
A Graphical Framework for Supporting Mass Customization ∗

Dario Campagna
Dept. of Mathematics and Computer Science

University of Perugia, Italy
dario.campagna@dmi.unipg.it

Abstract

Many companies deploying mass customization
strategies adopt product configuration systems to
support their activities. While such systems focus
mainly on configuration process support, mass cus-
tomization needs to cover the management of the
whole customizable product cycle. In this paper,
we describe a graphical modeling framework that
allows one to model both a product and its pro-
duction process. We first introduce our framework.
Then, we outline a possible implementation based
on Constraint Logic Programming of such prod-
uct/process configuration system. A comparison
with some existing product configuration systems
and process modeling tools concludes the paper.

1 Introduction
Product configuration systems are software of interest for
companies deploying mass customization strategies, since
they can support them in the management of configuration
processes. In the past years many research studies have been
conducted on this topic (see, e.g., [Sabin and Weigel, 1998]),
and different software product configurators have been pro-
posed (see, e.g., [Fleischanderl et al., 1998; Junker, 2003;
Configit A/S, 2009; Myllärniemi et al., 2005]).

Process modeling tools, instead, allows one to effectively
deal with (business) process management. In general, they
allow the user to define a description of a process, and
guide she/he through the process execution. Also within
this field it is possible to find tools and scientific works
(see, e.g, [White and Miers, 2008; ter Hofstede et al., 2010;
Pesic et al., 2007]).

Mass customization needs to cover the management of the
whole customizable product cycle, from product configura-
tion to product production. Current product configuration
systems and researches on product configuration, focus only
on product modeling and on techniques for configuration pro-
cess support. They do not cover product production process
problematics, despite the advantages that coupling of product
with process modeling and configuration could give.

∗This work is partially supported by GNCS and MIUR projects.

Inspired by the works of Aldanondo et al. (see, e.g., [Al-
danondo and Vareilles, 2008]), we devised a graphical frame-
work for modeling configurable products, whose producible
variants can be represented as trees, and their production pro-
cesses. The intent of our framework is to allow the propa-
gation of consequences of product configuration decision to-
ward the planning of its production process, and the propaga-
tion of consequences of process planning decision toward the
product configuration.

The paper is organized as follows. First, we introduce our
framework in Sect. 2. Then, in Sect. 3 we show how a config-
uration system based on Constraint Logic Programming can
be implemented on top of it. A comparison with some of the
existing product configuration systems and process modeling
tools is outlined in Sect. 4. An assessment of the work done
and of future research directions is given in Sect. 5.

2 A Graphical Framework for
Product/Process Modeling

In this section, we present the PRODPROC graphical frame-
work (cf. Sections 2.1 and 2.2). Moreover, we provide a
brief description of PRODPROC semantics in terms of model
instances (Sect. 2.3).

A PRODPROC model consists of a product description, a
process description, and a set of constraints coupling the two.
To better present the different modeling features offered by
our framework, we will exploit a working example. In partic-
ular, we will consider a bicycle with its production process.

2.1 Product Modeling Features
We are interested in modeling configurable products whose
corresponding (producible) variants can be represented as
trees. Nodes of these trees correspond to physical compo-
nents, whose characteristics are all determined. The tree
structure describes how the single components taken together
define a configured product.

Hence, we model a configurable product as a multi-graph,
called product model graph, and a set of constraints. Nodes of
the multi-graph represent well-defined components of a prod-
uct (e.g., the frame of a bicycle). While edges model has-
part/is-part-of relations between product components. We
require the presence of a node without entering edges in the
product model graph. We call this node root node. A prod-

uct model represents a configurable product. Its configura-
tion can lead to the definition of different (producible) prod-
uct variants.

Each node/component consists of a name, a set of variables
modeling configurable characteristics of the component, and
a set of constraints (called node constraints) involving vari-
ables of the node and variables of its ancestors in the graph.
Each variable is endowed with a finite domain (typically, a
finite set of integers or strings), i.e., the set of its possible val-
ues. Constraints define compatibility relations between con-
figurable characteristics of a node and of its ancestors. The
graphical representation of a node (cf. Fig. 1) consists of a
box with three sections, each containing one of the elements
constituting a node.

Node
constraints

Node
variables

Node name

Node
constraints

Node
variables

Node name
Edge label

Card
Cardinality
constraints

Figure 1: Graphical representation of nodes and edges.

In the description of a configured product, physical com-
ponents are represented as instances of nodes in the product
model graph. An instance of a node NodeName consists
of the name NodeName, a unique id, and a set of variables
equals to the one of NodeName. Each variable has a value
assigned. The root node will have only one instance, such
instance will be the root of the configured product tree.

Let us consider, for example, the node Frame of the (frag-
ment of) product model graph for a bicycle, depicted in
Fig. 2.1 The section Frame variables may contain the fol-
lowing couples of variables and domains:

〈FrameType, {Racing bike,Citybike}〉,
〈FrameMaterial, {Steel,Aluminum,Carbon}〉.

While in Frame constraints we may have the constraint

FrameType = Racing⇒ FrameMaterial 6= Steel.

