
(Re)configuration using Answer Set Programming∗

Gerhard Friedrich and
Anna Ryabokon

Universitaet Klagenfurt, Austria
firstname.lastname@aau.at

Andreas A. Falkner, Alois Haselböck,
Gottfried Schenner and Herwig Schreiner

Siemens AG Österreich, Vienna, Austria
firstname.{middleinitial.}lastname@siemens.com

Abstract
Reconfiguration is an important activity for compa-
nies selling configurable products or services which
have a long life time. However, identification of
a set of required changes in a legacy configura-
tion is a hard problem, since even small changes
in the requirements might imply significant modi-
fications. In this paper we show a solution based
on answer set programming, which is a logic-based
knowledge representation formalism well suited for
a compact description of (re)configuration prob-
lems. Its applicability is demonstrated on simple
abstractions of several real-world scenarios. The
evaluation of our solution on a set of benchmark in-
stances derived from commercial (re)configuration
problems shows practical applicability.

1 Introduction
Reconfiguration is an important task in the after-sale life-
cycle of configurable products and services, because require-
ments for these products and services are changing in parallel
with the customers’ business [6; 2]. In order to keep a product
or a service up-to-date a re-engineering organization has to
decide which modifications should be introduced to an exist-
ing configuration such that the new requirements are satisfied
but change costs are minimized.

Following the knowledge based configuration approach,
we formulate reconfiguration problem instances as exten-
sions of declaratively defined configuration problem in-
stances where configurations are represented by facts and re-
quirements are expressed by logical descriptions. These re-
quirements may be partitioned into customer requirements
and system specific configuration requirements. A configu-
ration is simply defined as a subset of a logical model of the
requirements. Informally, a reconfiguration problem instance
is generated by an adaption of the requirements resulting in
a new set of requirements and therefore a new instance of
a configuration problem is formulated. Subsequently, given
legacy configurations have to be adapted to configurations for
the new requirements. In our approach, the knowledge base

∗This work has been developed within the scope of the project
RECONCILE (reconciling legacy instances with changed ontolo-
gies) and was funded by FFG FIT-IT (grant number 825071).

comprises two parts, the description of the new configura-
tion problem instance and transformation knowledge regard-
ing reuse and deletion of parts of a legacy configuration. The
first part is a usual instance of a configuration problem where
all valid configurations are specified by the set of adapted re-
quirements. The second part describes a mapping from the
pieces of the legacy configuration to the ontology of the new
configuration problem instance. Technically speaking this is
a mapping from facts describing the legacy configuration to
facts in the ontology of the new configuration problem in-
stance. For generating a reconfiguration the problem solver
has to decide which parts of the legacy configuration are ei-
ther reused or deleted and which new parts have to be created.

We introduce general definitions for (re)configuration
problems employing Herbrand-models of logical descrip-
tions. Based on these definitions it is simple to see that config-
uration and reconfiguration problems fall into the same com-
plexity classes. Because of the remarkable advances of an-
swer set programming (ASP) [8; 5] we base our implemen-
tation on this reasoning framework. ASP was first applied to
configuration problems by [9]. In particular, we provide mod-
eling patterns for configuration and reconfiguration which al-
low the generation of optimized reconfigurations exploiting
standard ASP solvers. Finally, our evaluation shows that the
proposed method solves reconfiguration problem instances
which are practically interesting for industrial applications.

In Section 2 we present an introductory example of a
configuration problem and some reconfiguration scenarios.
Then, configuration problems are defined in Section 3. In
Section 4 a review of the basic concepts of ASP is given fol-
lowed by an exemplification of modeling in Section 5. Sec-
tion 6 provides the definition of reconfiguration problems.
Subsequently, modeling patters and an example of their appli-
cation are provided in Section 7. Finally, we show the results
of an evaluation in Section 8 and conclude in Section 9.

2 Example
Let us exemplify different configuration and reconfiguration
scenarios on a problem which is a simple abstraction of sev-
eral configuration problems occurring in practice, i.e. entities
may be contained in other entities but some restrictions must
be fulfilled. We employ the ontology comprising the concepts
person, thing, cabinet, and room where persons are related to
things, things are related to cabinets, cabinets are related to

Figure 1: Solution of the sample house configuration prob-
lem. The house configuration includes rooms 15 and 16, two
cabinets 9 and 10, and six things numbered from 3 to 8

rooms, and rooms are related to persons. These relations are
modeled either by roles, associations, or predicate symbols
depending on the modeling language (e.g. description logic,
UML, or predicate logic).

As input to the configuration problem an ownership rela-
tion between persons and things is provided. We call this
input a customer requirement since it reflects the individual
needs of a customer using a configuration system whereas
configuration requirements specify the properties of the sys-
tem to be configured. Each person can own any number of
things but each thing belongs to only one person. The prob-
lem is to place these things into cabinets and the cabinets into
rooms of a house such that the following configuration re-
quirements are fulfilled:
• each thing must be stored in a cabinet;
• a cabinet can contain at most 5 things;
• every cabinet must be placed in a room;
• a room can contain at most 4 cabinets;
• a person can own any number of rooms;
• each room belongs to a person;
• and a room may only contain cabinets storing things of

the owner of the room.
In order to keep the example simple we only consider con-
figuration of one house and represent all individuals using
unique integer identifiers.

