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Abstract. A large class of machine learning algorithms based on mining good 
classification tests is described. The Galois lattice is used for constructing good 
classification tests. Special rules are determined for constructing Galois lattices 
over a given context. All the operations of lattice construction take their inter-
pretations in human mental acts. 
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1 Introduction 

This paper provides a framework for solving diverse and very important problems of 
constructing machine learning algorithms based on the concept of good classification 
test. Good classification tests (GCTs) are item sets of a special kind. They serve as a 
basis for mining implicative logical rules from the data sets. The lattice theory is used 
as a mathematical language for constructing GCTs. The definition of GCTs is based 
on correspondences of Galois on S×T, where S is a given set of objects and T is a set 
of attributes’ values (items). Any classification test is a dual element of the Galois 
Lattice generated over a given context (S, T). All the operations of lattice construction 
take their interpretations in human mental acts. 

2 The Rules of the First and Second Kind 

In this paper, we focus on conceptual knowledge the main elements of which are ob-
jects, properties (attribute values), and classifications (attributes). Taking into account 
that implications express the links between concepts (object ↔ class, object ↔ prop-
erty, property ↔ class) we believe classification reasoning to be based on using and 
searching for only one type of logical dependencies, namely, implicative dependen-
cies. Implicative assertions are considered as logical rules of the first type including 
the following ones. 

Implication: a, b, c → d. Interdiction or forbidden rule: a, b, c → false (never). 
This rule can be transformed into several implications such as a, b → not c; a, c → 



not b; b, c → not a. Compatibility: a, b, c → VA, where VA is the frequency of rule’s 
occurrence. The compatibility is equivalent to the collection of implications as fol-
lows: a, b → c, VA; a, c → b, VA; b, c → b, VA. Generally, the compatibility rule 
represents a most frequently observed combination of values. The compatibilities can 
serve as one of the bases of association rules [1], [2]. Diagnostic rule: x, d → a; x, b 
→ not a; d, b → false. For example, d and b can be two values of the same attribute. 
This rule works when the truth of ‘x’ has been proven and it is necessary to determine 
whether ‘a’ is true or not. If ‘x & d’ is true, then ‘a’ is true, but if ‘x & b’ is true, then 
‘a’ is false. Rule of alternatives: a or b → true (always); a, b → false. This rule is a 
variant of interdiction. 

Rules of the second type or classification reasoning rules are the rules with the help 
of which rules of the first type are used, updated, and inferred from data (instances). 
They embrace both inductive and deductive reasoning rules. Deductive steps of rea-
soning consist of inferring consequences from some observed facts with the use of 
implications. For this goal, the main forms of deductive reasoning are applied: modus 
ponens, modus tollens, modus ponendo tollens, and modus tollendo ponens. 

Let X be a collection of true values of some attributes (or evidences) observed si-
multaneously. Let r be an implication, left(r) and right(r) be the left and the right parts 
of r, respectively Using implication: if left(r) ⊆ X, then X can be extended by 
right(r): X ← X ∪ right(r). Using implication is based on modus ponens: if A, then B; 
A; hence B. Using interdiction: let r be an implication y → not k. If left(r) ⊆ X, then 
k is the forbidden value for all extensions of X. Using interdiction is based on modus 
ponendo tollens: either A or B (A, B – alternatives); A; hence not B; and either A or B; 
B; hence not A. Using compatibility: let r = ‘a, b, c → k, VA’, where VA is the sup-
port of r. If left(r) ⊆ X, then k can be used to extend X along with the calculated value 
VA for this extension. Calculating VA requires a special consideration. Using com-
patibility is based on modus ponens. Using diagnostic rules: let r be a diagnostic rule 
‘X, d → a; X, b → not a’, where ‘X’ is true, and ‘a’, ‘not a’ are some alternatives. 
Using diagnostic rule is based on modus ponens and modus ponendo tollens. There 
are several ways for refuting one of the hypotheses: (1) to infer either d or b using 
existing knowledge (with the use of deductive reasoning rules); (2) inferring (with the 
use of inductive reasoning rules of the second type) new implications for distinguish-
ing between the hypotheses ‘a’ and ‘not a’; (3) to address an expert. Using rule of 
alternatives is based on modus tollendo ponens: either A or B (A, B – alternatives); 
not A; hence B; either A or B; not B; hence A. 