This constraint states that a frame of type racing can not be
made of steel. An example of instance of Frame is the triple
〈Frame, 1, {FrameType = Racing, F rameMaterial =
Carbon}〉. Note that values assigned to node instance vari-
ables have to satisfy all the node constraints. For the node
Wheel (that also appears in Fig. 2) we may have the variables

〈WheelType, {Racing bike,City bike}〉,
〈SpokeNumber, [18, 28]〉,

and the constraints

WheelType = 〈FrameType, Frame, []〉, (1)

〈FrameType, Frame, [rear wheel]〉 = Racing bike⇒
⇒ SpokeNumber > 20.

(2)
These constraints involve features belonging to an ancestor of
the node Wheel, i.e., the node Frame. We refer to variables

1The depicted product model graph is one of the possible graphs
we can define with our framework. We chose this one for presenta-
tion purposes only.

Frame
constraints

Frame
variables

Frame

Wheel
constraints

Wheel
variables

Wheel
front wheel 1

rear gears
constraints

rear wheel 1

Gear
constraints

Gear
variables

Gearsrear gears ⟨Card,{0,1}⟩

Figure 2: Fragment of bicycle product model graph.

in ancestors of a node using meta-variables, i.e., triples of
the form 〈V arName,AncestorName,MetaPath〉. This
writing denotes a variable V arName in an ancestor node
AncestorName (e.g., FrameType in Frame). The third
component of a meta-variable, MetaPath, is a list of edge
labels (see below) describing a path connecting the two nodes
in the graph (wildcards ‘ ’ and ‘?’ can be used to represent ar-
bitrary labels and a sequence of arbitrary labels respectively).
MetaPaths are used to define constraints that will have ef-
fect only on particular instances of a node. For example, the
constraint (2) for the node Wheel has to hold only for those
instances of node Wheel which are connected to an instance
of node Frame through an edge labeled rear wheel. In-
tuitively, a node constraint for the node N has to hold for
each instance of N , such that it has ancestors connected with
it through paths matching with the MetaPaths occurring in
the constraint.

An edge e = 〈label,N,M,Card, CC〉 of the product
model graph is characterized by: a name (label), two node
names denoting the parent (N) and the child node (M) in the
has-part relation, the cardinality (Card) of such relation (ex-
pressed as either an integer number or an integer variable),
and a set (CC) of constraints (called cardinality constraints).
Such constraints may involve the cardinality variables (if any)
as well as variables of the parent node and of its ancestors (re-
ferred to by means of meta-variables). An edge is graphically
represented by an arrow connecting the parent node to the
child node (cf. Fig. 1). Such an arrow is labeled with the
edge name and cardinality, and may have attached an ellipse
containing cardinality constraints.

An instance of an edge labeled label connecting a node N
with a node M , is an edge connecting an instance of N and
an instance of M . It is labeled label too.

Let us consider the edges front wheel and rear gear de-
picted in Fig. 2. The former is the edge relating the frame
with the front wheel, its cardinality is imposed to be 1, and
there is no cardinality constraint. Hence, there must be (only)
one instance of the node Wheel connected to an instance of
the node Frame through an edge labeled front wheel. The
latter edge, rear gears, represents the has-part relation over
the frame and the rear gears of a bicycle. Its cardinality is
a variable named Card, taking values in the domain {0, 1}.
Hence, we may have an instance of the node Gears connected
to an instance of the node Frame through an edge labeled rear
gears. Among the cardinality constraints of the edge rear
gears we may have the following one:

FrameType = Racing⇒ Card = 1.

Intuitively, a cardinality constraint for and edge e has to hold

for each instance of the parent node N in e, such that N
has ancestors connected with it through paths matching with
MetaPaths occurring in the constraint.

As mentioned, we model a product as a graph and a set
of constraints. Such constraints, called model constraints,
involve variables of nodes not necessary related by has-
part relations (node model constraints), as well as cardi-
nalities of different edges exiting from a node (cardinal-
ity model constraints). Moreover, global constraints like
alldifferent [van Hoeve, 2001] can be used to define
node model constraints. In node model constraints, variables
are referred to by means meta-variables. A MetaPath in a
node model constraint represents a path connecting a node to
one of its ancestors in the graph. MetaPaths are used to
limit the effect of a node model constraint to particular tuples
of node instances. An example of node model constraint for
the bicycle is the following one:

〈GearType,Gears, [rear gears]〉 = Special⇒
⇒ 〈SpokeNumber,Wheel, [rear wheel]〉 = 26.

(3)

This constraint states that if the type of rear gears chosen is
“Special”, then the rear wheel must have 26 spokes. Intu-
itively, a node model constraint has to hold for all the tuples
of node variables of node instances reached by paths match-
ing with the MetaPaths occurring in the constraint.

2.2 Process Modeling Features
Processes can be modeled in PRODPROC in terms of activi-
ties and temporal relations between them. More precisely, a
process is characterized by: a set of activities, a set of vari-
ables (as before, endowed with a finite domain of strings or of
integers) representing process characteristics and involved re-
sources; a set of temporal constraints between activities; a set
of resource constraints; a set of constraints involving product
elements; a set of constraints on activity durations. A process
model does not represent a single production process. In-
stead, it represents a configurable production process, whose
configuration can lead to the definition of different executable
processes.