Informally, a configuration is every instantiation of the re-
lations which satisfies all requirements.

Let a sample house problem instance include two persons
such that the first person owns five things numbered 3 to 7
and the second person owns one thing 8. A solution for this
house configuration problem instance is shown in Figure 1.

Reconfiguration is necessary, whenever the customer re-
quirements or configuration requirements are changed. For
instance, it becomes necessary to differentiate between long
and short things with the following new requirements:
• a cabinet is either small or high;
• a long thing can only be put into a high cabinet;
• a small cabinet occupies 1 and a high cabinet 2 of 4 slots

available in a room;
• all legacy cabinets are small.

The customer requirements, in this case, define for each thing
if it is long or short. For instance, the customer provides infor-
mation that the things 3 and 8 are long; all others are short.

Figure 2: Reconfiguration initial state

Figure 3: Reconfiguration solution 1

Moreover, the first person gets an additional long thing 21.
The changes to the legacy configuration are summarized in
Figure 2 showing an inconsistent configuration, where thing
21 is not placed in any of the cabinets, and cabinets 9 and 10
are too small for things 3 and 8.

To obtain a solution which is shown in Figure 3 the recon-
figuration process changes the size of cabinets 9 and 10 to
high and puts the new thing 21 into cabinet 9. A new small
cabinet 22 is created for thing 7.

In our reconfiguration process every modification to the ex-
isting configuration, i.e. reusing/deleting/creating individuals
and their relations, is associated with some cost. Therefore
the reconfiguration problem is to find a consistent configu-
ration by removing the inconsistencies and minimizing the
costs involved. Different solutions will be found depending
on the given modification costs. If, for example, the costs for
adding a new high cabinet are less than the cost for changing
an existing small cabinet into a high cabinet, then the previ-
ous solution should be rejected as its costs are too high. One
of the solutions with less reconfiguration costs (see Figure 4)
includes two new cabinets 22 and 23, because this is cheaper
than converting the existing small cabinets into high cabinets.
Also it contains the empty cabinet 10 because it’s cheaper to
keep the cabinet than to delete it. Note, this behavior can be
controlled by the domain specific costs.

Figure 4: Reconfiguration solution 2

3 Configuration problems
We employ a definition of configuration problems based on
logical descriptions [9; 3]. The basic idea is that every finite
Herbrand-model contains the description of exactly one con-
figuration.

The description of a configuration is defined by relations
expressed by a set of predicates PS. This set of predicates
is called the solution schema. For our example the solu-
tion schema consists of the four unary predicates thing/1,
person/1, cabinet/1 and room/1 representing the individu-
als and the four binary predicates, namely personTOthing/2,
personTOroom/2, roomTOcabinet/2 and cabinetTOthing/2

representing the relations. An instantiation of this solution
schema corresponds to a configuration. A fragment of this
instantiation is presented below.
{person(1), thing(3), room(15), cabinet(9),
cabinetTOthing(9,3), personTOthing(1,3),
roomTOcabinet(15,9), personTOroom(1,15),...}

Note, this description of a configuration generalizes the
component/port models or variable/value based descriptions
of a configuration.

We assume that every predicate symbol is unique in a logi-
cal theory and has a unique arity. The set of Herbrand-models
is specified by a set of logical sentences REQ, which usually
comprises the individual customer requirements and the con-
figuration requirements. Configuration requirements reflect
the set of all allowed configurations for an artifact, whereas
customer requirements may comprise facts and logical sen-
tences specifying the individual needs of customers. The
same configuration requirements are a basis for different sets
of customer requirements. E.g. the component library of a
technical system is stable for some time.
Definition 1 (Instances of configuration problems) A con-
figuration problem instance 〈REQ,PS〉 is defined by a set
of logical sentences REQ representing requirements and PS

a set of predicate symbols representing the solution schema.
For optimization purposes an objective function f(S) 7→ N
maps any set of atoms S to positive integers where S contains
only atoms whose predicate symbols are in PS.

LetHM(L) denote the set of Herbrand-models of a set of
logical sentences L for a given semantics.
Definition 2 (Configuration) S is a configuration for a con-
figuration problem instance CPI = 〈REQ,PS〉 iff there is a
Herbrand-model M ∈ HM(REQ) and S is the set of all
the elements of M whose predicate symbols are in PS and S
is finite, i.e. S = {p(t)|p ∈ PS and p(t) ∈ M)}. By p(t)
we denote a ground instance of p with a term vector t.

S is an optimal configuration for CPI iff S is a configu-
ration for CPI and there is no configuration S′ of CPI s.t.
f(S′) < f(S).
Definition 3 (Configuration problems) Let the instances of
configuration problems be defined by 〈REQ,PS〉 and objec-
tive functions f(·).
Decision problem: Given a set of atoms S. Decide if S is a
configuration for a configuration problem instance.
Generation (optimization) problem: Generate a set of atoms
S s.t. S is a configuration (an optimal configuration) for a
configuration problem instance.

