds.

For some bounded types, e.g. �������� and 	
����� the
bounds pLower and pUpper coincide because the exact num-
ber of individuals employed in any configuration is known. In
this case the fixed set of p facts can be asserted without using
the rules presented above.

In our example the customer provides a number of require-
ments for a configuration that include definitions of person
and thing individuals as well as their relations.
������������ 	
���������
��������	
�������� ��������	
��������
��������	
�������� ��������	
��������
��������	
�������� ��������	
��������

For the bounded type cabinet we add the following rules. The
upper and lower numbers of cabinets are computed based on
the number of things and persons. The rules for rooms are
defined accordingly.
������	�������������
� ������	!�"������	������!�#��
������	!� "$ ������	������!�� ������	������%��

������	%�� !&%�

Cardinality restrictions given in Section 2 are encoded
with cardinality constraints, where one direction of an as-
sociation is encoded as a generation rule (see Section 4)
and the other direction as a constraint. Such encoding cor-
responds to Guess/Check/Optimize pattern [5]. Note, the
cardinality constraints just as the weight constraints require
that logical variables appear in domain predicates. There-
fore, we have to use pDomain predicates rather than p predi-
cates, e.g. cabinetDomain(X) instead of cabinet(X). How-
ever, individuals employed in relations must also be con-
tained in the corresponding types (see the last four rules of
the next sequence of rules). By these rules we avoid situa-
tions where an individual is used in a relation but not included
in the bounded type. In our example, if the program asserts
������	��	
�������� then ������	��� is also asserted.

� ������	��	
���!�%�"������	������!�#� "$ 	
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The next rules describe the fact that a room may contain
things of its owner only.
������������'�(� "$ ��������	
���'�!��

������	��	
���)�!�� ������������	(�)��
"$ ������������'��(�� ������������'��(�� '�*+'��

In addition, optimization can be applied to generate opti-
mal configurations which minimize the overall configuration
costs depending on the objective function. We model the ob-
jective function by assigning to each atom in S some costs.
This can be achieved with the following modeling pattern.
By the atom cost(create(a, w)), where a is an element of S
and w is an integer, the costs of creating an element a in a con-
figuration are defined. We employ the conjunction of atoms

α(X, Y, W) to allow case specific determination of costs. For
each p ∈ PS include axioms of the following form in REQ:

cost(create(p(X)), W) ← p(X), α(X, Y, W).

such that for each atom p(t) in S the answer set contains an
atom cost(create(p(t), w)) where w is an integer. E.g.:
����)��	��� ������������)��	���
���	����	�����!���,� "$ ����!�� ����)��	,��
���	����	�������������!�%��� ,� "$

������������!�%�� ������������)��	,��

All other creation costs are expressed in the same way. We
minimize the sum of all costs by means of the following op-
timization statement:
-������.�/���	!�,�+,0�1�

For the given example the solver finds the optimal configu-
ration including two cabinets and two rooms with the overall
cost 40 (depicted in Figure 1).
 ������	�2�� ������	��� �������� �������� ����
������������	������ ������������	����2��
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6 Reconfiguration problems
We view reconfiguration as a new configuration-generation
problem where parts of a legacy configuration are possibly
reused. The conditions under which some parts of the legacy
configuration can be reused and what the consequences of a
reuse are, is expressed by a set of logical sentences T which
relate the legacy configuration S and the new configuration
problem instance 〈REQR,PR〉.
Definition 4 (Instances of reconfiguration problems) A
reconfiguration problem instance 〈〈REQR,PR〉,S,T〉 is
defined by: 〈REQR,PR〉 an instance of a configuration
problem, S a legacy configuration and T a set of logical sen-
tences representing the transformation constraints regarding
the legacy configuration.

For optimization purposes an objective function
g(S,R) �→ N maps legacy configurations S and con-
figurations R of 〈REQR,PR〉 to positive integers.

Note, the two-placed objective function expresses the fact
that the costs of an reconfiguration depend not only on the
elements contained in a reconfiguration but also on the reuse
or deletion of elements of the legacy configuration.

In order to avoid name conflicts between the entities of
the legacy configuration S and instances of new configura-
tion problems 〈REQR,PR〉, we usually formulate PR and
REQR using constants not employed in S. In particular, we
use different name spaces for terms referencing individuals.
Together with the unique name assumption this implies that
individuals of the legacy configuration and new individuals
introduced by the reconfiguration problem are disjunct.

Reconfigurations are defined analog to configurations as a
finite subset of Herbrand-models.
Definition 5 (Reconfiguration) R is a reconfiguration for
a reconfiguration problem instance RCI = 〈〈REQR,PR〉,
S,T〉 iff there is a Herbrand-model M ∈ HM(REQR ∪
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S∪T) and R is the set of all the elements of M whose pred-
icate symbols are in PR and R is finite.

R is an optimal reconfiguration for RCI iff R is a recon-
figuration for RCI and there is no reconfiguration R′ of RCI
s.t. g(S,R′) < g(S,R).

Reconfiguration problems are formulated analog to config-
uration problems.

Definition 6 (Reconfiguration problems) The instances
of reconfiguration problems are defined by a tuple
〈〈REQR,PR〉, S,T〉 and objective functions g(·, ·).
Decision problem: Given a set of atoms R. Decide if R is a
reconfiguration for a reconfiguration problem instance.
Generation (optimization) problem: Generate a set of atoms
R s.t. R is a reconfiguration (an optimal reconfiguration) for
a reconfiguration problem instance.

Because we can reduce configuration problems to recon-
figuration problems and vice versa the following property fol-
lows trivially.

Property 1 Employing a logical representation language for
representing instances of configuration problems and recon-
figuration problems whose satisfiability problem is at least
NP-complete, generating a(n optimal) reconfiguration is as
hard as generating a(n optimal) configuration w.r.t. computa-
tional complexity.

7 Defining reconfiguration problem instances
In the following we show typical formalization patterns
and apply them to our example. The set of atoms
{legacyConfig(a)|a ∈ S} describes the atoms of the legacy
configuration S. Note, the definition of reconfiguration prob-
lems does not employ first-order logic constructs in order to
avoid unnecessary restrictions. However, to facilitate a con-
cise description of the problem we introduce the predicate
legacyConfig/1 to allow quantification over the elements
of the legacy configuration. Note, we could rewrite all shown
axioms to propositional logic.

For the transformation sentences T we employ the follow-
ing general patterns. For reusing parts of the legacy config-
uration the problem solver has to make the decision either
to reuse or to delete. This is expressed by reuse(a) and
delete(a) atoms where a is an element of S. For each atom
a in S either reuse(a) or delete(a) must hold. Based on
these atoms additional configuration constraints can be de-
fined which describe the proper reuse or deletion of a part
of the legacy configuration represented by atom a. In our
case, reusing an atom a of the legacy configuration implies
the assertion of this atom, whereas deletion requires that the
atom is not asserted. In addition, costs are associated to each
reuse(a) or delete(a) operation. This is expressed by the
atom cost(reuse(a), w) or cost(delete(a), w) where a is
an element of S and w is an integer specifying the correspond-
ing costs. Furthermore, we require that in each model which
contains reuse(a) or delete(a) also cost(reuse(a), w) or
cost(delete(a), w) is contained in order to have defined
reuse or deletion costs. The conjunctions β(X,Y ,W ) and
γ(X,Y ,W ) are employed to define case specific costs.

For each p ∈ PS include the following axioms in T:

1{reuse(p(X)), delete(p(X))}1 ← legacyConfig(p(X)).

p(X) ← reuse(p(X)).

← p(X), delete(p(X)).

cost(reuse(p(X)), W) ← reuse(p(X)), β(X, Y, W).

cost(delete(p(X)), W) ← delete(p(X)), γ(X, Y, W).

Analog to configuration problems, we require each individ-
ual contained in a reconfiguration to be a member of exactly
one bounded type. Consequently, individuals of the legacy
configuration have to be a member of the domain pDomain(X)
of a bounded type p of 〈REQR,PR〉, because these individ-
uals can be part of a reconfiguration through reuse. I.e. there
are rules of the form

pDomain(X) ← legacyConfig(q(. . . , X, . . .)).

where q is predicate symbol of the solution schema of the
legacy configuration.

As for configuration problems, the number of individuals
of a bounded type p is limited. For every bounded type p we
add the following axioms:

pLower{p(X) : pDomain(X)}pUpper.
However, the two other rules for bounded types are changed.
In particular, we have to adapt the symmetry breaking pat-
tern of configurations. The reason is that there are two differ-
ent types of individuals contained in pDomain, those which
are reused and those which are newly generated. Symme-
try breaking does not apply to the reused individuals because
they may be linked to other reused individuals. Therefore, ex-
changing these individuals potentially leads to different con-
figurations. However, the newly generated individuals are in-
terchangeable. We describe them by pDomainNew/1 for the
bounded type p. We use pNewOffset to generate new iden-
tifiers. I.e. the pattern is

pDomainNew(pNewOffset+ 1 .. pNewOffset+ pUpper).

pDomain(X) ← pDomainNew(X).

p(X) ← pDomainNew(X), pDomainNew(Y), p(Y), X < Y.

In our example, the reconfiguration problem consists of ad-
ditional customer and configuration requirements described
in Section 2. The solution schema for the reconfiguration
problem is an extension of the solution schema of the original
configuration problem by ���������	
��, �������������,
�
��	���	�� and �
��	
����� predicates. The additional
requirements of the customer are expressed by:
�
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The legacy configuration presented in Section 3 is encoded
using ��	��"#��$�	 predicate as described above.
��	��"#��$�	���������%��� ��	��"#��$�	����������&���
��	��"#��$�	��������� �
��	��&!����
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To implement the configuration requirements of the mod-
ified problem we add rules defining the subtypes of cabinets
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as well as that long things have to be stored in high cabinets.
Note, only some of the usual rules for expressing subtypes
are needed. Regarding subtypes of thing, no rules are needed
at all because for every ����� fact either a ��������� fact or
a ��������	� fact is contained in the customer requirements
and none of these predicates appear in the head of a rule.