PRODPROC defines three kinds of activities: atomic activi-
ties, composite activities, and multiple instance activities. An
atomic activity A is an event occurring in a time interval. It
has associated a name and the following parameters.

• Two integer decision variables, tstart and tend, denoting
the start and end time of the activity. They define the
tine interval [tstart, tend], and are subject to the implicit
condition tend ≥ tstart ≥ 0.

• A decision variables d = tend − tstart denoting the du-
ration of the activity.

• A flag exec ∈ {0, 1}.
We say that A is an instantaneous activity if d = 0. A is
executed if exec = 1 holds, otherwise (i.e., if exec = 0) A
is not executed. A composite activity is an event described
in terms of a process. It has associated the same parameters
of an atomic activity, and a model of the process it repre-
sents. A multiple instance (atomic or composite) activity is
an event that may occur multiple times. Together with the

Activity
duration
constraints

Activity name

(a)

Activity
duration
constraints

Activity name

(b)

Activity
duration
constraints

Activity name

inst

(c)

Figure 3: Graphical representation of activities.

usual parameters (and possibly the process model), a multi-
ple instance activity has associated an integer decision vari-
able (named inst) representing the number of times the ac-
tivity can be executed. Note that the execution/non-execution
of activities determines different instances of a configurable
process. Figures 3a, 3b, and 3c, show the graphical represen-
tation of atomic activities, composite activities, and multiple
instance activities, respectively.

Temporal constraints between activities are inductively de-
fined starting from atomic temporal constraints. We consider
as atomic temporal constraints all the thirteen mutually exclu-
sive relations on time intervals introduced by Allen in [Allen,
1983] (they capture all the possible ways in which two in-
tervals might overlap or not), and some other constraints in-
spired by constraint templates of the language ConDec [Pesic
et al., 2007]. Some examples of atomic temporal constraints
are listed as follows (for lack of space we avoid listing all
of them), where A and B are two activities. Fig. 4 shows
their graphical representations (we used a slightly different
graphical notation for activities, i.e., we omitted the activity
duration constraint sections).

1. A before B to express that A is executed before B (cf.
Fig. 4a);

2. A during B to express that A is executed during the
execution of B (cf. Fig. 4b);

3. A is−absent to express that A can never be executed
(cf. Fig. 4c);

4. A must−be−executed to express that A must be exe-
cuted (cf. Fig. 4d);

5. A not−co−existent−with B to express that it is not
possible to executed both A and B (cf. Fig. 4e);

6. A succeeded−by B to express that when A is executed
then B has to be executed after A (cf. Fig. 4f).

The constraints 1 and 2 are two of the relations presented
in [Allen, 1983]. The constraints 3-6 have been inspired by
the templates used in ConDec [Pesic et al., 2007]. A temporal
constraint is inductively defined as follows.

• An atomic temporal constraint is a constraint.

• If ϕ and ϑ are temporal constraint, then ϕ and ϑ and
ϕ or ϑ are temporal constraints.

• If ϕ is a temporal constraint and c is a constraint on pro-
cess variables, then c → ϕ is an if-conditional temporal
constraint, stating that ϕ has to hold whenever c holds.
Also, c ↔ ϕ is an iff-conditional temporal constraint,
stating that ϕ has to hold if and only if c holds.

beforeA B

(a)

duringA B
c

(b)

cA

(c)

A

(d)

BA

(e)

BA

(f)

before

during
A B

(g)

Figure 4: Graphical representation of temporal constraints.

A conjunction of atomic constraints between two activities
can be depicted by representing each constraint of the con-
junction. Fig. 4g shows the graphical representation for a
disjunction of atomic temporal constraints between two ac-
tivities (i.e., for the constraint A before B or A during B).
An if-conditional and an iff-conditional temporal constraint
with condition c are depicted in Fig. 4b and 4c, respectively.
Finally, a non-atomic temporal constraint can be depicted as
an hyper-edge connecting the activities involved in it, and la-
beled with the constraint itself.

The truth of atomic temporal constraints is related with
the execution of the activities they involve. For instance,
whenever for two activities A and B it holds that execA =
1 ∧ execB = 1, then the atomic formulas of the forms 1 and
2 must hold. A temporal constraint network CN is a pair
〈A, C〉, where A is a set of activities and C is a set of tem-
poral constraints on A. Fig. 5 shows the temporal constraint
network of the bicycle production process.

Construction of
bicycle

components
DeliveryBicycle assembly

Frame
construction

Handlebar
constructionPartial assembly

Wheels
construction

Construction of
other

components

beforebefore

before before

Gears
construction

during

Gears = 0

Figure 5: Temporal constraint network of the bicycle produc-
tion process.