The set of Herbrand-models depends on the semantics of
the employed logic. In this paper, we apply answer set
programming and a stable model semantics for knowledge
representation and reasoning because this approach allows a
concise and modular specification, assures decidability, and
avoids the inclusion of unjustified atoms (e.g. unjustified
components) in configurations [9].

4 Overview on answer set programming
ASP is based on a decidable fragment of first-order logic en-
hanced with default negation and aggregation. We give a brief
summary of the employed ASP variant and language con-
structs as needed. A detailed discussion of ASP can be found
in [5; 4].

We start our introduction with rules without variables and
introduce logical variables afterwards. A rule has the struc-
ture C0 ← C1, . . . , Cn. Elements C1, . . . , Cn on the right-
hand-side (the body of a rule) are either literals or weight con-
straints. A literal is either an atom or a default negated atom.
Default negation is expressed by not. C0 (head of the rule) is
either an atom or a weight constraint. We do not consider de-
fault negation on the left-hand-side and in weight constraints.
If all Ci are literals then such a rule is called a normal rule.

To be able to express the requirements of our example
domain we introduce a simplified version of weight con-
straints and their special case – cardinality constraints [9;
8; 4]. Weight constraints are of the form l ≤ {a1 =
w1, . . . , an = wm} ≤ u where ai are atoms, wj are integers
representing weights of corresponding atoms and l, u are inte-
gers specifying lower and upper bounds. Given a set of atoms
M representing a Herbrand-interpretation, the interpretation
of a weight constraints evaluates to true iff the sum of weights
of literals a1, . . . , an which are contained in M is between l
and u. E.g. 0 ≤ {a = 1, b = 2} ≤ 2 is satisfied by ∅, {a} or
{b} but not by {a, b}. Missing lower or upper bounds express
the fact that there are no limits. Cardinality constraints are of
the form l ≤ {a1, . . . , an} ≤ u where each weight is consid-
ered to be equal 1. As usually (negated) atoms in the body of
the rule are true if they are (not) in M.

The semantics of a set of rules is defined by a stable model
semantics. We give a brief informal description of this seman-
tics for the restricted version employed in this paper and refer
the reader to [8] for an in-depth exposition. A set of ground
atoms M is a stable model for a set of rules RU iff two prop-
erties are fullfiled: (1) M satisfies all rules in RU and (2)
every atom in M is justified by a reduced rule set RUM. A
rule is satisfied by a set of ground atoms M iff M satisfies
C0 or there exists a literal C1, . . . , Cn which is not satisfied
by M. An empty body of a rule is always satisfied. A rule
with empty head is satisfied iff one literal in the body is not
satisfied. The precise semantics of justification is expressed
by a reduction of the rule set RU. Given RU and depend-
ing on the set of atoms M, the reduct RUM is generated as
follows. In our simplified version, default negated atoms are
replaced in the rules RU according to their truth value w.r.t.
M, i.e. not a is true iff a /∈ M. Rules in RU are deleted if
the head does not include an atom of M or some of the upper
bounds are violated. Note, weight constraints in the head of a
rule may comprise several atoms. Roughly speaking an atom

in M is justified iff it is contained in the head of a rule and all
atoms and weight constraints of this rule are justified. True
is always and false is never justified. A weight/cardinality
constraint in the body of a rule is justified if enough atoms
contained in the weight/cardinality constraint are justified s.t.
the lower bound is met. Facts are rules with true as body. Jus-
tifications must be acyclic. For instance, 0 ≤ {a, b} ≤ 1← c
is satisfied by {a} but {a} is not justified. However, if we add
the fact c to the knowledge base, {c}, {c, a}, and {c, b} are
stable models.

In order to allow logical variables and functional symbols
but to guarantee decidability the set of allowed rules is re-
stricted. Potassco [4] requires level-restricted programs. The
basic idea is that for each variable V in a rule there is an
unnegated atom a in the body s.t. the potentially derivable
ground instances of a are limited. If such an atom is avail-
able the ground terms to which V needs to be instantiated are
known a-priori. I.e. every variable in a rule must be bound
to a finite set of ground terms via a predicate that is not sub-
ject to a positive recursion (recursion over unnegated atoms)
through that rule.

For a succinct specification of facts in our example we
use so-called intervals, e.g. person(1..2). corresponds to the
facts person(1). person(2). To exemplify the application of
cardinality constrains, let an ASP program contain the facts:

thing(3..4). cabinetDomain(9..10).

In order to formulate weight constraints concisely, so
called conditional literals are supported. The basic idea is
that conditional literals serve as a generator for producing a
set of atoms. The constraint

1{cabinetTOthing(X, Y): cabinetDomain(X)}1
← thing(Y).

where cabinetTOthing(X, Y) : cabinetDomain(X) is a
conditional literal, which is expanded to

1{cabinetTOthing(9, 3), cabinetTOthing(10, 3)}1
← thing(3).