��������������� ��������������
 �� ����������
������������� �� ������������� �������������������

Moreover, each high cabinet requires more space in a room.
Such a cabinet occupies two of the four available slots in a
room, whereas a small cabinet uses only one slot. Note, the
last constraint does not allow an answer set where the sum of
occupied slots in a room is 5 or more.
�������������
� �� ���������� ��������������
��������������� �� ���������� ��������������
	���������������� ����� �� 	������������ ����

����������������
�� ! "	������������������#����

������$�����#�%�&� 	�������

The domains of cabinets and rooms are extended with addi-
tional individuals that might be required in a new configura-
tion. The number of new elements in the cabinet and room
domains corresponds to the number of things in the modified
problem. The upper number '(''�	 of both cabinet and room
individuals is set to 7 because 7 things must be stored in the
house.
������$����)�*������+��
������$������� �� ������$����)�*����
������������������$��������,�
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The modeling of new rooms is done in the same way.
The transformation rules are implemented as described

above. E.g.

�	�./������������� 0�����������������
 ��
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However, the transformation rules for
����1���2���'�	/������, ����1���2������������

and ����1���2���'�	/������������#�� could be deleted
because facts about persons, things and their relations are
given as requirements. Deleting such an atom results in a
contradiction.

Given the reconfiguration program the solver identifies a
reconfiguration as well as a set of actions required to trans-
form the legacy configuration into a new one.

For generating optimal reconfigurations we formulate a
cost model. The minimization statement in the reconfigura-
tion problem is the same as in the configuration. In our recon-
figuration example the costs for creation of new high/small
cabinets and rooms cost(create(a), w) correspond to the
costs definition of the configuration problem. To obtain a
reconfiguration scenario with the minimal costs of required
actions we extend the costs rules described above with costs
for creation of new high/small cabinet and room individuals
as well as with costs for newly created relations. E.g.
��/���	�������������������3� �� ��������������

������������/��3�� ������$����)�*����

Rules for deducing the costs of reuse and deletion are for-
mulated as described above.

For our example let us assume that the customer sets all
deletion costs to 2, whereas reusing has no costs except for
cabinets, which could be altered to high in a reconfiguration.
The costs of this alteration is set to 3. Creation costs of new
high and small cabinets are set to 10 and 5 respectively. Fi-
nally, the costs of a new room is set to 5. Creation of relations
between individuals is for free. Given these costs assignments
the solver is able to find a set of optimal reconfigurations in-
cluding the one presented in Figure 3.

Modification of the costs results into different optimal re-
configurations. Let us assume the sales-department changes
both the costs of deletion of a cabinet and the costs of increas-
ing the height of a cabinet to 10, and decreases the creation
costs of new high and small cabinets to 2 and 1 respectively.
In this case the solutions returned by a solver will include the
one presented in Figure 4. Given their simplicity, the pre-
sented optimal solutions were found in milliseconds.

8 Evaluation
The evaluation of our approach was done on a set of test
cases derived from four reconfiguration scenarios encoun-
tered by us in practice. Each scenario can be represented
as an instance of the (re)configuration problem presented in
Section 2. In the empty reconfiguration scenario the legacy
configuration is empty and the customer requirements contain
sets of things and persons owning 5 things each. Every thing
is labeled as short. The reconfiguration process should create
missing cabinets, rooms as well as all required relations.

The customer requirements of the long scenario specify
that each given person owns 15 things. The legacy config-
uration contains a set of relations that indicate placement of
these things into cabinets, s.t. all things of one person are
stored in three cabinets that are placed in one room. The cus-
tomer also requires 5 things of each person to be labeled as
long whereas the remaining 10 as short. The goal of the re-
configuration is to find a valid rearrangement of long things
to reused or newly created high cabinets.

The next new room scenario models a situation when new
rooms have to be created and some of the cabinets reallocated.
In this scenario each person owns 12 things. These things
are stored in 3 cabinets placed in one room as indicated by
the legacy configuration. In the reconfiguration problem the
customer requirements declare 6 of the 12 things as long.

The last scenario, swap, describes a situation when the cus-
tomer requirements include only one person, who owns 35
things. In the legacy configuration the things are placed in 3
cabinets in the first room and in 4 cabinets in the second room.
Moreover, one of the things in the second room is labeled as
high in the customer requirements. Given the costs schema
presented above, the solution corresponds to a rearrangement
of the cabinets in the rooms such that a high cabinet can be
placed in one of these rooms. All these scenarios can be eas-
ily scaled by increasing the number of things. The number
of persons in the empty, long and new room scenarios can
always be computed given the number of things.

Experiments were performed using Potassco 3.0.3 on
Core2 Duo 3Ghz with 4Gb RAM. In our experiments we con-
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Figure 5: Evaluation results

sidered only creation costs for newly generated cabinets and
rooms because these are the dominant costs for our applica-
tion domain. The performance of the reconfiguration process
is presented in Figure 5. Potassco was able to find optimal so-
lutions within 600 seconds for all instances of the new room
and swap scenarios. Optimal solutions were also found for
small and mid-size instances of the empty scenario. For all
other instances at least one suboptimal solution was found.
The long scenario included the hardest problems. The solver
did not find any solutions for one of them in 600 seconds.
This was the only unsolved problem instance in the whole
experiment. Because the solved instances are comparable to
real world applications based on our experiences, we consider
the proposed reconfiguration method as feasible for a practi-
cally interesting set of reconfiguration problem instances.

9 Conclusions and related work
The existing approaches for reconfiguration can be sepa-
rated into revision-based [7; 10] and model-based [11]. The
revision-based approaches employ a knowledge base describ-
ing “fixes”, i.e. reconfiguration operations and configuration
invariants [7]. A solution requires that there is a sequence
of operations which transform the legacy configuration into
a new configuration. The approach of [11] views reconfig-
uration as a consistency-maintenance (diagnosis) problem,
where a solution corresponds to a consistent set of assump-
tions s.t. requirements are implied. Similarly, our approach
can be seen as searching for a consistent (optimal) set of as-
sumptions regarding reuse or deletion of parts of the legacy
configuration and creation of new parts. This search is pro-
vided by the ASP reasoning system, implementing a correct
and complete problem solving method. No additional diag-
nosis component is required. Regarding the revision-based
approach, our domains do not need the computation of se-
quences of operations, because if a reconfiguration is found,
a sequence of real-world change operations can be easily de-
rived. Thus, we can avoid the additional combinatorial explo-
sion introduced by permutations of change operations. How-
ever, we can view our approach as a form of the revision-
based method assuming that all change operations are exe-
cuted simultaneously. The effects of these operations and the
combination of allowed operations are described by the trans-

formation knowledge. Thus we can model complex “fix” op-
erations which involve the reuse of several parts of the legacy
configuration and which have multiple effects such as creat-
ing new parts or deleting existing ones.

To sum up, we have developed a method which allows the
modeling of reconfiguration problems based on legacy con-
figurations, transformation knowledge, and a new configura-
tion problem instance. We showed various modeling patterns
and implemented the approach based on ASP. Evaluation re-
sults show the feasibility for practical applications.
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Abstract

Models of configurable products can have hundreds
of variables and thousands of configuration con-
straints. A product engineer usually has a limited
responsibility area, and thus is interested in only
a small subset of the variables that are relevant to
the responsibility area. It is important for the en-
gineer to have an overview of possible products
with respect to the responsibility area, with all ir-
relevant information omitted. Configurations with
some variables omitted we will call partial config-
urations, and we will call a partial configuration
valid if it can be extended to a complete configura-
tion satisfying all configuration constraints. In this
paper we consider exact ways to compute valid par-
tial configurations: we present two new algorithms
based on Boolean satisfiability solvers, as well as
ways to use knowledge compilation methods (Bi-
nary Decision Diagrams and Decomposable Nega-
tion Normal Form) to compute valid partial config-
urations. We also show that the proposed methods
are feasible on configuration data from two auto-
motive companies.

1 Introduction
Within the automotive industry it is common to have a few
general platforms where each platform are highly config-
urable to adapt to the needs on different markets but also to
satisfy the needs of individual customers. Having highly con-
figurable products put high demands on the engineering sys-
tems to support the engineers during the development of the
platforms. While having a configurable product or platform it
is inevitable to also have constraints that specify what can be
allowed together and what is not allowed together. These con-
straints can, in many situations, be defined as a set of Boolean
formulas defined over finite domain variables.

Development of complex products—like in the automo-
tive industry—is done in large teams, where each engineer
is working with only a limited part of the product. For the
individual engineer only a small subset of the variables from
those that describe the full product, are of immediate inter-
est. However, an important problem for the engineer is to

know which combinations of variable assignments for a sub-
set of the variables might result in a product that satisfies all
constraints, that is to know valid partial configurations. This
is important because it helps the engineer to develop solu-
tions only for those combinations that can actually be built
and sold. Overestimation of these solutions will lead to engi-
neer doing unnecessary designs. Underestimation can lead to
costly delays if an overlooked configuration is requested by a
customer afterwards.

Computing the exact set of valid partial configurations is
generally hard. Simply taking configurations of the complete
products and projecting them on relevant variables is not fea-
sible, as practical problems can have 10120 and more build-
able complete products.

One of the ways to get exact set of valid partial configura-
tions is to existentially quantify all irrelevant variables from
the formula that represents the conjunction of all configura-
tion constraints, for example using resolution inference rule
[Robinson, 1965; Davis and Putnam, 1960], and then use a
standard algorithm to enumerate all (complete) assignments
of the new simplified formula. A simple enumeration of com-
plete assignments searches for a satisfying assignment, adds it
to the result, and also adds it to the current set of constraints as
a blocking constraint, forbidding future search from returning
it again. The disadvantage of this approach is that the formula
size can grow significantly after quantification. In this paper
we present a modification of this enumeration algorithm that
does not require existential quantification of variables to enu-
merate partial configurations (Section 4.1). Similar algorithm
can be found in [Gebser et al., 2009].