Resource constraints [Laborie, 2003] are quadruple
〈A,R, q, TE〉, where A is an activity; R is a variable en-
dowed with a finite integer domain; q is an integer or
a variable endowed with a finite integer domain, defining
the quantity of resource R consumed (if q < 0) or pro-
duced (if q > 0) by executing A; TE is a time ex-
tent that defines the time interval where the availability
of resource R is affected by A. The possible values for
TE are: FromStartToEnd, AfterStart, AfterEnd,
BeforeStart, BeforeEnd, Always, with the obvious
meaning. Another form of resource constraint defines initial
level constraints, i.e., expressions determining the quantity of
a resource available at the time origin of a process. The ba-
sic form is initialLevel(R, iv), where R is a resource and
iv ∈ N. Examples of resource constraints for the bicycle pro-
duction process are:

〈Wheel construction, Aluminum,−4, AfterStart〉,
〈Frame construction,Workers,

qW ∈ [−1,−2], F romStartToEnd〉.
The first constraint states that activity “Wheel construction”
consumes 4 unit of aluminum once its execution starts. The
second constraints states that activity “Frame construction”
needs 1 or 2 workers during its execution. As for tem-
poral constraint, we can define if-conditional (i.e., c →
〈A,R, q, TE〉) and iff-conditional (i.e., c ↔ 〈A,R, q, TE〉)
resource constraints. Their meaning are similar to the ones
defined above for temporal constraints.

An activity duration constraint for an activity A, is a con-
straint involving the duration of A, process variables, and
quantity variables for resources related to A. The following
is an example of an activity duration constraint for the ac-
tivity “Frame construction” in the bicycle production process
(where FrameMult is a process variable)

d = 2·FrameMult
|qW |

PRODPROC also allows one to mix elements for model-
ing a process with elements for modeling a product, through
constraints involving process variables and product variables.
This is an example for the bicycle model
〈FrameType, Frame, []〉 = Racing ⇒ FrameMult = 4.

It relates the variable FrameType of the node Frame with
the process variable FrameMult. Another example is the
following:

〈rear gears, Frame,Gears, Card〉 = Gears.

This constraint relates the process variable Gears with the
cardinality of the edge rear gears of the bicycle product
model graph. The cardinality is represented by the quadru-
ple 〈rear gears, Frame,Gears, Card〉, where the first ele-
ment is an edge label, the second one is the name of the parent
node of the edge, the third one is the name of the child node
of the edge, and the last one is the name of the cardinality.

Product related constraints are another type of constraints
coupling product elements with process elements. They make
it possible to define resource constraints where resources are
product components. More precisely, a product related con-
straint is a constraint on activities and product nodes that im-
plicitly defines resource constraints, and constrains on pro-
cess and product variables. A product related constraint has

the form A produces n N for B, where A and B are ac-
tivities, n ∈ N+, and N is the name of a node in the prod-
uct model graph, having (at least) one incoming edge having
associated a cardinality variable. Such a product related con-
straint corresponds to the following PRODPROC constraints:

〈A,RN , qA ∈ DRN , AfterEnd〉, 〈B,RN ,−n,AfterStart〉,
initialLevel(RN , 0), aggConstraint(sum,CEN ,=, RN),

where RN is a resource variable whose domain DRN
is

defined as DRN
=

[
0,
∑

C∈CEN
max(DC)

]
(DC de-

notes the domain of C, and CEN is the list of cardi-
nality variables of edges entering in N). The constraint
aggConstraint(sum,CEN ,=, RN) is a global constraint
stating that

∑
C∈CEN

= RN has to hold. An example of
product related constraint for the bicycle is

Wheel construction produces
2 Wheel for Bicycle assembly.

In general, constraints involving both product and process
variables may allow one to detect/avoid planning impossibil-
ities due to product configuration, and configuration impossi-
bilities due to production planning, during the configuration
of a product and its production process.

2.3 PRODPROC Instances
A PRODPROC model represents the collection of single (pro-
ducible) variants of a configurable product and the processes
to produce them. A PRODPROC instance represents one of
such variants and its production process. To precisely define
this notion we need to introduce first the notion of candidate
instance. A PRODPROC candidate instance consists of the
following components:
• A set N I of node instances, i.e., tuples of the form
N I

i = 〈N, i,VNI
i
〉 where N is a node in the product

model graph, i ∈ N is an index (different for each in-
stance of a node), VNI

i
= VN (VN is the set of variables

of node N).
• a set ANodes of assignments for all the node instance

variables, i.e., expressions of the form V = value where
V is a variable of a node instance and value belongs to
the set of values for V .

• A tree, called instance tree, that specifies the pairs of
node instances in the relation has-part. Such a tree is
defined as IT = 〈N I , EI〉, where EI is a set of tuples
eI = 〈label,N I

i ,M
I
j 〉 such that there is an edge e =

〈label,N,M,Card, CC〉 in the product model graph,
and N I

i , M I
j are instances of N and M , respectively.

• A set ACards of assignments for all the instance cardinal-
ity variables, i.e., expressions of the form ICe

NI
i

= n

where N I
i is an instance of a node N , e is an edge

〈label,N,M,Card, CC〉, ICe
NI

i
= Card, and n is the

number of the edges 〈label,N I
i , C

I
j 〉 in the instance tree,

such that M I
j is an instance of M .

• A set AI of activity instances, i.e., pairs AI
i = 〈A, i〉

where A is the name of an activity with execA = 1, and
i ∈ N is a unique index for instances of A.