1{cabinetTOthing(9, 4), cabinetTOthing(10, 4)}1
← thing(4).

expressing that things 3 and 4 must be connected to exactly
one of the cabinets 9 and 10. Conditional literals can be used
in weight constraints in place of atoms, where the conditional
part (e.g. cabinetDomain(X)) is a (conjunction of) domain
predicate(s) preceded by the main part. As usual, strings
starting with upper case letters are logical variables. The in-
stantiation of domain predicates is defined by non-recursive
normal rules and ground facts. For instantiating conditional
literals we have to distinguish between local and global vari-
ables. A variable is local iff it appears only in a conditional
literal, e.g. X is local in our example. All other variables are
global, e.g. Y . During grounding of the rules, global variables
are instantiated first. Then the main part of the conditional
literal is expanded for the instantiations of the local variables
where the conditional part is fulfilled.

Note, in Potassco [4] weight constraints are declared by
square brackets l ≤ [L1 = w1, . . . , Ln = wn] ≤ u, where Li is

a literal and wi is a numerical value representing its weight.
Literals Li could be equal. Curly brackets are employed to
define cardinality constraints where duplicated literals are re-
moved.

Answer set programming solvers like [8; 5; 4] of-
fer optimization services. In particular, the statement
#minimize[L1 = w1@p1, . . . , Ln = wn@pn]. allows mini-
mization. The minimization statement is similar to the
weight constraints with a possibility to assign a priority level
pi to each weighted literal. Instead of #minimize also
#maximize could be used. An answer set is optimal iff the
sum of the weights of literals which are satisfied in this an-
swer set is minimal (maximal) among all answer sets of a
given program. Optimization is performed in the order of pri-
orities starting from the highest priority value.

5 Defining configuration problem instances
In [9] various modeling patterns based on weight constraints
were introduced. A fixed set of ground facts define the indi-
viduals which are employed for a configuration. This fixed
set of ground facts in conjunction with the level-restriction
place an upper bound on the size of the number of grounded
rules and therefore decidability is guaranteed. At the current
state of research such an upper bound on the number of in-
dividuals is necessary for many applications. In particular, it
is well known from database theory that so called tuple gen-
erating dependencies lead to undecidability even under rather
strict syntactical restrictions [1]. A tuple generating depen-
dency is ∀X∀Y φ(X,Y)→ ∃Zψ(X,Z) where φ(X,Y) and
ψ(X,Z) are conjunctions of atoms and X,Y , and Z are rep-
resenting vectors of logical variables. Unfortunately, such
rules may occur in configuration problem instances. E.g. if a
condition holds, a specific individual of some type must exist
and this individual must be connected to some other individ-
uals.

However, in many cases it is undesirable to consider only
a fixed number of individuals employed in a configuration.
Guessing the right number is for configuration generation
problems or optimization problems quite hard and often im-
possible. Therefore we apply the following modeling pattern.

Let pLower and pUpper represent the upper and lower
number of individuals of type p. Such a type is called
bounded. We require each individual of a configuration, rep-
resented by its unique identifier, to be a member of exactly
one bounded type. To each bounded type a domain pDomain
is associated, representing the set of possible individuals of
the bounded type. We employ numbers as identifiers, start-
ing from some offset. For every bounded type p we add the
following axioms:

pDomain(pOffset+ 1 .. pOffset+ pUpper).

pLower{p(X) : pDomain(X)}pUpper.
p(X)← pDomain(X), pDomain(Y), p(Y), X < Y.

The first rule instantiates the maximal required number of
unique individuals of p in pDomain. The second rule makes
sure that at least pLower, but at most pUpper individuals of
p are asserted. The third rule breaks the symmetry of asser-
tions. By these rules the required number of p individuals

are asserted, in order to find a configuration within the given
upper and lower bounds.

For some bounded types, e.g. person/1 and thing/1 the
bounds pLower and pUpper coincide because the exact num-
ber of individuals employed in any configuration is known. In
this case the fixed set of p facts can be asserted without using
the rules presented above.

In our example the customer provides a number of require-
ments for a configuration that include definitions of person
and thing individuals as well as their relations.
person(1..2). thing(3..8).
personTOthing(1,3). personTOthing(1,4).
personTOthing(1,5). personTOthing(1,6).
personTOthing(1,7). personTOthing(2,8).

For the bounded type cabinet we add the following rules. The
upper and lower numbers of cabinets are computed based on
the number of things and persons. The rules for rooms are
defined accordingly.
cabinetDomain(9..14).
2{cabinet(X):cabinetDomain(X)}6.
cabinet(X) :- cabinetDomain(X), cabinetDomain(Y),

cabinet(Y), X<Y.

Cardinality restrictions given in Section 2 are encoded
with cardinality constraints, where one direction of an as-
sociation is encoded as a generation rule (see Section 4)
and the other direction as a constraint. Such encoding cor-
responds to Guess/Check/Optimize pattern [5]. Note, the
cardinality constraints just as the weight constraints require
that logical variables appear in domain predicates. There-
fore, we have to use pDomain predicates rather than p predi-
cates, e.g. cabinetDomain(X) instead of cabinet(X). How-
ever, individuals employed in relations must also be con-
tained in the corresponding types (see the last four rules of
the next sequence of rules). By these rules we avoid situa-
tions where an individual is used in a relation but not included
in the bounded type. In our example, if the program asserts
cabinetTOthing(14,1) then cabinet(14) is also asserted.

