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Competence in spatial language modeling is a cardinal issue in disciplines in-
cluding Cognitive Psychology, Computational Linguistics, and Computer Science.
Within Cognitive Psychology, the relation of spatial language to models of spatial
representation and reasoning is considered essential to the development of more com-
plete models of psycholinguistic and cognitive linguistic theories. Meanwhile, within
Computer Science and Computational Linguistics and Engineering, the development
of a wide class of so-called situated systems such as robotics, virtual characters, and
Geographic Information Systems is heavily dependent on the existence of adequate
models of spatial language use.

Achieving competence in spatial language requires that appropriate meanings
be assigned to spatial terms used in language, such as location, motion, orienta-
tion, perspective, projective, topological, distance, or path descriptive markers. The
computational modeling of such spatial language meanings in turn supports the in-
terpretation of an intended spatial meaning as well as the generation of adequate
linguistic expressions in certain situations and contexts. While early computational
models for spatial language interpretation and generation primarily focused on a ge-
ometric understanding of spatial terms, it is now widely recognized that spatial term
meaning depends on functional and pragmatic features in many ways. Competent
models of spatial language interpretation and generation must thus draw on complex
models of situated meaning by developing heterogeneous approaches with qualita-
tive and quantitative models and by combining geometric, functional, pragmatic,
and cognitive features in multi-modal contexts and applications.

Drawing together theories and results in spatial language modeling is a critical
research topic for a range of research disciplines. These includes not only Psychology
where computational theories can be used to bind experimental results and mod-
els, but also disciplines from the wider community, including: Artificial Intelligence,
Computational Linguistics, Human-Robot Interaction, Ontology Engineering, the
Semantic Web, and Geographic Information Systems.
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The main objective of the CoSLI-2 workshop is to foster computational for-
malisms and approaches for interpreting or generating spatial language that take
into account cognitive, functional, or embodiment criteria in modeling. In particu-
lar, this years workshop theme is “Function in Spatial Language: From evidence to
execution”, and we welcome in particular any contributions which aim to address the
issues of modeling function or pragmatic features in spatial language interpretation
or generation. More generally, the workshop also welcomes contributions that address
symbolic and embodied spatial language interpretation and generation. This topic
remains an ongoing issue in both natural language processing and cognitive science,
and novel work is encouraged. Such work includes both formal and empirical mod-
els of spatial language templates and linguistic calculi, corpus-based and statistical
methods, combinations of symbolic and sub-symbolic representations, and aspects of
sensory-motor and multi-modal information. Contributions to spatial language in-
terpretation and generation that integrate results from empirical and psychological
frameworks for spatial language and that can improve and support situated natural
language systems are also particularly welcomed.
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Abstract. One of the central problems in spatial language understanding is the 
polysemy and the vagueness of spatial terms, which cannot be resolved by lexical 
knowledge alone. We address this issue by developing a representation framework for 
functional interactions between objects and agents. We use this framework with a 
constraint solver to resolve and recover the meanings of spatial descriptions for object 
placement tasks.  We describe our approach in a virtual environment with an example 
of object placement task.  

1 Introduction 

Virtual scene (re)construction or object placement is a vital task in many practical 
applications such as background layout in 3-D animated movies, accident or crime 
scene simulation, and navigation maps for video game development.  Using natural 
language (NL) commands can be a natural and efficient alternative to an otherwise 
effort intensive manual placement of objects in a virtual world (e.g., Coyne and 
Sproat, 2001; and Dupuy, 2001). However, machine understanding of natural 
language commands is notoriously difficult due to polysemy and vagueness of spatial 
terms.  Only considering lexical semantic knowledge of spatial terms is clearly 
insufficient for this task; world knowledge and pragmatics must be considered for 
understanding language in a form that can be acted upon by autonomous agents.   

Over the past couple of decades much research in spatial term semantics has focused 
on developing computational models that map utterances to semantics (e.g., Regier 
and Carlson, 2001; Coventry et al., 1994).  Although, such research recognizes the 
need for pragmatic and functional knowledge about objects, the development of 
computational models for representing and using such knowledge has received little 
attention. To address this gap, we present a framework for representing world 
knowledge that can be effectively translated into spatial constraints to resolve vague 
and underspecified natural language commands.  We present an algorithm that utilizes 
such knowledge for interpreting natural language commands and to perform valid  
least cost object placements.     