Generating hypothesis or abduction rule. Let r be an implication y → k. Then 
the following hypothesis is generated “if k is true, then y may be true”. Using modus 
tollens: let r be an implication y → k. If ‘not k’ is inferred, then ‘not y’ is also in-
ferred. 

When applied, these rules generate the reasoning, which is not demonstrative. The 
deductive reasoning rules act by means of extending an incomplete description X of 
some evidences and disproving impossible extensions. All generated extensions must 
not contradict with knowledge (the first-type rules) and an observable real situation, 
where the reasoning takes place. They must be intrinsically consistent (there are no 



prohibited pairs of values in such extensions). The inductive reasoning rules deal with 
known facts and propositions, observations and experimental results to obtain or cor-
rect the first-type rules. For this goal, the main inductive cannons stated by a British 
logician John Stuart Mill [3] are used: the Method of Agreement, Method of Differ-
ence, Joint method of Agreement and Difference. 

3 The Concept of Good Classification Test 

Denote by R a set of objects and by S the set of indices of objects of R. Let R(+) and 
S(+) be the sets of positive objects and indices of positive objects, respectively. Then 
R(-) = R/R(+) is the set of negative objects. Denote by Т a set of attributes values or 
items (values, for short) each of which appears in description at least of one of the 
objects of R. 

The definition of good tests is based on correspondences of Galois G on S×T and 
two relations S → T, T → S [4]. Let s ⊆ S, t ⊆ T. Denote by ti, ti ⊆ T, i = 1,…, N the 
description of object with index i. We define the relations S → T, T → S as follows: S 
→ T: t = val(s) = {intersection of all ti: ti ⊆ T, i ∈ s} and T → S: s = obj(t) = {i: i ∈ S, 
t ⊆ ti}. 

Of course, we have obj(t) = {intersection of all s(A): s(A) ⊆ S, A ∈ t}. Operations 
val(s), obj(t) are reasoning operations related to discovering the general feature of 
objects the indices of which belong to s and to discovering the indices of all objects 
possessing the feature t, respectively. 

The operation generalization_of(t) = t′ = val(obj(t)) gives the maximal general 
feature for objects the indices of which are in s(t); the operation generalization_of(s) 
= s′ = obj(val(s)) gives the maximal set of objects possessing the feature t(s). 

The generalization operations are actually closure operators [4]. A set s is closed if 
s = obj(val(s)). A set t is closed if t = val(obj(t)). 

These generalization operations are not artificially constructed operations. One can 
perform, mentally, a lot of such operations during a short period of time. We give an 
example of these operations. Suppose that somebody has seen two films (s) with the 
participation of Gerard Depardieu (val(s)). After that he tries to know all the films 
with his participation (obj(val(s))). One can know that Gerard Depardieu acts with 
Pierre Richard (t) in several films (obj(t)). After that he may discover that these films 
are the films of the same producer Francis Veber (val(obj(t))). 

Notice that these generalization operations are also used in FCA [5], [6]: a pair C = 
(s, t), s ⊆ S, t ⊆ T, is called a concept if s = obj(t) and simultaneously t = val(s), i. e., 
for a concept C = (s, t) both s and t are closed. Usually, the set s is called the extent 
of C (in our notation, it is the set of indices of objects possessing the feature t) and the 
set t of values is called the intent of C. 

Let S(+) and S(-) = S\ S(+) be the sets of indices of positive and negative objects 
respectively. 

Definition 1. A classification test for R(+) is a pair (s, t) such that t ⊆ T (s = obj(t) 
≠ Ø), s ⊆ S(+) & t ⊄ t’, ∀t’, t‘ is the description of an object belonging to R(-). 



In general case, a set t is not closed for classification test (s, t), i. e., the condition 
val(obj(t)) = t is not always satisfied; consequently, a classification test is not obliga-
tory a concept of FCA [5]. 

Definition 2. A classification test (s, t), t ⊆ T (s = obj(t) ≠ ∅) is good for R(+) if 
and only if any extension s’ = s ∪ i, i ∉ s, i ∈ S(+) implies that (s’, val(s’)) is not a 
test for R(+). 

Definition 3. A good classification test (s, t), t ⊆ T (s = obj(t) ≠ ∅) for R(+) is ir-
redundant if any narrowing t’ = t\A, A ∈ t implies that (obj(t’), t’)) is not a test for 
R(+). 