1{cabinetTOthing(X,Y):cabinetDomain(X)}1 :- thing(Y).
:- 6 {cabinetTOthing(X,Y):thing(Y)}, cabinet(X).
1{roomTOcabinet(X,Y):roomDomain(X)}1 :- cabinet(Y).
:- 5 {roomTOcabinet(X,Y):cabinetDomain(Y)}, room(X).
room(X) :- roomTOcabinet(X,Y).
room(Y) :- personTOroom(X,Y).
cabinet(X) :- cabinetTOthing(X,Y).
cabinet(Y) :- roomTOcabinet(X,Y).

The next rules describe the fact that a room may contain
things of its owner only.
personTOroom(P,R) :- personTOthing(P,X),

cabinetTOthing(C,X), roomTOcabinet(R,C).
:- personTOroom(P1,R), personTOroom(P2,R), P1!=P2.

In addition, optimization can be applied to generate opti-
mal configurations which minimize the overall configuration
costs depending on the objective function. We model the ob-
jective function by assigning to each atom in S some costs.
This can be achieved with the following modeling pattern.
By the atom cost(create(a, w)), where a is an element of S
and w is an integer, the costs of creating an element a in a con-
figuration are defined. We employ the conjunction of atoms

α(X, Y, W) to allow case specific determination of costs. For
each p ∈ PS include axioms of the following form in REQ:

cost(create(p(X)), W)← p(X), α(X, Y, W).

such that for each atom p(t) in S the answer set contains an
atom cost(create(p(t), w)) where w is an integer. E.g.:
roomCost(5). personTOroomCost(1).
cost(create(room(X)),W) :- room(X), roomCost(W).
cost(create(personTOroom(X,Y)), W) :-

personTOroom(X,Y), personTOroomCost(W).

All other creation costs are expressed in the same way. We
minimize the sum of all costs by means of the following op-
timization statement:
#minimize[cost(X,W)=W@1].

For the given example the solver finds the optimal configu-
ration including two cabinets and two rooms with the overall
cost 40 (depicted in Figure 1).
{cabinet(10), cabinet(9), room(16), room(15), ...,
roomTOcabinet(15,9), roomTOcabinet(16,10),
cabinetTOthing(10,8) cabinetTOthing(9,7), ...,
cabinetTOthing(9,3), personTOroom(1,15),
personTOroom(2,16)}

6 Reconfiguration problems
We view reconfiguration as a new configuration-generation
problem where parts of a legacy configuration are possibly
reused. The conditions under which some parts of the legacy
configuration can be reused and what the consequences of a
reuse are, is expressed by a set of logical sentences T which
relate the legacy configuration S and the new configuration
problem instance 〈REQR,PR〉.
Definition 4 (Instances of reconfiguration problems) A
reconfiguration problem instance 〈〈REQR,PR〉,S,T〉 is
defined by: 〈REQR,PR〉 an instance of a configuration
problem, S a legacy configuration and T a set of logical sen-
tences representing the transformation constraints regarding
the legacy configuration.

For optimization purposes an objective function
g(S,R) 7→ N maps legacy configurations S and con-
figurations R of 〈REQR,PR〉 to positive integers.

Note, the two-placed objective function expresses the fact
that the costs of an reconfiguration depend not only on the
elements contained in a reconfiguration but also on the reuse
or deletion of elements of the legacy configuration.

In order to avoid name conflicts between the entities of
the legacy configuration S and instances of new configura-
tion problems 〈REQR,PR〉, we usually formulate PR and
REQR using constants not employed in S. In particular, we
use different name spaces for terms referencing individuals.
Together with the unique name assumption this implies that
individuals of the legacy configuration and new individuals
introduced by the reconfiguration problem are disjunct.

Reconfigurations are defined analog to configurations as a
finite subset of Herbrand-models.
Definition 5 (Reconfiguration) R is a reconfiguration for
a reconfiguration problem instance RCI = 〈〈REQR,PR〉,
S,T〉 iff there is a Herbrand-model M ∈ HM(REQR ∪

S∪T) and R is the set of all the elements of M whose pred-
icate symbols are in PR and R is finite.

R is an optimal reconfiguration for RCI iff R is a recon-
figuration for RCI and there is no reconfiguration R′ of RCI
s.t. g(S,R′) < g(S,R).

Reconfiguration problems are formulated analog to config-
uration problems.

Definition 6 (Reconfiguration problems) The instances
of reconfiguration problems are defined by a tuple
〈〈REQR,PR〉, S,T〉 and objective functions g(·, ·).
Decision problem: Given a set of atoms R. Decide if R is a
reconfiguration for a reconfiguration problem instance.
Generation (optimization) problem: Generate a set of atoms
R s.t. R is a reconfiguration (an optimal reconfiguration) for
a reconfiguration problem instance.

Because we can reduce configuration problems to recon-
figuration problems and vice versa the following property fol-
lows trivially.