We organize the remainder of this paper as follows. We explain the nature of 
linguistic underspecification in object placement tasks in the next section.  We follow 
this with a description of our representation framework and an algorithm that 
performs linguistically commanded single object placement task. Next, we illustrate 
our approach with an example.  Finally, we discuss the strengths and limitations of 
our approach and conclude the paper.  



 

 

 

 

 

 

2 Vagueness in NL driven Object Placement 

Consider the task of generating a static scene described by text utterances in a 3D 
virtual environment. For example, generating a scene with “a chair in front of the 
table” and subsequently placing a “printer on the table.” The desired rendering of the 
scene is shown in Figure 1. 

 
Figure 1. Example scene imagination based on linguistic description 

The central issue in such a task is interpreting vague spatial prepositions such as on 
and in-front-of into valid object placements.  The utterance “printer on the 
table” can only be judged as vague when attempting to place the printer in the World. 
For instance, the possible placements on the table are to the left, right, front, and 
behind the monitor. However, the placements in front and back of the monitor are 
functionally invalid for a human user.  The utterance also does not specify the suitable 
orientation of the printer. Without such a specification, the printer could be oriented 
in numerous ways in relation to the monitor and the chair, only some of which would 
be valid. For example, the orientation shown in Figure 1 is a valid one. However, the 
orientations of the printer such as upside down or facing the wall would be invalid.   

Clearly, functional knowledge of interaction between objects must be considered for 
generating valid placements.  The question is what should be the content of such 
functional and world knowledge and how can it be utilized to recover the unspecified 
elements and generate a complete and valid specification for object placement.  We 
answer this question in the next section. 

3 Representation and Reasoning for Linguistically commanded 

Object Placement 

Problem Task:  Given a world, W, containing a set of objects, O, located in various 
places in the world and an underspecified linguistic command requesting to place a 
target object, ot in W, find a location with the least interaction cost to place ot.  We 
return to the notion of interaction cost later in this section. 

Functional Knowledge Representation.  We introduce an autonomous agent, α, as 
the central element of a functional representation of objects, O, and their parts in the 
World.  Given our goal of building agents that interact with humans, our 
representation encodes spatial constraints accordingly. We assume that α is human-
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like and interacts with objects using a set of primitive actions or perceived 
affordances (Gibson, 1977, Norman, 2002). We introduce a set of the following 
primitive actions: 
1. Reach: the agent reaches for objects to manipulate and interact with them. Given 

our assumption that α is human-like, we subcategorize the reach interaction as 
follows: 
1.1. Reach.Arm: the agent reaches for objects with arms fully extended. 
1.2. Reach.Forearm: the agent reaches for objects with only the forearm 

extended. 
1.3. Reach.Foot: the agent reaches for object with its foot. 
1.4. Reach.Assisted: the agent reaches for objects with tools. 

2. See: the agent obtains visual information from objects to perform reach actions. 
For an agent to see objects it must be oriented toward the objects. In certain 
situations the agent must be able to read the information present on the object.  
We represent this with the read action, a tighter constraint than see: 
2.1. Read: an agent reads the information present on the object such as signs or 

writing. Clearly, this can be subcategorized to read fine print, read normal 
print, read large print, read poster print etc. 

We further assume that the agent performs these activities while it is located at certain 
places in W called activity stations, S.   In addition, we assume that an agent has the 
following human-like poses; sitting, standing, and lying down.   

We categorize the functional relation between objects into the following three types: 

1. Support:  this is a functional relation typically implied by the preposition “on” in 
English. For example, a table supports a printer and a printer is 
supportedBy a table. 

2. Contain:  this is a functional relation typically implied by the preposition “in”. 
For example, a box contains the printer and a printer is containedBy a 
box.  

3. Group: relates multiple objects into a spatial group. For example, a computer 
keyboard and display monitor may be related to each other by a spatial group 
relation. 

Table 1.  Example representation of functional interaction constraints for a Printer 

Object/parts Object Agent 

 Interaction Interaction Pose Activity Station 

Printer/Parent  • Reachable.Arm 

• Visible 

• Stand 

• Sit 

Perimeter 

   Control panel supportedBy(parent) • Readable   

   Connection panel supportedBy(parent) • Reachable.Arm   

   Paper tray containedBy(parent) 

contains(paper) 

• Reachable.Arm   

An object and its various parts may solicit different functional interaction constraints 
for agents. A representation of functional interaction constraints for a printer is shown 
in the Table 1.  We assume a canonical geo-orientation for the printer, that is, it is 
upright.  The table specifies that the printer control panel must be readable to the 
agent, for example.  