The problem of partial configurations can also be tackled
by the widely used interactive configurators. In an interac-
tive configurator a user selects values for variables one by
one. The configurator should guide the user so that at any
point there exist at least one way to complete the configura-
tion without changing any of the earlier decisions, in this case
a configurator is backtrack-free. Configurator should also be
complete meaning that if a configuration is allowed accord-
ing to the constraints, configurator should allow it. Having
such complete and backtrack-free configurator, it is possible
to automatically check all (partial) assignments of values to
the relevant variables, and the configurator will show which
of them are valid. If a configurator is not backtrack-free, it
can overestimate allowed partial configurations. If it is not
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complete, it will underestimate them.
Previous work on methods for building interactive con-

figurators started as extensions of Constraint Satisfaction
Problem (CSP) with conditional and dynamic formulations
[Dechter and Dechter, 1988; Mittal and Falkenhainer, 1990;
Soininen and Gelle, 1999; Sabin and Freuder, 1998; Gott-
lob et al., 2007]. However, supported implementations of
these algorithms are not readily available. Binary Decision
Diagrams (BDDs) [Bryant, 1986] is a knowledge compi-
lation method [Darwiche and Marquis, 2002] successfully
used for configuration [Hadzic et al., 2004], especially for
real-time interactive configuration. However, BDDs suffer
from memory explosion for many datasets of practical size.
Other knowledge compilation methods used for configuration
include automata representation [Amilhastre et al., 2002],
Tree-of-BDDs [Subbarayan, 2005], Joint Matched CSP [Sub-
barayan and Andersen, 2005], Decomposable Negation Nor-
mal Form (DNNF) [Darwiche and Marquis, 2002] (espe-
cially Deterministic DNNF for model counting [Kübler et
al., 2010]), as well as combinations of search and BDDs
[Norgaard et al., 2009]. Recently, Boolean Satisfiability
Solvers (SAT-solvers) emerged as an alternative to work with
configurations [Sinz et al., 2003; Küchlin and Sinz, 2000;
Sinz et al., 2006; Janota, 2008], including interactive con-
figurators [Janota, 2010].

In this paper we show how a SAT-solver can be used to enu-
merate partial configurations based on modification of stan-
dard enumeration algorithm, and based on checking every
partial assignment inspired by interactive configuration. We
also show how existing DNNF algorithms can be used to enu-
merate partial configurations. We show feasibility of a SAT-
solver based implementation on configuration data from two
automotive companies.

The paper is organized as following. Section 2 covers for-
mal preliminaries, Section 3 gives a motivating example, Sec-
tion 4 presents the algorithms. Section 5 provides experimen-
tal results and discussion, and Section 6 concludes the paper.

2 Preliminaries

The configuration problem is a triple P = 〈X,D,C〉,
where X = {x1, x2, . . . , xK} is a set of variables, D =
{D1, D2, . . . , DK} is a set of corresponding finite domains,
and C = {C1, C2, . . . , CJ} is a set of propositional formulas
over atomic propositions xk = v where v ∈ Dk, specifying
conditions that the variable assignments have to satisfy.

A complete assignment to a configuration problem P is a
function A : X → D which is defined for all xk ∈ X . A
valid complete assignment (or solution) to P is a complete
assignment A for which each Cj is satisfied. A partial as-
signment to P is a partial function B : X → D defined for
variables xk ∈ Y ⊆ X . We will write vars(B) = Y ⊆ X
to denote the set of variables of B, or the scope of B. We
will call a partial assignment valid iff it can be extended to a
valid complete assignment. We will use P[B] to denote the
simplified problem obtained by setting the variables defined
in B.

3 Motivating example
Configuration problems describing complete products can
have thousands of variables and hundreds of thousands con-
straints. An engineer, or a group of engineers, is usually re-
sponsible only for a subset of the variables. It could be that it
is a requirement to design all possible solutions within the re-
sponsibility area, in case someone will order such a product.
In such a case it can be expensive to have overestimated set
of valid configurations, since engineers will spend time de-
signing forbidden ones. Underestimations are also bad, since
they lead to delays for designing a solution for ordered, but
missed configuration.

The problem can be illustrated by the following ex-
ample of a simple car configuration. Let X =
{body, engine, transmission} be the set of variables, and
D = {{mini, sedan, suv}, {gasoline, diesel, electric},
{manual, auto, evt}} be the set of corresponding domains.
Let the following be the set of constraints C:

• ¬((body = mini) ∧ (engine = gasoline))

• ¬((body = mini) ∧ (engine = diesel))

• ¬((body = sedan) ∧ (engine = electric))

• ¬((body = suv) ∧ (engine = gasoline))

• (engine = electric) → (transmission = evt)

• (transmission = evt) → (engine = electric)

Valid assignments of P = 〈X,D,C〉 can be presented, for
example, in a tabular form, as shown in Table 1. Each row
in the table corresponds to an assignment, and each column
corresponds to a variable. Each cell contains a value assigned
to the corresponding variable.

Let us suppose that there is a group of engineers that
are interested only in connection between body and trans-
mission, and they would like to disregard all information
about engine. So they define the limited scope to be S =
{body, transmission}. Valid partial assignments for S are
presented in Table 2.

One way to get the partial assignments is to enumerate all
complete assignments, project them onto the relevant vari-
ables (remove the irrelevant columns from the table), and re-
move duplicate partial assignments (rows). This approach is
infeasible in practice, as some industrial examples from au-
tomotive industry have 10120 allowed complete assignments.
However, scopes of interest for the engineers may have less

Table 1: Valid complete assignments

body engine transmission

mini electric evt
sedan gasoline manual
sedan gasoline automatic
sedan diesel manual
sedan diesel automatic
suv diesel manual
suv diesel automatic
suv electric evt
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Table 2: Valid partial assignments

body transmission

mini evt
sedan manual
sedan automatic
suv manual
suv automatic
suv evt

than a thousand valid partial assignments, which is com-
putable using methods presented below. Approximations of
this approach are found in practice, where instead of all valid
assignments, only the ones that correspond to the products
built during the last year (for example) are considered, which
gives an underestimation of the answer. Clearly, there is a
need for a better method.

4 Enumerating valid partial assignments
This sections presents two algorithms adopted to solve the
problem based on satisfiability solvers. By a satisfiability
solver we mean a tool that is able to answer whether an in-
stance of a configuration problem has at least one valid com-
plete assignment, and provides one if such exists. For exam-
ple, tools for solving Constraint Satisfaction Problems (CSP-
solvers) and Boolean Satisfiability Problems (SAT-solvers)
can be used for this purpose. This section also shows how
DNNF algorithms can be used to enumerate valid partial con-
figurations.

4.1 Searching for complete, then forbidding
partial

One way to enumerate all valid complete assignments is to
iteratively search for any valid complete assignment, and in
addition to adding it to the result, add a negation of it as a
blocking constraint to the existing set of constraints. This
algorithm can be modified to enumerate valid partial assign-
ments, as shown in Algorithm 1. When a solver returns the
first complete assignment, the assignment is projected onto
the relevant scope. This partial assignment is returned as the
first element of the result, and also added as a blocking con-
straint, ensuring that the solver will not return any (complete)
assignment that will contain the partial one. Then this process
is repeated.

The ability of the solver to incrementally add blocking con-
straints, while still keeping previously inferred information,
is very important for the good performance of this algorithm.
This is supported by, for example, Minisat-like solvers [Een
and Sörensson, 2004; Een and Sörensson, 2003].

4.2 Enumerating partial, then extending
In this approach it is necessary to enumerate all partial as-
signments, and try to extend each of them to a valid complete
assignment using a solver. Just checking a partial assignment
against each of the constraints in isolation is not enough, be-
cause there could be dependencies between variables that are
not visible within the local scope, but are only visible within

Algorithm 1 Search for complete, then forbid partial

input: problem P = 〈X,D,C〉, relevant variables S ⊆ X
C ′ ← C
P ′ ← P
result ← {}
while sat(P): /∗ ask solver ∗/

A ← assignment(P) /∗ assignment from solver ∗/
B ← A projected on S
result ← result ∪B
C ′ ← C ′ ∧ ¬(B as constraint)
P ′ ← 〈X,D,C ′)〉

return result

the complete scope. The solver can be used as following:
each partial assignment is added as an extra constraint to the
set of configuration constraints, and removed after the solver
has returned an answer. The key to the good performance in
this method is in the ability of the solver to cheaply add and
retract constraints consisting of atomic propositions; again,
Minisat-like solvers have this feature.

Algorithm 2 Enumerate partial, then extend

input: problem P = 〈X,D,C〉, relevant variables S ⊆ X
output: valid partial assignments
result ← {}
for B in allAssignments(S):

if sat( P[B] ):
result ← result ∪B

return result

An example illustrating this method is presented in Table 3.
The columns for body and transmission contain all possible
(not only valid) partial assignments for S. The table must be
extended with the columns for variables (X \ S), in this case
it is only one, engine. If there is at least one valid complete
assignment that contains the partial one for the row, the values
for all variables are written in the row. Otherwise, a “—”
indicates that there is no such valid complete assignment, and
the partial assignment is not valid.

Table 3: Illustration of Algorithm 2 (Enumerate partial, then
extend).

body transmission engine

mini manual —
mini autmatic —
mini evt electric
sedan manual gasoline
sedan automatic gasoline
sedan evt —
suv manual diesel
suv automatic diesel
suv evt electric
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An advantage of Algorithm 1 compared to Algorithm 2 is
that it builds upon heuristics of an underlying solver to skip
checking many of the non-allowed assignments. A disadvan-
tage is that to find the next partial assignment, it is necessary
to process a larger (increased by one) set of constraints; this
could be a problem when it is necessary to produce millions
of partial assignments. But when there is a small number of
valid partial assignments, or a user specifically asked for the
first hundred of assignments as a sample, and there are many
non-allowed configurations, Algorithm 1 can be beneficial.

4.3 Knowledge compilation: DNNF
Knowledge compilation is a family of approaches that ad-
dresses intractability of many Artificial Intelligence prob-
lems. A propositional model is compiled in an off-line phase
in order to support some queries in polytime [Darwiche and
Marquis, 2002]. Binary Decision Diagrams (BDDs) [Bryant,
1986] belong to this family and received substantial attention
as a tool for configuration problems [Hadzic et al., 2004].
Decomposable Negation Normal Form (DNNF) [Darwiche,
2001] is a data structure used in knowledge compilation for
which BDD is a special case. It is more succinct than BDDs
and its compilation time is often shorter than that of BDDs
[Subbarayan et al., 2007]. DNNF supports smaller number
of tractable operations than BDD, while still allowing poly-
time existential quantification (forgetting) and assignments
enumeration, which together allow polytime partial assign-
ments enumeration once DNNF is compiled.