Property 1 Employing a logical representation language for
representing instances of configuration problems and recon-
figuration problems whose satisfiability problem is at least
NP-complete, generating a(n optimal) reconfiguration is as
hard as generating a(n optimal) configuration w.r.t. computa-
tional complexity.

7 Defining reconfiguration problem instances
In the following we show typical formalization patterns
and apply them to our example. The set of atoms
{legacyConfig(a)|a ∈ S} describes the atoms of the legacy
configuration S. Note, the definition of reconfiguration prob-
lems does not employ first-order logic constructs in order to
avoid unnecessary restrictions. However, to facilitate a con-
cise description of the problem we introduce the predicate
legacyConfig/1 to allow quantification over the elements
of the legacy configuration. Note, we could rewrite all shown
axioms to propositional logic.

For the transformation sentences T we employ the follow-
ing general patterns. For reusing parts of the legacy config-
uration the problem solver has to make the decision either
to reuse or to delete. This is expressed by reuse(a) and
delete(a) atoms where a is an element of S. For each atom
a in S either reuse(a) or delete(a) must hold. Based on
these atoms additional configuration constraints can be de-
fined which describe the proper reuse or deletion of a part
of the legacy configuration represented by atom a. In our
case, reusing an atom a of the legacy configuration implies
the assertion of this atom, whereas deletion requires that the
atom is not asserted. In addition, costs are associated to each
reuse(a) or delete(a) operation. This is expressed by the
atom cost(reuse(a), w) or cost(delete(a), w) where a is
an element of S and w is an integer specifying the correspond-
ing costs. Furthermore, we require that in each model which
contains reuse(a) or delete(a) also cost(reuse(a), w) or
cost(delete(a), w) is contained in order to have defined
reuse or deletion costs. The conjunctions β(X,Y ,W) and
γ(X,Y ,W) are employed to define case specific costs.

For each p ∈ PS include the following axioms in T:

1{reuse(p(X)), delete(p(X))}1← legacyConfig(p(X)).

p(X)← reuse(p(X)).

← p(X), delete(p(X)).

cost(reuse(p(X)), W)← reuse(p(X)), β(X, Y, W).

cost(delete(p(X)), W)← delete(p(X)), γ(X, Y, W).

Analog to configuration problems, we require each individ-
ual contained in a reconfiguration to be a member of exactly
one bounded type. Consequently, individuals of the legacy
configuration have to be a member of the domain pDomain(X)
of a bounded type p of 〈REQR,PR〉, because these individ-
uals can be part of a reconfiguration through reuse. I.e. there
are rules of the form

pDomain(X)← legacyConfig(q(. . . , X, . . .)).

where q is predicate symbol of the solution schema of the
legacy configuration.

As for configuration problems, the number of individuals
of a bounded type p is limited. For every bounded type p we
add the following axioms:

pLower{p(X) : pDomain(X)}pUpper.

However, the two other rules for bounded types are changed.
In particular, we have to adapt the symmetry breaking pat-
tern of configurations. The reason is that there are two differ-
ent types of individuals contained in pDomain, those which
are reused and those which are newly generated. Symme-
try breaking does not apply to the reused individuals because
they may be linked to other reused individuals. Therefore, ex-
changing these individuals potentially leads to different con-
figurations. However, the newly generated individuals are in-
terchangeable. We describe them by pDomainNew/1 for the
bounded type p. We use pNewOffset to generate new iden-
tifiers. I.e. the pattern is

pDomainNew(pNewOffset+ 1 .. pNewOffset+ pUpper).

pDomain(X)← pDomainNew(X).

p(X)← pDomainNew(X), pDomainNew(Y), p(Y), X < Y.

In our example, the reconfiguration problem consists of ad-
ditional customer and configuration requirements described
in Section 2. The solution schema for the reconfiguration
problem is an extension of the solution schema of the original
configuration problem by cabinetHigh/1, cabinetSmall/1,
thingLong/1 and thingShort/1 predicates. The additional
requirements of the customer are expressed by:
thingLong(3). thingShort(4). thingShort(5).
thingShort(6). thingShort(7). thingLong(8).
thing(21). thingLong(21). personTOthing(1,21).

The legacy configuration presented in Section 3 is encoded
using legacyConfig predicate as described above.
legacyConfig(cabinet(9)). legacyConfig(cabinet(10)).
legacyConfig(cabinetTOthing(10,8)).
legacyConfig(roomTOcabinet(16,10)). ...

To implement the configuration requirements of the mod-
ified problem we add rules defining the subtypes of cabinets

as well as that long things have to be stored in high cabinets.
Note, only some of the usual rules for expressing subtypes
are needed. Regarding subtypes of thing, no rules are needed
at all because for every thing fact either a thingLong fact or
a thingShort fact is contained in the customer requirements
and none of these predicates appear in the head of a rule.
1{cabinetHigh(X), cabinetSmall(X)}1 :- cabinet(X).
cabinetHigh(C) :- thingLong(X), cabinetTOthing(C,X).