We introduce the notion of a possible interaction space, PIS, for an agent at an 
activity station (e.g., see Kurup & Cassimatis, 2010).  As a simplification in this 
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paper, we assume that the possible interaction space is a two dimensional region.  
Figure 2 shows the PIS 

 

Figure 2. Possible interaction spaces

We introduce the notion of a 
well. For example, 
inFrontOf(Printer
the intersection of individual 
linguistically commanded s

Linguistically command
The algorithm begins by 
smallest subset of that satisf
interaction knowledge of the objects in the World 
constraints. Next, it uses possibility spaces to identify 
selects the one with least cost. We detail these steps below:   

Inputs  
1. O, set of objects in 
2. ot, the target object to be placed (e.g., Printer)
3. lcs,  linguistically expressed placement constraint
4. KB, the functional interaction knowledge base containing 

interaction knowledge covering all 
5. α

psp
 the possibility space parameter for 

to be performed. 

Output 
1. P, a set of placements with minimum cost of functional interaction for agent 

Processing steps 
1. Find the smallest set of

interaction constraints 
the KB for a given category of object
object oi are located 

2. Set the candidate placements
3. Set candidate stations
4. For each activity station

paper, we assume that the possible interaction space is a two dimensional region.  
 with reachability, visibility, readability spaces. 

 

. Possible interaction spaces for agent α and possible linguistically constrained space

for infrontOf(Printer) 

We introduce the notion of a possible linguistically constrained space, PLCS
 Figure 2 shows the region selected by the function

Printer).  The possible space resulting from multiple constraints is 
the intersection of individual possible spaces. We will use this approach in the 
linguistically commanded single object placement algorithm presented next. 

inguistically commanded single object placement algorithm.   
The algorithm begins by generating the set of potential activity stations to identify the 

set of that satisfies the spatial constraints in the World. The functional 
interaction knowledge of the objects in the World is transformed into spatial 

Next, it uses possibility spaces to identify the candidate placements and 
selects the one with least cost. We detail these steps below:    

in W.  
rget object to be placed (e.g., Printer). 

linguistically expressed placement constraint (e.g., on the table). 
functional interaction knowledge base containing the agent and object 

interaction knowledge covering all objects in W (O and ot). 
he possibility space parameter for α for which the minimal cost placement is 

, a set of placements with minimum cost of functional interaction for agent 

smallest set of activity stations, Smin
, that satisfes the functional 

constraints for all objects oi ∈ O; the constraints are retrieved from 
for a given category of object.  The candidate activity stations for an 

located around its perimeter.  
Set the candidate placements, CP = φ, placement cost, pc=0 
Set candidate stations, Sc = Smin   

activity station sj ∈ Sc 
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a. Compute Possible Placement Space
intersection of 
LCS,  linguistically constrained space

b. Generate candidate placements 
candidate placements are possible placements 
those placements that satisfy all the interaction constraints
violating any of the existing constraints satis
candidate placements are a combination of location
simplicity, we only consider 4 orientations of 
the agent at the activity station.  
existing stations is used for the placement.

5. Select the minimum cost placements 
IF CP ≠φ THEN 
 Return minimum cost placements 
ELSE,  
 Generate new activity stations
       set Sc=Snew,  and

IF pc is 0 set 
activity stations. 

       go to Step 4 
End.  
 
Example 
Consider a world W that includes
on it. In addition, it includes a 
The placement agent receives a linguistic command to place a 
world;   “Place the printer on the table”.  

We assume that this linguistic command (i.e., 
and its PLCS is computed
step 1 to find Smin

.  The algorithm generates 
for example, stations s1 
satisfy the reachability and readability constraints for the monitor. Similarly
s3 and s5 fail to satisfy the readability constraint of the monitor. Notice that 
alternative orientations of

Compute Possible Placement Space, PPSs for the target object ot as the 
intersection of PIS, possible interactions space at the activity station and the 

linguistically constrained space: 

PPSs  = PIS ∩ PLCS 

candidate placements (cp) and compute their cost, c: 
candidate placements are possible placements PPSs if it is not empty. 
those placements that satisfy all the interaction constraints of ot without 
violating any of the existing constraints satisfied by sj are retained. 
candidate placements are a combination of locations and orientations. For 

we only consider 4 orientations of ot relative to the orientation of 
the agent at the activity station.  The cost of a placement is 0 when one of the 
existing stations is used for the placement. 

minimum cost placements P.   