Variables
Frame, ID=1

Variables
Wheel, ID=1

front wheel
rear
wheel

Variables
Whee, ID=2

Variables
Gears, ID=1

rear gears

Figure 6: Instance tree for a bicycle.

• A set E = {execA | A is an activity ∧ execA 6= 1}.
• A set AProc of assignments for all model variables and

activity parameters (i.e., time instant variables, duration
variables, execution flags, quantity resource variables,
instance number variables), that is, expressions of the
form P = value where P is a model variable or an
activity parameter, and value ∈ Z or value belongs to
the set of values for P .

Fig. 6 depicts a fragment of the instance tree for a bicycle.
The tree consists of an instance of node Frame, an instance
of the node Gears, and two instances of node Wheel.

A PRODPROC instance is a candidate instance such that the
assignments in ANodes ∪ ACards ∪ AProc satisfy all the con-
straints in the PRODPROC model (node constraints, temporal
constraints, etc.), instantiated with variables of node instances
and activity instances in the candidate instance.

The constraint instantiation mechanism, given a (partial)
candidate instance (a candidate instance is partial when there
are variables with no value assigned to), produces a set of
constraints on candidate instance variables from each con-
straint in the corresponding PRODPROC model. A candidate
instance has to satisfy all these constraints to qualify as an
instance. We give here an intuitive description of how the
instantiation mechanism works on different constraint types.
Let us begin with node and cardinality constraints. Let c be a
constraint belonging to the node N , or a constraint for an edge
e between nodes N and M . Let us suppose that N1, . . . , Nk

are ancestors of N whose variables are involved in c, and let
p1, . . . , pk be MetaPaths such that, for i = 1, . . . , k, pi is
a MetaPath from Ni to N . We define Ln as the set of k-
tuple of node instances 〈N I

j , (N1)
I
j1
, . . . , (Nk)

I
jk
〉where: N I

j

is an instance of N ; for i = 1, . . . , k (Ni)
I
ji

is an instance of
Ni, connected with N I

j through a path pIi in the instance tree
that matches with pi. For each k-tuple t ∈ Ln, we obtain
a constraint on instance variables appropriately substituting
variables in c with variables of node instances in t. For ex-
ample, the constraints (1) and (2) for the node Wheel, lead
to the following constraints on variables of node instances in
Fig. 6 (〈V,N I

ID〉 denotes the variable V of the instance with
id ID of node N).

〈WheelType,WheelI1〉=〈FrameType,FrameI1〉, (4)
〈WheelType,WheelI2〉=〈FrameType,FrameI1〉, (5)

〈FrameType,FrameI1〉=Racing bike⇒

⇒〈SpokeNumber,WheelI2〉>20. (6)

The instantiation of (1) leads to the constraints (4) and
(5), since it can be instantiated on both the couples of
node instances appearing in Fig. 6 〈WheelI1, F rameI1〉 and

〈WheelI2, F rameI1〉. Instead, the instantiation of (2) leads to
only one constraint, i.e. (6), because it can be instantiated
only on the couple 〈WheelI2, F rameI1〉.

Node model constraints are instantiated in a slightly differ-
ent way. Let c be a node model constraint. Let us suppose that
N1, . . . , Nk are the nodes whose variables are involved in c,
let p1, . . . , pk be MetaPaths such that, for i = 1, . . . , k, pi
is a MetaPath that ends in Ni. We define Lnmc as the set
of ordered k-tuples of node instances 〈(N1)

I
j1
, . . . , (Nk)

I
jk
〉,

where for i = 1, . . . , k (Ni)
I
ji

is an instance of Ni connected
by a path pIi with one of its ancestors in the instance tree,
such that pIi matches with pi. For each k-tuple t ∈ Lnmc, we
obtain a constraint on instance variables appropriately substi-
tuting variables in c with variables of node instances in t. If c
is an alldifferent constraint, then we define an equiva-
lent constraint on the list consisting of all the node instances
of N1, . . . , Nk, connected with one of their ancestors by a
path matching with the corresponding MetaPath. As an ex-
ample, let us consider the constraint (3) for the bicycle, it can
be instantiated on the couple 〈WheelI2, GearsI1〉 and leads to

〈GearType,GearsI1〉 = Special⇒
⇒ 〈SpokeNumber,WheelI2〉 = 26.

The instantiation of cardinality model constraints is very
simple. Let c be a cardinality model constraint for the car-
dinalities of the edges with labels e1, . . . , ek exiting from
a node N . Let N I

1 , . . . , N
I
h be instances of N . For all

i ∈ {1, . . . , h}, we instantiate c appropriately substituting the
cardinality variables occurring in it, with the instance cardi-
nality variables ICe1

NI
i

, . . . , ICek
NI

i

.
Let us now consider process constraints. Let A be an ac-

tivity, let AI
1, . . . , A

I
k be instances of A. Let r be the resource

constraint 〈A,R, q, TE〉, we instantiate it on each instance
of A, i.e., we obtain a constraint 〈AI

i , R, qi, TE〉 for each
i = 1, . . . , k, where qi = q is a fresh variable or an inte-
ger. Let c be an activity duration constraint for A, for each
i = 1, . . . , k we obtain a constraint substituting in c dA with
dAI

i
, and each quantity variable q with the corresponding vari-

able qi. Finally, let B an activity, let BI
1 , . . . , B

I
h be instances

of B. If c is a temporal constraint involving A and B, we
obtain a constraint on activity instances for each ordered cou-
ple 〈i, j〉, with i ∈ {1, . . . , k}, j ∈ {1, . . . , h}, substituting
in c each occurrence of A with AI

i , and of B with BI
j . This

mechanism can be easily extended to non-binary constraints.