Moreover, each high cabinet requires more space in a room.
Such a cabinet occupies two of the four available slots in a
room, whereas a small cabinet uses only one slot. Note, the
last constraint does not allow an answer set where the sum of
occupied slots in a room is 5 or more.
cabinetSize(X,1) :- cabinet(X), cabinetSmall(X).
cabinetSize(X,2) :- cabinet(X), cabinetHigh(X).
roomTOcabinetSlot(R,C,S) :- roomTOcabinet(R,C),

cabinetSize(C,S).
:- 5 [roomTOcabinetSlot(X,Y,S):

cabinetDomain(Y)=S], room(X).

The domains of cabinets and rooms are extended with addi-
tional individuals that might be required in a new configura-
tion. The number of new elements in the cabinet and room
domains corresponds to the number of things in the modified
problem. The upper number pUpper of both cabinet and room
individuals is set to 7 because 7 things must be stored in the
house.
cabinetDomainNew(22..28).
cabinetDomain(X) :- cabinetDomainNew(X).
2{cabinet(X):cabinetDomain(X)}7.
cabinet(X) :- cabinetDomainNew(X), cabinet(Y), X<Y,

cabinetDomainNew(Y).

The modeling of new rooms is done in the same way.
The transformation rules are implemented as described

above. E.g.
1{reuse(cabinet(X)), delete(cabinet(X))}1 :-

legacyConfig(cabinet(X)).
cabinetDomain(X) :- legacyConfig(cabinet(X)).

However, the transformation rules for
legacyConfig(person(X)), legacyConfig(thing(X))

and legacyConfig(personTOthing(X,Y)) could be deleted
because facts about persons, things and their relations are
given as requirements. Deleting such an atom results in a
contradiction.

Given the reconfiguration program the solver identifies a
reconfiguration as well as a set of actions required to trans-
form the legacy configuration into a new one.

For generating optimal reconfigurations we formulate a
cost model. The minimization statement in the reconfigura-
tion problem is the same as in the configuration. In our recon-
figuration example the costs for creation of new high/small
cabinets and rooms cost(create(a), w) correspond to the
costs definition of the configuration problem. To obtain a
reconfiguration scenario with the minimal costs of required
actions we extend the costs rules described above with costs
for creation of new high/small cabinet and room individuals
as well as with costs for newly created relations. E.g.
cost(create(cabinetHigh(X)),W) :- cabinetHigh(X),

cabinetHighCost(W), cabinetDomainNew(X).

Rules for deducing the costs of reuse and deletion are for-
mulated as described above.

For our example let us assume that the customer sets all
deletion costs to 2, whereas reusing has no costs except for
cabinets, which could be altered to high in a reconfiguration.
The costs of this alteration is set to 3. Creation costs of new
high and small cabinets are set to 10 and 5 respectively. Fi-
nally, the costs of a new room is set to 5. Creation of relations
between individuals is for free. Given these costs assignments
the solver is able to find a set of optimal reconfigurations in-
cluding the one presented in Figure 3.

Modification of the costs results into different optimal re-
configurations. Let us assume the sales-department changes
both the costs of deletion of a cabinet and the costs of increas-
ing the height of a cabinet to 10, and decreases the creation
costs of new high and small cabinets to 2 and 1 respectively.
In this case the solutions returned by a solver will include the
one presented in Figure 4. Given their simplicity, the pre-
sented optimal solutions were found in milliseconds.

8 Evaluation
The evaluation of our approach was done on a set of test
cases derived from four reconfiguration scenarios encoun-
tered by us in practice. Each scenario can be represented
as an instance of the (re)configuration problem presented in
Section 2. In the empty reconfiguration scenario the legacy
configuration is empty and the customer requirements contain
sets of things and persons owning 5 things each. Every thing
is labeled as short. The reconfiguration process should create
missing cabinets, rooms as well as all required relations.

The customer requirements of the long scenario specify
that each given person owns 15 things. The legacy config-
uration contains a set of relations that indicate placement of
these things into cabinets, s.t. all things of one person are
stored in three cabinets that are placed in one room. The cus-
tomer also requires 5 things of each person to be labeled as
long whereas the remaining 10 as short. The goal of the re-
configuration is to find a valid rearrangement of long things
to reused or newly created high cabinets.

The next new room scenario models a situation when new
rooms have to be created and some of the cabinets reallocated.
In this scenario each person owns 12 things. These things
are stored in 3 cabinets placed in one room as indicated by
the legacy configuration. In the reconfiguration problem the
customer requirements declare 6 of the 12 things as long.

The last scenario, swap, describes a situation when the cus-
tomer requirements include only one person, who owns 35
things. In the legacy configuration the things are placed in 3
cabinets in the first room and in 4 cabinets in the second room.
Moreover, one of the things in the second room is labeled as
high in the customer requirements. Given the costs schema
presented above, the solution corresponds to a rearrangement
of the cabinets in the rooms such that a high cabinet can be
placed in one of these rooms. All these scenarios can be eas-
ily scaled by increasing the number of things. The number
of persons in the empty, long and new room scenarios can
always be computed given the number of things.