Return minimum cost placements P ⊂ CP 

activity stations (Snew) in the neighborhood of stations in S
and 

is 0 set pc=1, i.e., cost of placement increases with the number of 
activity stations.  

that includes a table placed against a wall with a monitor
on it. In addition, it includes a chair located in front of the monitor (see Figure 3)
The placement agent receives a linguistic command to place a printer, ot, in this 

printer on the table”.   

Figure 3. Place the printer on the table 

assume that this linguistic command (i.e., lsc) is interpreted into a semantic form 
is computed, which is the entire surface of the table.  We begin with 

The algorithm generates the potential activity stations in the wor
 through s7.  It is easy to see that stations s1, s2, s6 and s7 do not 

satisfy the reachability and readability constraints for the monitor. Similarly, stations 
fail to satisfy the readability constraint of the monitor. Notice that 

alternative orientations of these stations would also fail on reachability constraints of 
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without 
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and orientations. For 
relative to the orientation of 

one of the 

Sc. 

=1, i.e., cost of placement increases with the number of 

monitor 
(see Figure 3).  

in this 

into a semantic form 
.  We begin with 

potential activity stations in the world, 
do not 

, stations 
fail to satisfy the readability constraint of the monitor. Notice that the 

fail on reachability constraints of 
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various objects. Activity station s4 is the only one that satisfies the reachability and 
readability constraints for the monitor and the reachability constraint of the chair (i.e., 
Smin ={ s4}=Sc).  We perform Step 4 and obtain PPS for s4 shown in grey obtained by 
the intersection of PIS and PLCS (on table).  Since PPS is not empty, we create 
candidate placements cp1 through cp4.  Although cp1 satisfies the printer’s reachability 
and readability constraints, it violates the monitor’s readability constraints for station 
s4. Similarly, cp2 fails to satisfy the readability constraint for the printer.  Note that 
reorienting cp3 to face the agent will create a valid placement. The candidate 
placement cp3 satisfies all the constraints and is a valid. Placement cp4 is not in the 
PPS space and is shown here for illustration only. Our example illustrates how the 
algorithm using functional knowledge about object and agent interactions produces 
two valid placements for a printer given a highly underspecified placement directive. 

4 Discussion 

Recent research on spatial language understanding has pointed out the need for 
functional representations for understanding spatial utterances.  For example,  
Coventry and Garrord (2004) present a functional geometric framework  which 
includes geometric and dynamic kinematic routines, and object knowledge. Our 
approach also considers the dynamic interactions and object knowledge. However, we 
explicitly consider the role of an agent along with a very small set of interaction 
primitive affordances specialized for the object placement task. Further, we present an 
inferencing algorithm that utilizes the world knowledge to perform valid object 
placement.  Lockwood (2009) also emphasizes the need for functional knowledge but 
focuses on structure mapping as a means learning functional knowledge for a scene 
labeling task. However, she did not include an interpretation method to recover 
meanings of underspecified utterances.  In contrast, we manually encode the 
affordances to recover underspecified spatial semantics in object placement tasks. We 
intend to develop methods of acquiring the interaction knowledge in our future work.   

Although, we demonstrated the use of functional knowledge for generating valid 
object placement, we did not consider the pragmatic and contextual elements such as 
plans, goals, and the situation of the agent requesting object placements.  For 
instance, the directive “put the printer on the table” would carry different functional 
constraints with it if the requester were a mover in an office building or a warehouse 
instead of a worker in an office building.  We plan to extend our models to include 
constraint selection based on the requesting agent’s goals and intentions. 

5 Conclusion 

Interpretation of spatial descriptions and commands, such as those for an object 
placement, poses significant challenges due to polysemy and underspecification of 
spatial term semantics.  To address this issue, we developed a functional interaction 
knowledge representation framework with a very small number of agent action 
primitives and object to object interaction primitives. We described a cost based 
constraint satisfaction algorithm for utilizing world knowledge for object placement.  
In our future work, we will implement and evaluate the performance our algorithm 
with varying number of objects in the scene and consider aspects of visual attention to 
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resolve residual ambiguities and diectics (e.g., see Kelleher, 2003).  Additionally, we 
will extend our approach to include the role of goals and intentions of the requesting 
agent in selecting the appropriate spatial constraints for object placement. 
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Interpreting Destination Descriptions in a
Cognitive Way

Yunhui Wu� and Stephan Winter

Department of Infrastructure Engineering, University of Melbourne
Parkville, VIC 3010, Australia

y.wu21@pgrad.unimelb.edu.au,winter@unimelb.edu.au

Abstract. This paper proposes a cognitively motivated approach to in-
terpreting destination descriptions without computing spatial relations.
In contrast to other computational approaches, this approach is based
on a few assumptions drawn from human communication behavior. Al-
though this cognitively motivated approach is relatively simple, the per-
formance of the approach is almost as good as other computational ap-
proaches.