3 CLP-based Product/Process Configuration
Constraint Logic Programming (CLP) [Jaffar and Maher,
1994] can be exploited to implement a configuration system
that, given a PRODPROC model (cf. Sect. 2), guide a user
through the configuration process to obtain a PRODPROC in-
stance (cf. Sect. 2.3). In this section, we first present a possi-
ble structure for such a system. Then, we briefly explain how
a configuration problem can be encoded in a CLP program.

A CLP-based system can support a configuration process
as follows. First, the user initializes the system (1) select-
ing the model to be configured. After such an initialization
phase, the user starts to make her/his choices by using the sys-
tem interface (2). The interface communicates to the system

engine (i.e., the piece of software that maintains a represen-
tation of the product/process under configuration, and checks
the validity and consistency of user’s choices) each data varia-
tion specified by the user (3). The system engine updates the
current partial configuration accordingly. Whenever an up-
date of the partial configuration takes place, the user, through
the system interface, can activate the engine inference pro-
cess (4). The engine instantiates PRODPROC constraints (cf.
Sect. 2.3) on the current (partial) candidate instance defined
by user choices, and encodes the product/process configura-
tion problem in a CLP program (encoding a Constraint Satis-
faction Problem, abbreviated to CSP). Then, the engine uses a
finite domain solver to propagate the logical effects of user’s
choices (5). Once the inference process ends (6), the engine
returns to the interface the results of its computation (7). In its
turns, the system interface communicates to the user the con-
sequences of her/his choices on the (partial) configuration (8).

From a PRODPROC model and a user defined (partial) can-
didate instance corresponding to it, it is possible to obtain a
CSP 〈V,D, C〉 where: V is the set of all the variables appear-
ing in the (partial) candidate instance; D is the set of domains
for variables in V; C is the set of constraints in the PRODPROC
model instantiated on variables of the (partial) candidate in-
stance. Such a CSP can be easily encoded in a CLP program
like the following one.
csp_prodProc(Vars) :- DOMS, CONSTRS.

In it, Vars is the list of variables in V , DOMS is the conjunc-
tion of domain constraints for domains in D, and CONSTRS is
the conjunction of constraints in C. Given a program with the
above-described characteristics, a finite domain solver can be
used to reduce the domains associated with variables, pre-
serving satisfiability, or to detect the inconsistency of the en-
coded CSP (due to user’s assignments that violate the set
of constraints or to inconsistencies of the original product
model). Moreover, it can be used to determine that further
node instances are needed, or that there are too many nodes
in the instance tree.

4 Comparison with Related Work
In order to point out strengths and limitations of the PROD-
PROC framework, we present in this section a brief compar-
ison with some of the most important product configuration
systems and process modeling tools.

Answer Set Programming (ASP) [Gelfond and Lifschitz,
1988] has been used to implement product configuration sys-
tems that are specifically tailored to the modeling of software
product families, e.g., Kumbang Configurator [Myllärniemi
et al., 2005]. Even if these systems result to be appealing for
a relevant range of application domains, they lack of general-
ity. In particular, they do not support global constraints, and
the so called grounding stage may cause problems in the man-
agement of arithmetic constraints [Myllärniemi et al., 2005].

Product configuration systems based on binary decision
diagrams (BDDs), e.g., Configit Product Modeler [Configit
A/S, 2009], trade the complexity of the construction of the
BDD, for the simplicity and efficiency of the configuration
process. Despite their various attracting features, BDD-
based systems suffer from some significant limitations. First,

they basically support flat models only, even though some
work has been done on the introduction of modules (see,
e.g., [van der Meer and Andersen, 2004]). Second, they
find it difficult to cope with global constraints. In [Nørgaard
et al., 2009] the authors combine BDD and CSP to tackle
alldifferent constraints. However, they consider flat
models only. We are not aware of any BDD system that deals
with global constraints in a general and satisfactory way.

Unlike ASP-based and BDD-based systems, CSP-based
product configuration systems are (usually) capable of deal-
ing with non-flat models and global constraints. Unfor-
tunately, the modeling expressiveness of CSP-based sys-
tems has a cost, i.e., backtrack-free configuration algo-
rithms for CSP-based systems are often inefficient, while
non backtrack-free ones need to explicitly deal with dead
ends. Moreover, most CSP-based systems do not offer
high-level modeling languages (product models must be
specified at the CSP level). Some well-known CSP-based
configuration systems, such as ILOG Configurator [Junker,
2003], which features various interesting modeling facili-
ties, and Lava [Fleischanderl et al., 1998], which is based
on Generative-CSP, seem to be no longer supported. A re-
cent CSP-based configuration system is Morphos Configura-
tion Engine (MCE) [Campagna et al., 2010]. As other CSP-
based systems, it makes it possible to define non-flat models.
Its configuration algorithm is not backtrack-free, but it ex-
ploits back-jumping capabilities, to cope with dead ends, and
branch-and-prune capabilities, to improve domain reduction.
From the point of view of process modeling, PRODPROC can
be viewed as an extension of MCE modeling language. In
particular, it extends MCE modeling language with the fol-
lowing features: (1) cardinality variables, i.e., has-part/is-
part-of relations can have non-fixed cardinalities; (2) product
model graph, i.e., nodes and relations can define a graph, not
only a tree; (3) cardinality constraints and cardinality model
constraints, i.e., constraints can involve cardinalities of rela-
tions; (4) MetaPaths, i.e., a mechanism to refer to particular
node instance variables in constraints.