Formally, a propositional formula a is in negation normal
form (NNF) if and only if a is either a positive or negative
atomic proposition (a literal); a conjunction ∧iai; or a dis-
junction ∨iai where each ai is in negation normal form. A
formula in NNF f is decomposable (DNNF) if and only if for
any conjunction a = a1∧ · · ·∧an no atomic propositions are
shared by any conjuncts in a: ATOMS(ai) ∩ ATOMS(aj) = ∅
for every i 
= j. A formula in NNF is smooth if for every
disjunction a = a1 ∨ · · · ∨ an, ATOMS(a) = ATOMS(ai) for
every i.

Existential quantification of variables from DNNF is pre-
sented in Algorithm 3 [Darwiche, 2001]. Every occurence
of irrelevant variable is replaced by true, and the formula is
simplified accordingly. This procedure preserves decompos-
ability, and its running time is linear in the DNNF size.

Algorithm 3 FORGET – existential quantification on DNNF

input: relevant variables S ⊆ X , DNNF f
output: DNNF with variables X \ S existentially quantified
if f is a Literal l:

if VAR(l) ∈ S:
return f

else
return true

else if f is a conjunction a1 ∧ · · · ∧ an:
return FORGET(a1) ∧ . . . ∧ FORGET(an)

else if f is a disjunction a1 ∨ · · · ∨ an:
return FORGET(a1) ∨ . . . ∨ FORGET(an)

Enumeration of assignments of DNNFs is shown in Algo-
rithm 4 [Darwiche, 2000], where each assignment is repre-
sented as a set of literals, and × is a Cartesian product on
them:

{N1, . . . , Nn}×{M1, . . . ,Mm} = {N1∪M1, . . . , Nn∪Mm}.
The complexity of enumerating the models of a smooth
DNNF f is O(mn2), where m is the size of f and n =
|MODELS(f)| [Darwiche, 1998].

Algorithm 4 MODELS – enumerating assignments of DNNF

input: smooth DNNF f
output: (complete) valid assignments of f , as sets of literals
if f is a Literal l:

return {{l}};
else if f is a conjunction a1 ∧ · · · ∧ an:

return MODELS(a1)× · · · × MODELS(an);
else if f is a disjunction a1 ∨ · · · ∨ an:

return MODELS(a1)∪ · · · ∪ MODELS(an).

The overall process of using DNNF is shown in Algo-
rithm 5. DNNF for the car example is shown on Figure 1a.
DNNF with variable engine forgotten is shown on Figure 1b,
and its valid partial assignments can be found in Table 2.

Algorithm 5 Knowledge compilation based approach

input: problem P = 〈X,D,C〉, relevant variables S ⊆ X
output: valid partial assignments
f1 ← COMPILE(P)
f2 ← FORGET(S, f1) /* see Algorithm 3 ∗ /
m ← MODELS(f2) /* see Algorithm 4 ∗ /
return m

Polynomial time guarantee for assignments enumeration
operation is an advantage of DNNF. However, the compi-
lation time of arbitrary constraints into DNNF is in general
exponential. When the data changes rarely, this time is amor-
tized among multiple queries, but when the data changes very
often, this off-line stage does not pays off.

DNNF have an important advantage: if it is smooth and
deterministic, it can be used to count the assignments [Dar-
wiche, 2000]. An NNF formula a is deterministic if for every
disjunction a = a1 ∨ · · · ∨ an, every pair of disjuncts in a
is logically inconsistent; that is, ai ∧ aj |= false for every
i 
= j. Unfortunately, operation FORGET does not preserve
determinism, and counting in such case will give overesti-
mated answer. However, even overestimated answer can be
useful in some cases. It is also possible to recompile the re-
sulting DNNF again into a deterministic one. Some practical
applications of counting for configuration using DNNF were
considered in [Kübler et al., 2010].

5 Experimental results
We analyzed the data from two automotive companies: three
datasets from the first company, and one dataset from the sec-
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(b) DNNF with variable engine existentially quantified.

Figure 1: DNNFs for the car example.

ond, denoted as A, B, C and D, respectively. Details about
datasets are presented in Table 4.

We implemented Algorithms 2 and 1 on top of Sat4j solver
[Le Berre and Parrain, 2010].

A knowledge compilation tool was developed based on
BDD package BuDDy [Lind-Nielsen, 2002]. The pre-
ordering algorithms from [Narodytska and Walsh, 2007] were
implemented for sorting variables and restrictions, using in-
flation parameter r = 1.5 in the clustering step. A simplified
version of the MCL clustering algorithm [van Dongen, 2000]
was used, skipping the truncation heuristics and the sparse
matrix multiplication tools. No post-ordering of the variables
was included. The tool was able to handle only the smallest
dataset.

Another attempt to use knowledge compilation involved
c2d compiler [Darwiche, 2004] that compiles propositional
formulas to deterministic DNNF. Algorithms 3 (FORGET) and
4 (MODELS) were implemented to work with the DNNF out-
put of c2d. Using another DNNF compiler sharpSAT [Muise
et al., 2010] resulted in segmentation faults on some of the
datasets, and its debugging is underway.

Sat4j and c2d require the input to be in Conjunctive Normal
Form (CNF), that is it have to be a conjunction of clauses, and
each clause is a disjunction of literals. Each literal is either
a positive or negative atomic proposition. Constraints were
converted to CNF using Tseitin encoding [Tseitin, 1968].

Two times were measured. The first time measured was
preprocessing or off-line time. This included, for example,
DNNF compilation, and initial constraint propagation. The
results are presented in Table 5. BDD-based implementation
was not able to complete the compilation process of larger
instances. c2d compiler ran out of 2 GB memory limit (it is
available only as a 32 bit application) compiling the largest
dataset A.

The second time measured was the on-line time, or the time
to actually compute the valid partial configurations for one
given scope, while utilizing results from the off-line phase.
The results are presented in Table 6. SAT-based solution is
very robust on the datasets, even without having theoretical
guarantees on running times. The BDD-based solution, when

Table 4: Problem properties.

A B C D

Variables 511 446 92 217
Domain size, average 6.3 2.4 6.1 3.3
Domain size, max 108 82 75 59
# of assignments 10150 1087 1055 1085

# of valid assignments 10124 1057 1049 1033

CNF clauses 65183 1121 341 9010
DNNF nodes n/a 5071 5009 528583

Partial scope, variables 6 17 3 8
# of valid partial assignments 200 13770 25 382

the BDD was successfully built, is the fastest. The reason
why DNNF-based method appears to be slow could be a non-
optimal implementation of Algorithms 3 and 4.

6 Conclusions
In this paper we looked at the problem of computing allowed
partial combinations, which is important for engineers work-
ing with product development. We presented several algo-
rithms, two of which are suitable for SAT-solvers, and one
that is based on DNNF. Our experiments showed that SAT-
based implementation can handle large datasets from automo-
tive industry quite efficiently. Preliminary experiments with
knowledge compilation tools showed that available DNNF
compilers cannot handle the largest dataset within the mem-
ory and time limits. However, DNNF-based method has

Table 5: Time for compilation/initial clause learning, sec-
onds.

A B C D

Sat4j, Alg 1 2 2 1 2
BuDDy timeout timeout 40 timeout
c2d out-of-mem 240 2 20
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Table 6: Time to compute valid partial assignments
(FORGET+MODELS), seconds.

A B C D

Sat4j, Alg 1 10 29 0.12 3
BuDDy n/a n/a 0.01 n/a
DNNF from c2d n/a 681∗ 0.15∗ 22∗
∗Based on own, unoptimized implementation.

the advantages of polynomial time guarantee on the on-line
phase, and the ability to count the assignments when DNNF
is determenistic.
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Abstract
In many configurator applications, the user is re-
quired to specify a multitude of configuration op-
tions interactively. One way of making the config-
uration process more convenient for the user is to
pre-fill the input or selection fields of the user inter-
face with appropriate defaults. Possible strategies
to determine default values for example include the
selection based on domain knowledge or the usage
of statistics.
In this paper we analyze whether or not the dy-
namic selection of defaults based on automatically
determined association rules can help to predict the
most probable next input value in an interactive
and incremental configuration process. We base
our analysis on the data obtained with a real-world
configurator application. The value of choosing de-
faults more intelligently is determined by measur-
ing the number of correctly predicted inputs in the
configuration process and by comparing this num-
ber to a default strategy based on simple value fre-
quencies.

1 Introduction
In many industrial sectors, the products on the market can be
customized to a customer’s individual needs in a variety of
ways. Accordingly, the interactive preference elicitation and
product configuration process can become time-consuming
and cumbersome, because the user of the configurator appli-
cation is often required to enter input or make selections for
several dozens of parameters.

Providing suitable default inputs or default selections for
the individual options represents one common way to make
the configuration process more convenient for the user. How
the system chooses the pre-set default value can be based on
different strategies. One simple strategy for input fields with
a predefined set of options could be simply selecting the first
value of the list. Alternatively, one could use the value that
was chosen most frequently in the past (also by other users).
In some systems – such as the ADVISOR SUITE sales ad-
visory framework [Felfernig et al., 2006] – the selection of
the default values is based on domain knowledge. Beside the

static definition of defaults, this framework also supports the
definition of rules that determine the proposed default value
for a field based on the inputs already made in the current
session.

Our own anecdotal experiences with using predefined de-
fault values provided by the domain expert in the domain of
interactive advisory systems however showed that such static
rules can have different limitations. First, domain experts of-
ten define what should be the default selection for an input
field merely based on gut feeling and intuition. Second, in
some domains, the most appropriate default value changes
over time, for example due to technological advances or a
changing marketing strategy. The rules determining the de-
faults in the configurator applications are however not always
updated accordingly.

In this work we propose to use association rules [Agrawal
and Srikant, 1994], which can be automatically learned from
past configuration sessions, to dynamically choose the most
appropriate default values. We evaluate the value of apply-
ing this self-adapting default selection strategy by counting
the number of correct and wrong predictions when replay-
ing past interactive configuration sessions and comparing our
strategy to a statistics-based baseline strategy. The analysis
of the approach is based on a real-world configuration data
base.