Definition 4. A good classification test for S(+) is maximally redundant if any 
extension of t’ = t ∪ A, A ∉ t, A ∈ T implies that (obj(t ∪ A), t’) is not a good test for 
R(+). 

It is possible to show that good maximally redundant tests (GMRTs) are closed 
maximal frequent itemsets and good irredundant tests (GIRTs) are minimal generators 
[2] of GMRTs. 

Generating all types of tests is based on inferring the chains of pairs (s, t) ordered 
by the inclusion relation. The set of all concepts ordered by the relation ≤, where (s, t) 
≤ (s*, t*) is satisfied if and only if s ⊆ s* and t ⊇ t*, s ∈ 2S , t ∈ 2t, is an algebraic 
lattice with operations ∩, ∪ [5]. 

4 Constructing Galois Lattice 

Inferring the chains of dual lattice elements ordered by the inclusion relation lies in 
the foundation of generating all types of classification tests. The following inductive 
transitions from one element of a chain to its nearest element in the lattice are used: 
(i) from sq to sq+1, (ii) from tq to tq+1, (iii) from sq to sq-1, and (iv) from tq to tq-1, where 
q, q+1, q-1 are the cardinalities of enumerated subsets. 

Inductive transitions can be smooth or boundary. Under smooth transition, ex-
tending (narrowing) of collections of values (objects) is going with preserving a given 
property of them. These properties are, for example, “to be a test for a given class of 
objects”, “to be an irredundant collection of values”, “to be a good test for a given 
class of objects” and some others. A transition is said to be boundary if it changes a 
given property of collections of values (objects) into the opposite one. For realizing 
the inductive transitions we use the following rules: generalization and specification 
rules, and dual generalization and specification rules. 

The generalization rule is used to get all the collections of objects sq+1 = {i1, i2, … 
iq, iq+1} from a collection sq = {i1, i2, … iq} such that (sq, val(sq)) and (sq+1, val(sq+1)) 
are tests for a given class of objects. The termination condition for constructing a 
chain of generalizations is: for all the extension sq+1 of sq, (sq+1, val(sq+1)) is not a test 
for a given class of positive objects. The generalization rule uses, as a leading process, 
an ascending chain (s0 ⊆ … ⊆ si ⊆ si+1 ⊆ … ⊆ sm) and the operation generaliza-
tion_of(s) = s′ = obj(val(s)) for each obtained collection of objects in case of inferring 
GMRTs [7]. 



The specification rule is used to get all the collections of values tq+1 = {A1, A2, …, 
Aq+1} from a collection tq = {A1, A2, …, Aq} such that tq and tq+1 are irredundant col-
lections of values and (obj(tq), tq) and (obj(tq+1), tq+1) are not tests for a given class of 
objects. The termination condition for constructing a chain of specifications is: for all 
the extensions tq+1 of tq, tq+1 is either a redundant collection of values or a test for a 
given class of objects. This rule has been used for inferring GIRTs [8]. The specifica-
tion rule uses, as a leading process, a descending chain (t0 ⊆ … ⊆ ti ⊆ ti+1 ⊆ … ⊆ tm). 
Inferring GIRTs does not require the operation generalization_of(t) = t′ = val(obj(t)) 
for each obtained collection of values. 

Both generalization and specification rules realize the Joint Method of Agreement 
and Difference [3]. 

The dual generalization (specification) rules relate to narrowing collections of val-
ues (objects). 

All inductive transitions take their interpretations in human mental acts. The ex-
tending of a set of objects with checking the satisfaction of a given assertion is a typi-
cal method of inductive reasoning. For example, Claude-Gaspar Bashet de Méziriak, 
a French mathematician (1581 – 1638) has discovered (without proving it) that appar-
ently every positive number can be expressed as a sum of at most four squares; for 
example, 5 = 22 + 12, 6 = 22 + 12+ 12, 7 = 22 + 12+ 12+12, 8 = 22 + 22, 9 = 32. 
Bashet has checked this rule for more than 300 numbers. In pattern recognition, the 
process of inferring hypotheses about the unknown values of some attributes is re-
duced to the maximal expansion of a collection of known values of some others at-
tributes in such a way that none of the forbidden pairs of values would belong to this 
expansion. The contraction of a collection of values is used, for instance, in order to 
delete redundant (non-informative) values from it. The contraction of a collection of 
objects is used, for instance, to isolate a certain cluster in a class of objects. Thus, we 
distinguish lemons in the citrus fruits. 