PRODPROC can be viewed as the source code representa-
tion of a configuration system with respect to the MDA ab-
straction levels presented in [Felfernig, 2007]. PRODPROC
product modeling elements can be mapped to UML/OCL in
order to obtain platform specific (PSM) and platform inde-
pendent (PIM) models. The mapping to OCL of MetaPaths
containing ‘?’ wildcards and of model constraints requires
some attention. For example, the latter do not have explicit
contexts as OCL constraints must have. Since PRODPROC
does not support the definition of taxonomies of product com-
ponents, there will not be generalization hierarchies in PMSs
and PIMs corresponding to PRODPROC models.

In the past years, different formalism have been proposed
for process modeling. Among them we have: the Busi-
ness Process Modeling Notation (BPMN) [White and Miers,
2008]; Yet Another Workflow Language (YAWL) [ter Hofst-
ede et al., 2010]; DECLARE [Pesic et al., 2007].

Languages like BPMN and YAWL model a process as a
detailed specification of step-by-step procedures that should
be followed during the execution. BPMN and YAWL adopt
an imperative approach in process modeling, i.e., all possibil-

ities have to be entered into their models by specifying their
control-flows. BPMN has been developed under the coordi-
nation of the Object Management Group. PRODPROC has
in common with BPMN the notion of atomic activity, sub-
process, and multiple instance activity. The effect of BPMN
joins and splits on the process flow can be obtained using tem-
poral constraints. In PRODPROC there are no notions such as
BPMN events, exception flows, and message flows. How-
ever, events can be modeled as instantaneous activities and
data flowing between activities can be modeled with model
variables. YAWL is a process modeling language whose in-
tent is to directly supported all control flow patterns. PROD-
PROC has in common with YAWL the notion of task, multi-
ple instance task, and composite task. YAWL join and split
constructs are not present in PRODPROC, but using temporal
constraints it is possible to obtain the same expressivity. The
notion of cancellation region is not present in PRODPROC,
but our framework could be extended to implement it.

As opposed to traditional imperative approaches to process
modeling, DECLARE uses a constraint-based declarative ap-
proach. Its models rely on constraints to implicitly determine
the possible ordering of activities (any order that does not
violate constraints is allowed). With respect to DECLARE,
PRODPROC has in common the notion of activity and the use
of temporal constraints to define the control flow of a pro-
cess. The set of atomic temporal constraints is not as big as
the set of template constraints available in DECLARE, how-
ever it is possible to easily the available ones so as to define all
complex constraints of practical interest. Moreover, in PROD-
PROC it is possible to define multiple instance and composite
activities, features that are not available in DECLARE.

From the point of view of process modeling, PRODPROC
combines modeling features of languages like BPMN and
YAWL, with a declarative approach for control flow defini-
tion. Moreover, it presents features that, to the best of our
knowledge, are not presents in other existing process mod-
eling languages. These are: resource variables and resource
constraints, activity duration constraints, and product related
constraints. Thanks to these features, PRODPROC is suit-
able for modeling production processes and, in particular,
to model mixed scheduling and planning problems related
to production processes. Furthermore, a PRODPROC model
does not only represent a process ready to be executed as
a YAWL (or DECLARE) model does, it also allows one to
describe a configurable process. Existing works on process
configuration, e.g., [Rosa, 2009], define process models with
variation points, and aim at deriving different process model
variants from a given model. Instead, we are interested in
obtaining process instances, i.e., solutions to the schedul-
ing/planning problem described by a PRODPROC model.

With respect to the works of Mayer et al. on service pro-
cess composition (e.g. [Mayer et al., 2009]), PRODPROC is
more geared toward production process modeling and con-
figuration. However, certain aspects of service composition
problems can be modeled using PRODPROC too.

The PRODPROC framework allows one to model products,
their production processes, and to couple products with pro-
cesses using constraints. The only works on the coupling of
product and process modeling and configuration we are aware

of are the ones by Aldanondo et al. (see, e.g., [Aldanondo
and Vareilles, 2008]). They propose to consider simultane-
ously product configuration and process planning problems
as two constraint satisfaction problems. In order to propa-
gate decision consequences between the two problems, they
suggest to link the two constraint based models using cou-
pling constraints. The development of PRODPROC has been
inspired by the papers of Aldanondo et al., in fact, we also
have separated models for products and processes and, con-
straints for coupling them. However, our modeling languages
are far more complex and expressive than the one presented
in [Aldanondo and Vareilles, 2008].