2 Mining input value patterns
Figure 1 shows a schematic but typical fragment of a user in-
terface for a configurator, in which the user of the system – in
our case a sales representative – incrementally enters the pref-
erences of the customer. In our real-world database from the
roofing industry, on average more than two dozens of such
parameters have to be entered during the configuration pro-
cess. The database comprises more than 9,000 past roofing
configurations.

The goal of our work is to try to detect patterns co-
occurring input values in these past configurations and exploit
these patterns to predict the next input values in the interac-
tive configuration process.

Association rules have been traditionally used in data min-
ing scenarios and in particular for shopping basket analysis.
With the help of algorithms such as Apriori [Agrawal and
Srikant, 1994], rules of the following form can be extracted
from past buying transactions:
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Figure 1: Schematic user interface fragment.

{milk, bread} ⇒ {butter}
[support=60%, confidence=80% ]
The rule states that whenever customers purchase milk and

bread, they also buy butter. Support and confidence are mea-
sures for the strength or quality of a rule. The support metric
describes in how many of all existing transactions the itemset
{milk,bread,butter} appeared. The confidence measure cor-
responds to the percentage of transactions in which milk and
bread appeared and where butter (the right hand side of the
rule) was also part of the transaction.

In our problem setting, a completed configuration corre-
sponds to a flat list of assignments of values to the more than
two dozen input variables, that is, our configuration problem
is relatively simple when compared, for example, to classical
component port configuration models [Mittal and Frayman,
1989]. Applying association rule mining algorithms such as
Apriori (as used in our work) or FP-Growth [Han et al., 2000]
is therefore straightforward and the goal of the mining pro-
cess is to detect patterns such as
{Basic-Model = A, Color = White} ⇒ {Warranty = 3yr.}
As an overall result of the mining process, a set of such

association rules can be determined. Usually, a minimum
support value has to be set in order to only take significant
patterns into account.

3 Default selection schemes
In our evaluation, we compared three schemes for determin-
ing the default value: (A) take a random value (the first in
the list of options); (B) the most frequent value from the past
transactions is taken as a default; (C) the selection is based on
association rules.

For scheme C, a “sliding window” strategy was applied.
Note that we assume in our application that we have a strict
order in which the inputs are entered (from top to the bottom).
In scheme C, the defaults therefore depend on the previous
inputs. If we, for example look for a value for the warranty
field, we look for rules that have the previous inputs (such as
the color) in the left hand side of the rule. The window size
describes how many of the last n inputs we take into account.
Taking all previous inputs into account might be impractical
as the set of detected association rules might not contain rules
that have 20 or more inputs on the left hand side. When mul-

tiple rules are in principle applicable (but suggest different
right hand side values), we choose the rule with the highest
confidence value. In combination with the sliding window
strategy, we also apply a relaxation strategy in case we can-
not find a matching rule. If, for example, no rule with the left
hand side {Basic-Model = A, Color = White} can be found
in a window of size 2, we calculate all subsets of the left hand
side and take the rule with the highest confidence value.

Overall, in contrast to default selection B where all values
can be set at the beginning, in scheme C, the defaults are de-
termined dynamically based on the previous inputs.

4 Evaluation
Metric. As an evaluation metric, we count the number of
clicks that are required to configure the customized product
variant. Note that we have one full default configuration for
scheme A and one for scheme B. To measure the number of
required clicks, we iterate through all 9,000 past transactions
and check for each transactions how many of the input field
values are different from this default configuration. The con-
figuration effort thus corresponds to the average number of
values that have to be changed.

For scheme C, we “replay” the configuration process for
each of the past configuration sessions and predict the input
field value one after the other based on the association rules.
In case the prediction of the next input was correct, we move
the sliding window forward and predict the next input. In case
the prediction was wrong, we increase the counter of required
clicks, correct the input value to the one given in the current
past transaction and proceed with predicting the next input
field.

Results. Due to the fact that the choice of the basic roof
model, which has to be done as a first step, considerably in-
fluences the available choice for the rest of the configuration
process, we have learned a set of association rules for each of
these basic models. In addition, we have experimented with
different window sizes as well as minimum support values.
Figure 2 exemplarily shows the results for one of the basic
models.

On average, 27,5 input values were set for a configuration
of this model type. Using the simplistic default selection
scheme A (pick the first value in the list), on average a bit
more than 15 values have to be set (changed) manually by the
user1. However, if we apply scheme B (pick the most fre-
quent value), a very strong improvement can be observed and
only about 6 of the 27 values were not properly predicted,
which strongly indicates that there are some configurations
options, which are very popular and that there is a long tail of
configurations which is very seldom sold.

Regarding the dynamic prediction scheme C, we experi-
mented with different settings and in particular varied the pa-
rameters window size and minimum support (MS), see Figure
2. With respect to the window size, we can observe that a
larger window size, which in turn means that we learn longer
rules, helps to improve the predictive accuracy of our rule-
based approach. The best results in our experiments were
achieved with window sizes 5 and 6. Further tests showed

1The median number of input values is 5.
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Figure 2: Results for one representative basic model.

that beyond this window size no further improvements could
be observed. The time required for the (offline) rule mining
process however significantly goes up when the maximum
length of the rules to be learned is increased.

With respect to the MS value, lower threshold values lead
to better results and the best predictions were achieved with
MS values at 3% and 4%. Lower MS values mean that also
rules for “rare combinations” are learned and included in the
rule base. Again, further decreasing the MS value leads to
marginal improvements at the price of a much larger rule
base. Overall, we can see that the accuracy consistently in-
creases when the MS value is lowered. For the window sizes,
in contrast, we could observe that further increasing this pa-
rameter does not always lead to better results.

For the particular basic model for which we show the re-
sults in Figure 2, we can see an overall improvement from
5,92 to 4,73 required clicks. At first glance, this might not
look too impressive. Note however, that the good results that
were achieved with the comparably simple scheme B are due
to the very unbalanced distribution of the available input val-
ues in the past configurations. Figure 3 shows a typical exam-
ple for a “yes/no“ question. For three out of four user input
fields, such a lopsided distribution could be observed.

Figure 3: Value distribution for field “standard height (y/n)”.

Across all basic models, an average reduction of required
clicks of 11.88% was observed. A first analysis showed that
the achieved improvements do not so much depend on the
number of available training samples but rather on the diver-
sity of the actually configurations.

Running times. The time needed for the generation of
input value predictions based on the previously learned as-
sociation rules can be considered to be suitable for an in-
teractive configuration scenario. In all our experiments, the
computation of input values for all fields took at most 10

seconds (that is, below 0.5 seconds for each field) even for
the largest window sizes considered in the experiments. The
times needed for the offline model-building phase strongly
depend on the minimum support size. While at the 10% level
model-building takes a few seconds, the calculations at the
3% level can take a few hours on a standard desktop PC.

5 Previous works
In [Ardissono et al., 2002], an advanced approach to person-
alizing the preference elicitation process in a configurator ap-
plication was proposed. In particular, their system exploits
stereotypical user modeling techniques to assess the user’s
preferences and properties throughout the interaction process.
In contrast to our work, in their approach the goal is also to
find personalized defaults which depend on the individual be-
havior of the user. Another approach to personalize the inter-
action process with the goal to reduce the complexity of the
overall process for the end user based on user profiles and
personalized recommendations was proposed in [Stegmann
et al., 2003] and [Stegmann et al., 2006].

Currently, personalization of the default proposal process
is beyond the scope of our work but could be relatively easy
implemented by learning user-specific rule models for situa-
tions, in which enough data is available for personalization.

Recently, in [Tiihonen and Felfernig, 2010] and [Felfernig
et al., 2010] a knowledge-based approach to personalizing
the user interaction process for configurator applications was
presented. Beside the automatic generation of “repair pro-
posals” for situations in which the customer requirements are
inconsistent (as also discussed in [Felfernig et al., 2001]), the
authors propose different (probabilistic and statistics-based)
techniques to determine suitable feature values as proposed
earlier already in [Cöster et al., 2002]. The goal of their work
is similar to ours, although different techniques are employed
and for example metrics for measuring the “distance” be-
tween configurations as well as feature weights are exploited.
Unfortunately, no empirical evaluation of their proposal was
yet done. However, [Felfernig et al., 2010] also consider the
question that the proposed feature values have to be consis-
tent with the configuration knowledge base and the current,
partial configuration. In our current work, this aspect was not
considered yet. One strategy to deal with this aspect could
be to systematically try to apply different association rules
(ordered by their confidence) and check whether the configu-
ration is still consistent after rule application.

In [Geneste and Ruet, 2001], finally, a Case-Based Rea-
soning (CBR) approach to reduce the complexity of the in-
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teraction process was proposed. The main idea is not to start
configurations from scratch, but to reuse and adapt past con-
figurations. The main tasks are therefore to find past similar
cases based on a similarity metric and a search algorithm,
determine possible adaptations (the adaptation domain) and
then guide the user through the adaptation process using con-
straint satisfaction techniques. Beside the goal of making the
interaction process more efficient, one similarity between our
work and the work of [Geneste and Ruet, 2001] is that we
rely on past configurations to steer the interaction process.
However, in our work we assume an incremental process in
which configurations are developed and refined step by step.
The consideration of the consistency checks before the de-
fault proposal process as done in [Geneste and Ruet, 2001] is
currently not supported in our approach.

6 Summary and outlook
In this work, we have analyzed how association rules mined
from past configurations can be exploited to predict input val-
ues for interactive configuration processes and can thus help
to make the usage of such systems more comfortable in case
the user has to configure a multitude of options. The evalua-
tion on a real-world data set showed that a measurable reduc-
tion in required interactions can be achieved when compared
to a simpler statistics-based approach or even in cases when
we have a market which is dominated by a few very popular
configurations.