The boundary inductive transitions are used to get: 
(1) all the collections tq from a collection tq-1 such that (obj(tq-1), tq-1) is not a test 

but (obj(tq), tq) is a test, for a given set of objects; 
(2) all the collections tq-1 from a collection tq such that (obj(tq), tq) is a test, but 

(obj(tq-1), tq-1) is not a test for a given set of objects; 
(3) all the collections sq-1 from a collection sq such that (sq, val(sq)) is not a test, but 

(sq-1, val(sq-1)) is a test for a given set of objects; 
(4) all the collections of sq from a collection sq-1 such that (sq-1, val(sq-1)) is a test, 

but (sq,val(sq)) is not a test for a given set of objects. 
All the boundary transitions are interpreted as human reasoning operations. Transi-

tion (1) is used for distinguishing two diseases with similar symptoms. Transition (2) 
can be interpreted as including a certain class of objects into a more general one: 
squares can be named parallelograms, all whose sides are equal. In some intellectual 
psychological tests, a task is given to remove the “superfluous” (inappropriate) object 
from a certain group of objects (rose, butterfly, phlox, and dahlia) (transition (3)). 
Transition (4) can be interpreted as the search for a refuting example. The boundary 
inductive transitions realize the Methods of Difference and Concomitant Changes [3]. 



Note that reasoning begins with using a mechanism for restricting the space of 
searching for tests: (i) for each collection of values (objects), to avoid constructing all 
its subsets and (ii) to restrict the space of searching only to the subspaces deliberately 
containing the desired GMRTs or GIRTs. For this goal, admissible and essential val-
ues (objects) are used. 

First, consider the boundary transition (1): getting all the collections tq from a col-
lection tq-1 such that (obj(tq-1), tq-1) is not a test but (obj(tq), tq) is a test for a given set 
of objects. For this transition, we use the inductive diagnostic rule and a method for 
choosing values to extend tq-1. We extend tq-1 by choosing values that appear simulta-
neously with it in the objects of R(+) and do not appear in any object of R(-). These 
values are to be said essential ones. 

Consider the boundary inductive transition (3): getting all the collections sq-1 from 
a collection sq such that (sq, val(sq)) is not a test, but (sq-1, val(sq-1)) is a test for a given 
set of objects. For this transition, we use the dual inductive diagnostic rule and a 
method for choosing objects to delete them from sq. By analogy with an essential 
value, we define an essential object (index of essential object). 

Let s be a subset of objects belonging to a given positive class of objects; assume 
also that (s, val(s)) is not a test. The object tj, j ∈ s is to be said an essential in s if (s\j, 
val(s\j)) is a test for a given set of positive objects. Generally, we are interested in 
finding the maximal subset sbmax(s) ⊂ s such that (s, val(s)) is not a test but 
(sbmax(s), val(sbmax(s)) is a test for a given set of positive objects. 

Table 1. Deductive Rules of the First Type Obtained with the Use of Inductive Reasoning 
Rules 

Reasoning rules Inferred rules 

Generalization rule Implications 
Specification rule Implications 

Inductive diagnostic rule Diagnostic rules 

Dual inductive diagnostic rule Compatibility rules 

The dual inductive diagnostic rule can be used for inferring compatibility rules of 
the first type. The number of objects in sbmax(s) can be understood as a measure of 
“carrying-out” for an acquired rule related to sbmax(s), namely, val(sbmax(s)) → 
k(R(+)) frequently, where k(R(+)) is the name of the set R(+). 

The inductive rules generate logical rules of the first type (see, please Table 1). 
During the lattice construction, the deductive rules of the first type (implications, 

interdictions, rules of compatibility (approximate implications), and diagnostic rules) 
are generated and used immediately for pruning the search space. 



5 Reducing Inductive Transition to the Second Type Rules 

We give some examples of realizing the generalization rule for inferring all GMRTs. 
Any realization of this rule must allow, for each element s, the following actions: a) to 
avoid constructing the set of all its subsets, b) to avoid the repetitive generation of it. 

Let S(test) be the partially ordered set of elements s = {i1, i2, … iq}, q = 1, 2, …, nt 
- 1 obtained as a result of generalizations and satisfying the following condition: (s, 
val(s)) is a test for a given class R(+) of objects. Here nt denotes the number of posi-
tive objects. Let STGOOD be the partially ordered set of elements s satisfying the 
following condition: (s, val(s)) is a GMRT for R(+). Consider some methods for 
choosing objects admissible for extending s [7]. 