5 Conclusions
In this paper, we considered the problem of product and pro-
cess modeling and configuration, and pointed out the the lack
of a tool covering both physical and production aspects of
configurable products. To cope with this absence, we pre-
sented a graphical framework called PRODPROC. Further-
more, we shown how it is possible to build a CLP-based con-
figuration systems on top of it, and presented a comparison
with some of the existing product configuration systems and
process modeling tools.

We already implemented a first prototype of a CLP-based
configuration system that uses PRODPROC. It covers only
product modeling and configuration, but we are working to
add to it process modeling and configuration capabilities. We
also plan to experiment our configuration system on differ-
ent real-world application domains, and to compare it with
commercial products, e.g., [Blumöhr et al., 2009].

References
[Aldanondo and Vareilles, 2008] M. Aldanondo and

E. Vareilles. Configuration for mass customization:
how to extend product configuration towards requirements
and process configuration. J. of Intelligent Manufacturing,
19(5):521–535, 2008.

[Allen, 1983] J. F. Allen. Maintaining knowledge about tem-
poral intervals. Commun. ACM, 26:832–843, 1983.

[Blumöhr et al., 2009] U. Blumöhr, M. Münch, and
M. Ukalovic. Variant Configuration with SAP. SAP Press,
2009.

[Campagna et al., 2010] D. Campagna, C. De Rosa,
A. Dovier, A. Montanari, and C. Piazza. Morphos Config-
uration Engine: the Core of a Commercial Configuration
System in CLP(FD). Fundam. Inform., 105(1-2):105–133,
2010.

[Configit A/S, 2009] Configit A/S. Configit Product Mod-
eler. http://www.configit.com, 2009.

[Felfernig, 2007] A. Felfernig. Standardized Configuration
Knowledge Representations as Technological Foundation
for Mass Customization. IEEE Trans. on Engineering
Management, 54(1):41–56, 2007.

[Fleischanderl et al., 1998] G. Fleischanderl, G. Friedrich,
A. Haselböck, H. Schreiner, and M. Stumptner. Config-
uring Large Systems Using Generative Constraint Satis-
faction. IEEE Intelligent Systems, 13(4):59–68, 1998.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming. In
ICLP/SLP, pages 1070–1080, 1988.

[Jaffar and Maher, 1994] J. Jaffar and M. J. Maher. Con-
straint logic programming: A survey. J. Log. Program.,
19/20:503–581, 1994.

[Junker, 2003] U. Junker. The Logic of ILOG
(J)Configurator: Combining Constraint Programming
with a Description Logic. In Proc. of the IJCAI’03
Workshop on Configuration, pages 13–20. 2003.

[Laborie, 2003] P. Laborie. Algorithms for propagating re-
source constraints in AI planning and scheduling: existing
approaches and new results. Artif. Intell., 143:151–188,
2003.

[Mayer et al., 2009] W. Mayer, R. Thiagarajan, and
M. Stumptner. Service composition as generative con-
straint satisfaction. In Proc. of the 2009 IEEE Int. Conf.
on Web Services, pages 888–895, 2009.

[Myllärniemi et al., 2005] V. Myllärniemi, T. Asikainen,
T. Männistö, and T. Soininen. Kumbang configurator -
a configurator tool for software product families. In Proc.
of the IJCAI’05 Workshop on Configuration, pages 51–56.
2005.

[Nørgaard et al., 2009] A. H. Nørgaard, M. R. Boysen, R. M.
Jensen, and P. Tiedemann. Combining Binary Deci-
sion Diagrams and Backtracking Search for Scalable
Backtrack-Free Interactive Product Configuration. In Porc.
of the IJCAI’09 Workshop on Configuration, 2009.

[Pesic et al., 2007] M. Pesic, H. Schonenberg, and W.M.P.
van der Aalst. DECLARE: Full support for loosely-
structured processes. In Proc. of EDOC’07, pages 287–
287, 2007.

[Rosa, 2009] M. La Rosa. Managing Variability in Process-
Aware Information Systems. PhD thesis, Queensland Uni-
versity of Technology, Brisbane, Australia, 2009.

[Sabin and Weigel, 1998] D. Sabin and R. Weigel. Product
configuration frameworks-a survey. IEEE Intelligent Sys-
tems, 13:42–49, July 1998.

[ter Hofstede et al., 2010] A. H. M. ter Hofstede, W.M.P.
van der Aalst, M. Adams, and N. Russell. Modern Busi-
ness Process Automation - YAWL and its Support Environ-
ment. Springer, 2010.

[van der Meer and Andersen, 2004] E. R. van der Meer and
H. R. Andersen. BDD-based Recursive and Conditional
Modular Interactive Product Configuration. In Proc. of
Workshop on CSP Techniques with Immediate Application
(CP’04), pages 112–126, 2004.

[van Hoeve, 2001] W. J. van Hoeve. The alldifferent Con-
straint: A Survey, 2001.

[White and Miers, 2008] S. A. White and D. Miers. BPMN
modeling and reference guide: understanding and using
BPMN. Lighthouse Point, 2008.