Among other aspects, our future work includes the analy-
sis of the algorithm on other real-world datasets and the ap-
plication of other techniques from data mining and machine
learning for input value prediction in the configuration do-
main. Beside that, our goal is to evaluate prediction strategies
in which the elements contained in the sliding window not
only depend on the chronological order of the inputs but on
some relevance weight, assuming that individual inputs are
more predictive than others in the configuration process. In
addition, future work could also consider the question if there
are characteristics of the configuration problem (such as the
domain sizes of the variables) which can help us to automat-
ically determine appropriate values for the minimum support
threshold.
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Abstract

In knowledge engineering, ontology creation,
and especially in knowledge-based configura-
tion often used relations are: aggregate rela-
tions (has-parts, here called structural relations),
specialization relation (is-a), and instantiation
(instance-of). A combination of the later is
called metaization, which denotes the use of mul-
tiple instantiation layers. In this paper, we give ex-
amples and use-hints for these relations especially
from the configuration point of view.

1 Introduction
For configuration-based inference tasks, like constructing a
description of a specific car periphery system [Hotz et al.,
2006] or drive systems [Ranze et al., 2002], the knowledge
of a certain domain is represented with a knowledge-modeling
language (KML) which again is interpreted, because of a de-
fined semantic, through a knowledge-based system or config-
urator [Arlt et al., 1999; Günter and Hotz, 1999]. Examples
for those KMLs are the Web-Ontology Language (OWL) and
the Component Description Language (CDL); further lan-
guages are e.g. described in [van Harmelen et al., 2007].
KMLs typically provide concepts or classes gathering all
properties, a certain set of domain objects has, under a unique
name. With concepts and instances a strict separation into
two layers is made: a domain model (or ontology) which cov-
ers the knowledge of a certain domain (abbr. layerD) and a
system model (or configuration) which covers the knowledge
of a concrete system or product of the domain (abbr. layerS).

Properties of a concept that map to primitive data types,
like intervals, values sets (enumerations), or constant values,
are called parameters. Properties that map to other concepts
or to instances are called relations. KMLs provide structural,
specialization, and instantiation as typical relations. A spe-
cialization relation relates a superconcept to a subconcept,
where the later inherits the properties of the first. This relation
(also called is-a relation) forms a specialization hierarchy
or lattice, if a concept has more than one superconcept. The
structural relation is given between a concept c and several
other concepts r, which are called relative concepts. With
structural relations a compositional hierarchy based on the

has-parts relation can be modeled as well as other struc-
tural relationships. Instances are instantiations of concepts
and represent concrete domain objects (instance-of).

Additionally to concepts, instances, and their relations,
constraints provide model facilities to express n-ary relation-
ships between properties of concepts [John, 2002; Gelle and
Faltings, 2003]. Constraints can represent restrictions be-
tween properties like arithmetic relations or restrictions on
structural relations (e.g. ensuring existence of certain in-
stances). Especially constraints on structural relations ex-
tend typical constraint technology, which is based on prim-
itive data types like numbers or strings [Hotz, 2009b].

In this paper, the use of structuralization, specialization,
and instantiation are discussed. Even those relations are
quite well-known they are sometimes confounded. Further-
more, when used with more than the two mentioned do-
main and system layers (see [Asikainen and Männistö, 2010;
Hotz, 2009a]) the instantiation relation is multiply applied,
which leads to new modeling layers and thus, probably to
modeling difficulties. The creation of such multiple layers is
called metaization [Strahringer, 1998].

In the following, we first consider all relations in more
depth and give examples of their use (Section 2 and Section
3). Afterward, we discuss metaization and its use for config-
uration (Section 4). We end with a short discussion on related
work and a conclusion.

2 Structuralization
As already elaborated in [Hotz, 2009a] configuration can be
considered as model construction, because a description of a
certain system (a configuration) is constructed by a configu-
rator. Furthermore, [Hotz, 2009a] emphasizes to consider the
has-parts relation as a has relation that may be used for
diverse aspects like has-Realizations or has-Features
in software-intensive systems. For the typical use, a structural
relation represents a compositional relation. In this case, be-
tween c and its relatives r, c denotes the aggregates and r
denotes the parts. The underlying structural relation is used
by configurators to construct the description and thus are the
motor of configuration. Depending on what instances (of c
or r) exist first, instances of the related concepts are created;
e.g. this enables reasoning from the aggregate to the parts or
contrariwise, from the parts to the aggregate. This semantic
holds for every structural relation. Thus, introducing several
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Figure 1: Extract from an upper-model for modeling
software-intensive systems.

structural relations enables the use of adequate domain names
like has-Features or has-Realizations, and thus to fa-
cilitate maintenance.

Figure 1 pictures an upper-model for software-intensive
systems (UMSiS, [Hotz et al., 2006]). It defines four as-
set types (features, context, hardware and software artefacts)
which are common to most application domains of software-
intensive systems (SiS). A product, i.e. the result of the prod-
uct derivation, contains software and hardware artefacts as
parts, these together realize particular features. Several struc-
tural relations are depicted, like has-Realizations and
has-Feature. When using the upper-model for a specific
domain, the UMSiS is extended with domain-specific knowl-
edge about hardware and software artefacts, the existing fea-
tures, relevant context aspects, etc. In the example above, the
concepts are organized in different spaces. Each space rep-
resents a specific aspect of the domain and thus each config-
ured product should have those aspects. Figure 1 provides the
example of the feature and artefact aspects in the domain of
software-intensive systems. Thus, spaces separate concepts
of one layer. Through this grouping of concepts of one layer
the configuration model is easier to manage for a knowledge
engineer. Furthermore, concepts of different spaces are con-
nected by a structural relation. This ensures that a configured
product finally contains all modeled aspects. In contrast to
this, in Section 3 we will see, how the instantiation relation
separates concepts and instances on different layers.

3 Specialization vs. Instantiation
A concept describes a set of instances. The specialization
relation (or subsumption or is-a relation) between two con-
cepts c and s describes a subset relation, i.e. the set of in-
stances of concept c is a subset of the set of instances of its
superconcept s (see also [Brachman, 1983]). Or, as defined
in ontogenesis.knowledgeblog.org/699: “c is-a
s iff: given any i that instantiates c, i instantiates s”. An in-
stance of a class c is always an instance of each superclass s
of c. We consider this aspect as the hinting characteristic for
knowledge engineers: During knowledge modeling one can
try to make a specialization between two domain aspects and

test this characteristic. Thus, it is tested if an instance of c is
also reasonably an instance of s. If it is false the knowledge
engineer must not use a specialization but e.g. instantiation,
because c and s are probably on different layers.

Motion
Detection
Software

instance-of

is-a

has

Compilable
Concept Artefact

M D S

Software

Motion
Detection
Software

Software

Artefact

Compilable 
Concept

Figure 2: Good and bad use of specialization and instantiation
in software-intensive systems.

An example for this situation is shown in Figure 2; it
presents the confounded usage of specialization and in-
stantiation relations in the aforesaid modeling of software-
intensive systems domain (SiS) (Section 2). The system
model layer (SiSS) covers specific individuals, here the
Motion Detection Software. This object is an in-
stance of Software (SiSD) but no instance of Compilable
Concept. Compilable Concept denotes a specific kind
of concept (thus a specific description of instances) that can
be compiled. Thus, in the “bad” use, Motion Detection
Software is incorrectly considered as a concept, i.e. as a
description of instances. Instead it is an instance (here of
Software), thus a specific domain object.

When a concept s is specialized to c all properties of s
are inherited by c. Furthermore, the properties defined in c
that are also defined in s must have more special property
values than those in s. For checking this strict specialization,
the subset semantic is defined for all primitive data types and
the structural relation [Hotz, 2009b]. Thus, the specialization
relation is used for structuring the space of needed concepts
for representing domain knowledge.

By the time a concept is instantiated, properties of the cre-
ated instance are initialized by values or value ranges speci-
fied in the concept. Thus, the concept determines the structure
of the instance (i.e. the properties). In this sense, a concept
says something about its instances, i.e. a concept is on a dif-
ferent layer than its instances. By reducing the value ranges
according to user decisions or constraint computations the
configurator subsequently creates a specific description con-
sisting of instances.

4 Metaization
For structuralization and specialization, the involved concepts
are on one layer. However, for instantiation and metaiza-
tion they are on different layers. By instantiating a concept
one instance is created, i.e. a step from a set of instances
to an individual element of this set is performed. If this
step is cascadized, a concept c can be considered as an in-
stance of another concept cm, i.e. a step from a set of con-
cepts to one specific concept is performed. The concept cm
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is on a further layer. Figure 3 demonstrates this situation.
The concept Feature is an instance of Abstract Concept
which is a specialization of concept-m. All concepts on
the metalayer CDLM represent the modeling facilities of
CDL, describing the concepts and relations of CDL. Con-
cept Artefact is a typical CDL concept (it is an instance of
concept-m) and the relation has-Realization is a struc-
tural relation (represented by instantiating the CDLM con-
cept relation-descriptor-m) ([Hotz, 2009a] for more
on modeling CDL with CDL). CDLM represents all what
is known about CDLD, i.e. concepts and relations.

relation-
descriptor-m

concept-m

MM M D S

instance-of

is-a

has

parameter-
descriptor-m

Feature

Artefact

has-
R

ealization

has-P
ara-

m
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ela-
tions

Pre Crash
Detection

Abstract 
Concept

Figure 3: Modeling the Component Description Language.

Figure 4 presents the enhancement of Figure 1 by the ad-
ditional layer SiSM . SiSM describes the SiSD layer con-
cepts Feature, Software, and Hardware as Abstract
Concept, Compilable Concept, and Manufacturable
Concept, respectively. Thus, it is a domain dependent ex-
tensions of CDLM .