Method 1. Suppose that S(test) and STGOOD are not empty and s ∈ S(test). Con-
struct the set V: V = {∪ s’, s ⊆ s’, s’ ∈ {S(test) ∪ STGOOD}}. 

If we want an extension of s not to be included in any element of {S(test) ∪ 
STGOOD}, we must use, for extending s, the objects not appearing simultaneously 
with s in the set V. The set of objects, candidates for extending s, is equal to: 
CAND(s) = nts\V, where nts = {∪ s, s ∈ S(test)}. 

An object j* ∈ CAND(s) is not admissible for extending s if at least for one object 
i ∈ s the pair {i, j*} either does not correspond to a test or it corresponds to a good 
test (it belongs to STGOOD). 

Let Q be the set of forbidden pairs of objects for extending s: Q = {{i, j} ⊆ S(+): 
({i, j}, val({i, j}) is not a test for R(+)}. Then the set of admissible objects is select(s) 
= {i, i ∈ CAND(s): (∀j) (j ∈ s), {i, j} ∉ {STGOOD or Q}}. 

The set Q can be generated before searching for all GMRTs for R(+). 
Method 2. In this method, the set CAND(s) is determined as follows. Let s* = {s 

∪ j} be an extension of s, where j ∉ s. Then val(s*) ⊆ val(s). Hence the intersection 
of val(s) and val(j) must be not empty. The set CAND(s) = {j: j ∈ nts\s, val(j) ∩ val(s) 
≠ Ø}. 

Table 2. The use of reasoning rules of the second type 

Process Rule of the second type 
Forming Q Generating forbidden Rules 
Forming CAND(s) Joint method of Agreement and Difference  
Forming select(s) Using forbidden rules 
Forming ext(s) Method of Agreement 
Function_to_be test(t) Using implication 

Generalization_of(snew) Closing operation 

The set ext(s) contains all the possible extensions of s in the form snew = (s ∪ j), j 
∈ select(s) and snew corresponds to a test for R(+). This procedure of forming ext(s) 
executes the function generalization_of(snew) for each element snew ∈ ext(s). 

The generalization rule is a complex process in which both deductive and inductive 
reasoning rules of the second type are used (please, see Table 2). The knowledge 



acquired via a generalization process (the sets Q, L, CAND(s), S(test), STGOOD) is 
used for pruning the search in the domain space. 

Searching for only admissible variants of generalization is not an artificially con-
structed operation. A lot of examples of using this rule in human thinking can be 
given. For example, if your child were allergic to oranges, then you would not buy 
these fruits but also orange juice and products containing orange extracts. A good 
gardener knows the plants that cannot be adjacent in a garden. The problems related 
to placing individuals, appointing somebody to the post, finding lodging for some-
body deal with partitioning a set of objects or persons into groups by taking into ac-
count forbidden pairs of them. 

6 The Decomposition of Good Test Inferring into Subtasks 

To transform good classification tests inferring into an incremental process, we intro-
duce two kinds of subtasks [7], [9]: for a given set of positive examples: 1) Given a 
positive example t, find all GМRТs contained in t, more exactly, all t’⊂ t, (obj(t’), t’) 
is a GMRT; 2) Given a non-empty collection of values Х such that it is not a test, find 
all GMRTs containing Х, more exactly, all Y, X ⊂ Y, (obj(Y), Y) is a GMRT. 

Each example contains only some subset of values from T; hence each subtask of 
the first kind is simpler than the initial one. Each subset X of T appears only in a part 
of all examples; hence each subtask of the second kind is simpler than the initial one. 

There are the analogies of these subtasks in natural human reasoning. Describing a 
situation, one can conclude from different subsets of the features associated with this 
situation. Usually, if one tells a story from his life, then somebody else recalls a simi-
lar story possessing several equivalent features. We give, as an example, a fragment 
of the reasoning of Dersu Usala, the trapper, the hero of the famous book of Arseniev, 
V. K. [10]. He divided the situation into the fragments in accordance with separate 
observed facts and then he concluded from each observation independently. 