Experiments were performed using Potassco 3.0.3 on
Core2 Duo 3Ghz with 4Gb RAM. In our experiments we con-

0,01

0,10

1,00

10,00

100,00

1000,00

29 57 86 114 143 171 200 228

Ru
nt

im
e

(s
ec

on
ds

)

Average size of a problem (number of things)

empty long newroom swapProblem type:
Timeouts:

600

100

10

1

suboptimal solutions no solutions

Timeout

Figure 5: Evaluation results

sidered only creation costs for newly generated cabinets and
rooms because these are the dominant costs for our applica-
tion domain. The performance of the reconfiguration process
is presented in Figure 5. Potassco was able to find optimal so-
lutions within 600 seconds for all instances of the new room
and swap scenarios. Optimal solutions were also found for
small and mid-size instances of the empty scenario. For all
other instances at least one suboptimal solution was found.
The long scenario included the hardest problems. The solver
did not find any solutions for one of them in 600 seconds.
This was the only unsolved problem instance in the whole
experiment. Because the solved instances are comparable to
real world applications based on our experiences, we consider
the proposed reconfiguration method as feasible for a practi-
cally interesting set of reconfiguration problem instances.

9 Conclusions and related work
The existing approaches for reconfiguration can be sepa-
rated into revision-based [7; 10] and model-based [11]. The
revision-based approaches employ a knowledge base describ-
ing “fixes”, i.e. reconfiguration operations and configuration
invariants [7]. A solution requires that there is a sequence
of operations which transform the legacy configuration into
a new configuration. The approach of [11] views reconfig-
uration as a consistency-maintenance (diagnosis) problem,
where a solution corresponds to a consistent set of assump-
tions s.t. requirements are implied. Similarly, our approach
can be seen as searching for a consistent (optimal) set of as-
sumptions regarding reuse or deletion of parts of the legacy
configuration and creation of new parts. This search is pro-
vided by the ASP reasoning system, implementing a correct
and complete problem solving method. No additional diag-
nosis component is required. Regarding the revision-based
approach, our domains do not need the computation of se-
quences of operations, because if a reconfiguration is found,
a sequence of real-world change operations can be easily de-
rived. Thus, we can avoid the additional combinatorial explo-
sion introduced by permutations of change operations. How-
ever, we can view our approach as a form of the revision-
based method assuming that all change operations are exe-
cuted simultaneously. The effects of these operations and the
combination of allowed operations are described by the trans-

formation knowledge. Thus we can model complex “fix” op-
erations which involve the reuse of several parts of the legacy
configuration and which have multiple effects such as creat-
ing new parts or deleting existing ones.

To sum up, we have developed a method which allows the
modeling of reconfiguration problems based on legacy con-
figurations, transformation knowledge, and a new configura-
tion problem instance. We showed various modeling patterns
and implemented the approach based on ASP. Evaluation re-
sults show the feasibility for practical applications.

References
[1] A. Calì, G. Gottlob, and M. Kifer. Taming the in-

finite chase: Query answering under expressive rela-
tional constraints. In 11th International Conference on
Principles of Knowledge Representation and Reason-
ing, pages 70–80. AAAI Press, 2008.

[2] A. Falkner and A. Haselböck. Challenges of Knowl-
edge Evolution in Practice. In Workshop on Intelligent
Engineering Techniques for Knowledge Bases (IKBET
2010), pages 1–5, 2010.

[3] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumpt-
ner. Consistency-based diagnosis of configuration
knowledge bases. Artificial Intelligence, 152(2):213–
234, 2004.

[4] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski,
T. Schaub, and S. Thiele. A user’s guide to gringo, clasp,
clingo and iclingo, 2010.

[5] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob,
S. Perri, and F. Scarcello. The DLV system for knowl-
edge representation and reasoning. ACM Transactions
on Computational Logic (TOCL), 7(3):499–562, 2006.

[6] P. Manhart. Reconfiguration - A problem in search of
solutions. In D. Jannach and A. Felfernig, editors, IJ-
CAI’05 Configuration Workshop, pages 64–67, 2005.

[7] T. Männistö, T. Soininen, J. Tiihonen, and R. Sulonen.
Framework and conceptual model for reconfiguration.
In B. Faltings, E. C. Freuder, and G. Friedrich, editors,
AAAI’99 Workshop on Configuration, volume 99, pages
59–64, 1999.

[8] P. Simons, I. Niemelä, and T. Soininen. Extending and
implementing the stable model semantics. Artificial In-
telligence, 138(1-2):181–234, 2002.

[9] T. Soininen, I. Niemelä, J. Tiihonen, and R. Sulonen.
Representing configuration knowledge with weight con-
straint rules. In 1st International Workshop on An-
swer Set Programming: Towards Efficient and Scalable
Knowledge, pages 195–201, 2001.

[10] L. Stojanovic, A. Maedche, N. Stojanovic, and
R. Studer. Ontology evolution as reconfiguration-design
problem solving. In 2nd International Conference on
Knowledge Capture, pages 162—-171, New York, NY,
USA, 2003. ACM Press.

[11] M. Stumptner and F. Wotawa. Model-based reconfigu-
ration. In J. S. Gero and F. Sudweeks, editors, 5th Inter-
national Conference on Artificial Intelligence in Design,
pages 45–64, 1998.