By doing so, constraints on concepts of SiSD can be ex-
pressed. For example a constraint represents that each feature
should be realizable by an artefact. A constraint can check
that each feature (a subconcept of Feature) should have
a structural relation has-Realization to a subconcept of
Artefact. These kinds of constraints may be hard to define,
because typically they are not related to one specific concept
but to several. Still, such constraints are usually part of some
modeling guidelines.1

In [Hotz and von Riegen, 2010b; 2010a], we introduce the
Reasoning Driven Architecture (RDA) that allows the im-
plementation of metalayers by using a configuration system
on each layer. By doing so, each layer can be seen as a
knowledge-based system that says something about the layer
below. In the case of RDA, SiSD contains the knowledge of
domain objects, which again are represented on SiSS . By in-
troducing the metalayer SiSM , knowledge about knowledge
is made explicit, i.e. knowledge about the knowledge of do-
main objects. This enables the use of reasoning techniques
for each layer, not only for the domain and system layers as
it is typically the case in knowledge-based systems. The cen-
tral point of such an implementation is a mapping between
instances on one layer to concepts on the next lower layer
(see Figure 5 and [Hotz and von Riegen, 2010a] for a map-

1The SiSMM layer has been omitted because no modeling is
required here.
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Figure 4: Modeling software-intensive systems.

ping for CDL and [Tran et al., 2008] for mapping for OWL or
[Bateman et al., 2009]). Metalayers allow for handling (meta)
tasks and services. For example, [Tran et al., 2008] proposes
to provide statistics about the model (e.g. retrieve all knowl-
edge elements about Pre Crash Detection). With a metalayer
like provided in Figure 4, during configuration of a software-
intensive system one can call different external mechanisms
for each specific metaconcept. For example, if an instance of
an instance of Compilable Concept (e.g. an instance of
Software) is configured, an external compiler mechanism
can be called to realize the software. If an instance of an
instance of Manufacturable Concept is configured, the
warehouse can be contacted to check if the needed parts for
the manufacturing are present. Thus, through the metalayer
the actual configuration of a product can be monitored and
reasoning on the configuration process can be processed.

5 Related Work
The modeling approach, especially metaization [Strahringer,
1998], has similarities to the Model-Driven Architecture
[Miller and Mukerji, 2003; Kühne, 2006; Atkinson and
Kühne, 2003; Hotz and von Riegen, 2010a], because of the
explicitation of several layers. However, the introduction of
reasoning systems for each layer allows the direct usage of
existing reasoners for inferring on metalayers.

Metaization as such is less considered in knowledge-based
configuration. However, especially when learning methods,
i.e. automated knowledge engineering, has to be used in
changing environments, the automated monitoring of KBs
becomes crucial and is conceivable with the presented tech-
niques.

6 Conclusion
In this paper, we state the differences of the main relations
for modeling configuration knowledge, i.e. specialization, in-
stantiation, and structuralization. By introducing and clari-
fying the use of instantiation on several metalayers, we open
up a further modeling facility and sketch first usage of this
metaization technique for knowledge-based configuration. In
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(individual :name AbstractEntity-1
:has-superconcept-m AbstractEntity-2
:domain-name “Feature”)

(i di id l Ab t tE tit 2(individual :name AbstractEntity-2
:domain-name “PreCrashDetection”
:is-subconcept-of-m AbstractEntity-1
:has-relations relation-descriptor-m-1)

(individual :name CompilableEntity-1
:has-superconcept-m CompilableEntity-2
d i “S ft ”):domain-name “Software”)

(individual :name CompilableEntity-2
:domain-name “MotionDetectionSoftware”
:is-subconcept-of-m CompilableEntity-1
:has-relations relation-descriptor-m-2)

(indi id al name elation desc ipto m 1(individual :name relation-descriptor-m-1
:domain-name “has-Realization”
:relation-of-m AbstractEntity-2 
:has-left-side structural-spec-1)

(individual :name structural-spec-1
:in-relation-left-m relation-descriptor-m-1
:some of CompilableEntity 2):some-of CompilableEntity-2)

(individual :name relation-descriptor-m-2
:domain-name “realizes”
:relation-of-m CompilableEntity-2
:has-left-side structural-spec-2)

(individual :name structural spec 2(individual :name structural-spec-2
:in-relation-left-m relation-descriptor-m-2
:some-of AbstractEntity-2)

Figure 5: CDL Example with instances on CDLM represent-
ing concepts of CDLD. This representation enables to reason
on domain concepts with instance-related reasoning services.

upcoming work, we will apply these techniques in learning
environments in the field of robot vision.
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Abstract

Simulation and configuration play an important
role in industry. Modeling languages like Mat-
lab/Simulink or Modelica, which are often used to
model the dependencies between the components
of physical systems, are less suitable for the area
of knowledge-based systems. For these languages,
the description of knowledge and its connection
to a theorem prover for nonmonotonic reasoning
(needed for configuration tasks) is, due to technical
reasons, almost impossible. In this paper we focus
on a language that can be used for both simulation
and configuration purposes. SiMoL is an object-
oriented language that allows representing systems
comprising basic and hierarchical components.

1 Introduction

The adaptation of technical systems after deployment to en-
sure the desired system’s functionality over time is an impor-
tant task and can never be avoided. Reasons for adaptation are
necessary corrections due to faults in system parts, changes
in user requirements, or changes of technology among oth-
ers. All activities necessary for increasing the lifetime of a
system and retaining its usefulness are summarized under the
general term maintenance.
In our research we focus on system changes due to changes

in requirements. For example, consider a cellular network
where the base stations are initially configured to ensure cur-
rent and future needs to some extent. Due to changes in
the environment, i.e., new apartment buildings constructed in
reach of the base station or an increased use of cellular net-
works for data communication, the base station or even the lo-
cal topology of the network has to be adapted. This adaption
can more or less be classified as a re-configuration problem
where the current system’s structure, behavior, and the new
requirements are given as input. Changes in the structure and
behavior of the system in order to cope with the changes in

∗Authors are listed in alphabetical orde. The work presented in
this paper has been supported by the BRIDGE research project Sim-
ulation and configuration of Mobile networks with M2M Applica-
tions (SIMOA), which is funded by the FFG.

†Corresponding author.

the requirements are a solution of the re-configuration prob-
lem.
In order to provide a method for computing solutions for a

given re-configuration problem we need to state the problem
in a formal way. Therefore, we require a modeling language
for stating systems comprising components and their relation-
ships. In principle, formal languages like first order logic or
constraint languages would be sufficient for this purpose. But
using such languages usually is not easy and prevents systems
based on such languages to be used in practice. Hence, there
is a strong need for easy to learn and use modeling languages
that are expressive enough to state configuration problems.
The SiMoL language we introduce in this paper serves this
purpose. The language itself is from a syntactical point of
view close to Java. The idea behind SiMoL is to provide a
language that can be used for (restricted) simulation and con-
figuration at the same time.
SiMoL is an object-oriented language with multiple inher-

itance and allows for stating constraints between variables.
Beside the basic data types like integer and boolean, SiMoL
makes use of component instances. All component instances
are statically declared. In this paper we focus on describing
the syntax and the semantics of SiMoL.

2 Related research
Over time, the AI community has developed a large variety
of configuration tools that fitted the different necessities and
goals in each practical area, thus creating a strong foundation
for newcomers. As preamble to our approach, we shortly re-
call three configuration systems, that make use of constraint
programming.
ConBaCon [John and Geske, 1999] treats the special case

of re-configuration, using the conditional propagation of con-
straint networks and has its own input language - ConBa-
ConL. In [John and Geske, 1999], the authors present Con-
BaConL, a ”largely declarative specification language”, by
means of which one can specify the object hierarchy, the
context-independent constraints and the context constraints.
Furthermore, the constraints are divided into Simple Con-
straints, Compositional Constraints and Conditional Con-
straints.
LAVA is another successful automated configurator [Fleis-

chanderl et al., 1998], used in the complex domain of tele-
phone switching systems. It makes use of generative con-
straints and is the successor of COCOS [Stumptner et al.,
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1994], a knowledge-based, domain independent configura-
tion tool. The modeling language is ConTalk, an enhanced
version of LCON that follows the Smalltalk notation. A Con-
Talk constraint is a statement which describes a relationship
between components ports or between the attributes values.
A powerful configuration system that combines constraint

programming(CP) with a description logic(DL) is the ILOG
(J)Configurator [Junker and Mailharro, 2003]. The combined
CP-DL language, in which the configuration problem is for-
mulated provides, on the one hand, the constraints, needed
in the decision process, and on the other hand, the con-
structs of the description logic, able to deal with unknown
universes. When solving the problem, the constructs of de-
scription logic, which are well-suited to model the configura-
tion specific taxonomic and partonomic relations, are mapped
on constraints and thus the wide range of constraint solving
algorithms may be used.

Power supply
(PS)

Communication
device

(CD)

Acceleration
sensor

(AS)

GPS sensor
(GPS)

Figure 1: A small sensor systems

The other field
of interest for our
research has been
the modeling lan-
guages currently
used for simula-
tion of technical
systems. Mat-
lab/Simulink 4

and Modelica
5 are the most
famous ones
in the area of
dynamic systems
modeling and
simulation. When
working with
Simulink, the
user is capable
of modeling the
desired system in the graphical interface, based on the large
library of standard components (called blocks). Also making
use of predefined building blocks, Modelica, on the other
side, is an equation-based object-oriented language with
multi-domain modeling capability. Although both of them
are complex languages, capable of modeling a great variety
of components, neither Simulink or Modelica can be used for
re-configuration purposes, as the description of knowledge
and its connection to a theorem prover for nonmonotonic
reasoning (needed for configuration tasks) is, due to technical
reasons, almost impossible.
Throughout the rest of this paper, we present our model-

ing language - SiMoL. SiMoL can be applied in both simula-
tion and re-configuration domains, using the powerful mech-
anism of constraint solving and hence being highly scalable
for complex simulation and re-configuration tasks.