On the shore, there was the trace of bonfire. First of all, Dersu noted that the fire 
ignited at one and the same place many times. He concluded that here was a constant 
ford across the river. Then he said that three days ago a man passed the night near the 
bonfire. It was an old man, the Chinese, a trapper. He did not sleep during entire 
night, and, in the morning, he did not cross the river and he left. Dersu deduced that 
only one person was here from the only one track on the sand. He deduced that the 
person was a trapper on the basis of a wooden rod used for making traps for small 
animals. That this was the Chinese, Dersu learned from the manner to arrange biv-
ouac. That this was an old man, Dersu deduced after inspecting the deserted foot-
wear: young person first tramples nose edge of foot-wear, but old man tramples heel. 

The subtask of the first kind. We introduce the concept of an object’s (exam-
ple’s) projection proj(R)[t] of a given positive object t on a given set R(+) of positive 
examples. The proj(R)[t] is the set Z = {z: (z is non empty intersection of t and t’) & 
(t’ ∈ R(+)) & ((obj(z), z) is a test for R(+))}. 



If the proj(R)[t] is not empty and contains more than one element, then it is a sub-
task for inferring all GMRTs that are in t. If the projection contains one and only one 
element t, then (obj(t), t) is a GMRT. 

The subtask of the second kind. We introduce the concept of an attributive 
projection proj(R)[A] of a given value A on a given set R(+) of positive examples. The 
projection proj(R)[A] = {t: (t ∈ R(+)) & (A appears in t)}. Another way to define this 
projection is: proj(R)[A] = {ti: i ∈ (obj(A) ∩ s(+))}. If the attributive projection is not 
empty and contains more than one element, then it is a subtask of inferring all 
GМRТs containing a given value A. If A appears in one and only one object X, then A 
does not belong to any GMRT different from X.  

Forming the projection of A makes sense if A is not a test and the intersection of all 
positive objects in which A appears is not a test too, i.e., obj(A) ⊄ s(+) and t′ = 
t(obj(A) ∩ s(+)) does not correspond to a test for R(+). The procedures using these 
subtasks for inferring GMRTs can be found in [7], [9]. 

Restricting the search for tests to a sub-context of given context favors completely 
separating tests [11], i.e., increases the possibility to find values each of which be-
longs only to one GMRT in this sub-context. Choosing subcontexts can be controlled 
by a domain ontology. 

We introduce the following operations: choosing object (value) for subtasks, form-
ing and reducing subtasks. The choice of values (objects) for forming subtasks re-
quires a special consideration. It is convenient using essential values in an object and 
essential objects in a projection for the decomposition of inferring good tests into 
subtasks of the first or second kind. The following theorem gives the foundation for 
reducing projections [9]. 

Theorem 1. Let A be a value from T, (obj(X), X) be a maximally redundant test for 
a given set R(+) of positive objects and obj(A) ⊆ obj(X). Then A does not belong to 
any GMRT for R(+) different from (obj(X), X). 

Solving subtasks of the first kind initializes deleting object descriptions (item sets), 
deleting item sets from projection may be followed by deleting values (items) satisfy-
ing Theorem 1 or becoming less frequently. Deleting values (items) from item sets 
may result in deleting item sets not containing any tests for a given class of objects. 

7 An Approach to Incremental Inferring Good Tests 

Incremental supervised learning is necessary when a new portion of observations 
becomes available over time. Suppose that each new object comes with the indication 
of its class membership. The following actions are necessary with the arrival of a new 
object: 1) checking whether it is possible to perform generalization of some existing 
rules (tests) for the class to which a new object belongs (a class of positive objects, for 
certainty), that is, whether it is possible to extend the set of objects covered by some 
existing rules or not; 2) inferring all good classification tests contained in the new 
object description; 3) checking the validity of rules (tests) for negative objects, and, if 
it is necessary, modifying the tests that are not valid (test for negative objects is not 
valid if it is included in a new (positive) object description). The second act can be 



reduced to the subtask of the first kind. The third act can be reduced either to the in-
ductive diagnostic rule followed by the subtasks of the first kind or only to the subtask 
of the second kind. These acts have been implemented in an incremental algorithm 
INGOMAR for inferring GMRTs [7]. 

8 Conclusion 

The methodology presented in this paper provides a framework for solving diverse 
and very important problems of constructing machine learning algorithms based on a 
unified logical model in which it is possible to interpret any elementary step of logical 
inferring as a human mental operation. This methodology deals with object classifica-
tions and their approximations by the use of classification tests constructed in a given 
features space. This fact allows managing the procedures of discovering knowledge 
from data by the aid of domain ontology. 
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