3 An example
In this paper we make use of the following small example to
discuss SiMoL, as well as re-configuration using SiMoL for

4www.mathworks.com
5www.modelica.com

modeling systems. Figure 1 depicts a small system compris-
ing 4 components, i.e., a power supply (PS), an acceleration
sensor (AS), a GPS sensor (GPS), and a communication de-
vice (CD). The communication device is used for sending
the measured sensor information to a server. The power sup-
ply is for providing electricity to the connected components.
All these components have a behavior and provide function-
ality.
For the purpose of specifying functionality we introduce

a function fct that maps a component to a set of attributes,
which indicate a certain functionality. For our example, we
introduce the attributes ad, gps, comm to state the accelera-
tion sensor functionality, the gps functionality, and the ability
for communication respectively.

fct(AS) = {ad} fct(GPS) = {gps} fct(CD) = {comm}
We now specify additional constraints of the system. The

following constraint formally represents the requirement that
the power provided by PS must be larger or at least equiva-
lent to the sum of the power consumption of the other com-
ponents:
power(PS) ≥ power(AS) + power(GPS) + power(CD)
Moreover, we state that the device has to provide at least

ad, gps, comm functionality.
fct(AS) ∪ fct(GPS) ∪ fct(CD) ⊇ {ad, gps, comm}
Finally, we have the requirement that the sum of the cost

of each part of the device is not allowed to exceed a certain
pre-defined maximum cost.
cost(PS) + cost(AS) + cost(GPS) + cost(CD) ≤ max cost
In configuration we are interested in providing specific im-

plementations of the components PS, AS, GPS, and CD
such that all requirements are fulfilled and no constraint is
violated. Hence, what we do now for our running example,
is to introduce specific instances of the generic components
with different costs and power consumptions. Table 1 sum-
marizes all the used concrete component implementations.
A valid configuration is now a set of components that ful-

fills all constraints. For example, when assuming maximum
cost of 60, the set {PS1, AS2, GPS1, CD2} is a valid con-
figuration but {PS2, AS2, GPS1, CD2} is not because of vi-
olation of the cost constraint.
Throughout this paper we make use of this example and

show how SiMoL can be used for modeling such systems.

4 SiMoL definition
In order to define SiMoL we discuss its syntax and seman-
tics as well as its capability to be used for re-configuration
purposes.

SiMoL syntax: As already mentioned, SiMoL uses a Java-
like syntax and the common conventions compass most of
the defined tokens: identifiers for any type of component and
attribute, integer and boolean literals, separators, arithmetic
and relational operators (+,−, ∗, /,=, <,>,<=, >=, ! =),
special tokens - comments, reserved words and literals.
Additionally, SiMoL offers support for using units of mea-

surement, thus creating a more realistic model.
Another feature of the language, that provides direct con-

trol over the possible values of a component attribute, is the
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Generic component Instance 1 Instance 2
PS PS1 : costs(PS1) = 10, power(PS1) = 10 PS2 : costs(PS2) = 20, power(PS2) = 15
AS AS1 : costs(AS1) = 2, power(AS1) = 4 AS2 : costs(AS2) = 20, power(AS2) = 1
GPS GPS1 : costs(GPS1) = 6, power(GPS1) = 5
CD CD1 : costs(CD1) = 10, power(CD1) = 10 CD2 : costs(CD2) = 20, power(CD2) = 4

Table 1: The component instances for our small sensor system

component CD{
attribute int power, costs;
constraints{

power={4,6,10} W;
costs={10..30}; } }

Figure 2: SiMoL: initialization of attributes with integer val-
ued ranges

initialization of attributes with integer valued ranges, as il-
lustrated in fig. 4.
Basically, a program written in SiMoL comprises 3 sec-

tions: a knowledge base declaration section, which is op-
tional, an import declaration section, which is also optional,
and a component definition section, that is the main construct-
ing unit of a SiMoL program and it is mandatory. Gener-
ally, each component will posses a set of attributes and will
introduce constraints in the system. The attributes decla-
ration is marked by the attribute keyword, whilst the
relations stated between the component attributes and new-
component instance-declaration statements appear enclosed
in the constraints{ . . . } block. By convention, an
empty component definition section is not allowed, i.e., if the
constraints block is missing, we have to declare at least one
attribute for the current component. Furthermore, in the case
of derived components, the opposite holds: even with no at-
tributes declared, we may state constraints over the inherited
attributes. For instance:
component AS{

attribute int power, costs;
constraints{

power={4,6} W;
costs={2..30}; }}

component AS1 extends AS{
constraints{

power=4;
costs=2;}}

The ability to extend the functionality and behavior of ex-
isting components is of great importance for the taxonomic
structure of a configuration domain. In any object oriented
languages, the taxonomy relations are represented through
the inheritance mechanism. We designed SiMoL with mul-
tiple inheritance. In order to demonstrate the necessity of this
feature, let us consider the following scenario. For our small
system described in Section 3, we introduce a new require-
ment that refers to a specific signal modulation which can
be accomplished by a new component - a modem (M ). The
modem receives the measured sensor information and trans-
mits the modified signal to the communication device. The
function fct from Section 3 will similarly depict for M the
modulation-demodulation functionality :

fct(M) = {mdm}

Now the additional constraints of the system become:

power(PS) ≥ power(AS) + power(GPS)
+power(CD) + power(M)

fct(AS) ∪ fct(GPS) ∪ fct(CD) ∪ fct(M)
⊇ {ad, gps, comm,mdm}

cost(PS) + cost(AS) + cost(GPS) + cost(CD)
+cost(M) ≤ max cost

The problem appears if the pre-defined maximum cost is
always exceeded, because of the new added component. In
other words, we can not afford both a modem and a com-
munication device. Therefore, a new component type - a
communication device with integrated modem (MDC)- will
solve the case (under the assumption that cost(MDC) ≤
cost(CD) + cost(M)). In SiMoL, the MDC definition has
the following syntax:
component MDC extends DC,M {

constraints{
power={4,6} W;
costs={2..30};}}

In the constraints section, we may have the following types
of statements:

• an empty statement: ;,

• a component instance declaration: GPS1 gps1; Op-
tionally, one can also initialize its attributes: GPS1
gps1{costs=100};
Using this kind of statements, we define the subcompo-
nent hierarchy in our model, i.e., the partonomy rela-
tions. The cardinality of these relations (i.e., the number
of subcomponents which can be connected to a certain
component) is always finite - we cannot have an unlim-
ited number of components in our model.

• an arithmetic or/and boolean expression:
ps1.power>=sum([as1,gps2,cd1],power);

• a conditional block:
if(sum([ps1,as1,gps1,cd1],costs)
<= max cost)

cost=sum([ps1,as1,gps1,cd1],costs);
else cost=100;

• a forall block:
forall(AS1){ power=10 W; costs={1..10};}

• an exist statement, e.g.:
exist(at most(1),GPS1,costs=30);.

We also mention the built-in functions min, max,
sum, product, meant to ease the manipulation of large
sets of component instances.
Adopting a clear Java-like syntax, SiMoL is a

functionality-based, declarative language, creating a
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good environment for simulation, and, at the same time, it
provides many embedded functionalities specially designed
for configuration purposes.

Semantics of SiMoL: Because of space reasons we only
briefly define the semantics of the language SiMoL where we
rely on mathematical equations. In particular, we map ev-
ery statement to a mathematical equation, and combine these
equations for a component, taking care of component inheri-
tance and component instances.
For each component defined in SiMoL we have a set of

equations that is defined within the constraints { . . .
} block. Moreover, a component also receives equations
from its super components and the instances used in the
component definition. For example, when specifying GPS1
gps; in the variable declaration a new instance of GPS1
is generated. All constraints of GPS1 are added to the con-
straints of the component. The semantics of SiMoL is now
nothing else than the union of all constraints defined includ-
ing inherited constraints and constraints coming from com-
ponent instances.
We discuss the expressiveness of the language by classify-

ing its capabilities with respect to the framework offered in
the chapter on configuration from [Rossi et al., 2006]. In the
context of the successful integration of constraint program-
ming in solving a large variety of configuration problems, the
author defines several distinguishing constraint models, each
corresponding to a specific type of configuration problem. To
set up the constraint model, the appropriate variables and con-
straints are deduced from the given configuration knowledge.
The author states that this knowledge may have three differ-
ent forms: the component catalogs, the component structure
and the component constraints.
The catalog knowledge, as defined in [Rossi et al., 2006],

is modeled in SiMoL by means of the generic components
(correspondent to the term of technical types in [Rossi et al.,
2006]) and the concrete components( derived (extended) from
generic component/s or from other concrete component/s, in
our case, and correspondent to the term of concrete or func-
tional types in [Rossi et al., 2006]). Both generic and concrete
components have a set of attributes, mapped to variables in
the constraint model. Based on this kind of knowledge, we
build the catalog constraints ([Rossi et al., 2006]), which are
stated over the set of variables and formulated by means of
Cattr val and Cattr attr constraints.
The structural knowledge of a SiMoL model is determined

by the component instances declared in the current model.
In this manner, we generate for our system the set of sub-
components, that are either generic or extended components.
The logic behind this mechanism has been previously de-
tailed, when presenting the semantics of the language. We
recall that the SiMoL model is in fact a component, which
describes the configuration problem. The connection ports
defined in [Rossi et al., 2006] have no correspondent term in
SiMoL yet, but the connection between component instances
is possible through Cattr attr constraints. Also the statement
in [Rossi et al., 2006] according to which ”the sets of direct
subtypes of two types are mutually disjoint” does not hold in
our approach, because we accept multiple inheritance.

Finally, the configuration constraints are divided into com-
patibility constraints, requirement constraints and resource
constraint. The first ones specify which value combina-
tions are legal for the attributes given in the model and
they are modeled in SiMoL through Cattr val and Cattr attr

constraints. The requirement constraints describe a rela-
tion between two component attributes ([Rossi et al., 2006]),
which is best depicted by combining Ccond with Cattr val or
Cattr attr. Moreover, the resource constraints on numerical
attributes were intensively addressed throughout this paper.
Consequently, we find the expressive power of the lan-

guage sufficient for modeling the discussed configuration
knowledge forms. As also stated in [Rossi et al., 2006], the
configuration problem complexity may vary from very sim-
ple option selection problems to complex cases, but they all
appear as combinations of the specified knowledge forms.

5 Conclusion
In this paper, we have presented SiMoL- a new functional-
based, declarative modeling language, that serves simulation
and re-configuration purposes. The novelty of our approach
is designing a language that is easy to learn and capable of
modeling large and complex systems. SiMoL can cope with
large models and be also efficient with respect to computa-
tion time (simulation). Although re-configuration is not fully
implemented for the SiMoL language, several ideas are cur-
rently analyzed and implemented, such that in the near future
a fully working re-configurator can be used for SiMoL mod-
els. In future research we mainly focus on providing a sound
and complete configuration algorithm that takes SiMoL mod-
els and requirements as input and computes valid configura-
tions as output.
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