Keywords: Destination description, spatial reasoning, spatial relation

1 Introduction

People provide destination descriptions when they specify where to go to. Des-
tination descriptions are referring expressions [1] of the form “x related to y”,
where x is the destination, and y is a reference feature. A destination description
is a reflection of the speaker’s conceptual map of the environment in their mind.
In geographic environments, people perceive salient features (landmarks), an-
choring their mental representations of the environment [2]. They update their
knowledge by linking new experiences of other features to the existing ones.
Therefore it is natural for people to describe the location of features by ad-
dressing their spatial relation to other, more salient features. Using landmarks
in destination descriptions is also a way to set up the common ground between
parties in the communication: the speaker expects that the listener knows the
landmarks due to their salience in the urban environment, and then, through
the spatial relation with the landmarks, figure out where the destination is. This
paper focuses on the spatial reasoning of using spatial relations in human des-
tination descriptions, and proposes an approach to interpret these descriptions
automatically to smarten the user interaction of navigation services.

Although humans have the capability of understanding the spatial relations
in destination descriptions, making sense of spatial relations is not an easy task
for computational systems. The major challenge is interpreting the qualitative

� This research was supported under Australian Research Council’s Discovery Projects
funding scheme (project number 0878119).



relations frequently used in destination descriptions. Characterizing or interpret-
ing topological relations, such as in, requires access to the spatial extents of the
involved spatial features. Orientation directions, such as in front of, require size
and shape information. Distance relations, such as near, require taking contex-
tual factors into account such as the size of the features, the purpose of the
located feature, the distance from the observer, the functional relationship and
interaction between the two features, and the asymmetry from the order in which
locations are retrieved in memory [3–5]. However, so far there is no comprehen-
sive computational model able to handle all these factors for qualitative spatial
relations. Given these difficulties, this paper studies the spatial reasoning behind
human communication behavior, and suggests a cognitively motivated approach
to interpreting destination descriptions. This approach does not require any of
the additional information, but instead is built on point locations (as given
in standard gazetteers), and a salience model of geographic features. We will
in particular demonstrate that the cognitively motivated approach can identify
destinations without computing any other spatial relations than neighborhoods
based on salience.

2 Related Work

Common ground is the basis of joint actions by speakers and listeners [6]. Peo-
ple do things based on individual beliefs or assumptions about what is com-
mon ground between each other. Clark identifies two kinds of common ground:
communal common ground and personal common ground. Communal common
ground is based on factors, such as communication parties’ nationality, residence,
education, occupation, and religion. Personal common ground is based on joint
personal experiences. This paper assumes that the speaker refers to communal
common ground, as in talking to strangers, such that spatial databases can be
used to enable the interpreting process of destination descriptions.

Research has been made on formalization and computational modeling of
spatial relations. Models for characterizing topological relations exist (e.g., [7]).
A cognitive and computational model for nearness has been developed before
[8]. Schlieder et al. propose to encode neighborhood relations in gazetteers for
retrieving qualitative information [9]. Freksa develops an approach for represent-
ing qualitative spatial reasoning using orientation information [10], which is later
developed into reasoning toolboxes [11]. But yet a comprehensive computational
model for qualitative relations is not found.

3 Cognitive Motivated Approach to Interpreting
Destination Descriptions

If destinations are hard to recognize, ambiguous or lacking in the common
ground, people usually refer to the most salient landmark nearby according to
their knowledge, which is chosen from potentially large numbers of spatial fea-
tures available. From the speaker’s perspective, the more salient the landmark
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is in the environment, the more likely it is to be known to the listener. How-
ever people perceive the urban environment variously. Petrol stations are more
meaningful, thus salient, to car drivers than to walkers. Therefore it is more
likely that car drivers refer to petrol stations in destination descriptions than
walkers. It appears that the choice of a landmark relies more on its salience than
on the spatial relation between the destination and the addressed landmark.
Furthermore, spatial relations are mental connections, or characterizations of
the configuration of spatial features at particular locations [12]. Therefore when
different speakers refer to the same landmark, they may use different terms to
depict the spatial relation or even different relations. Here the first assumption
is:

– It is always the most salient landmark chosen among others, no matter what
the type of the spatial relation between the landmark and the destination is.

This assumption establishes a basis for interpreting spatial relations without
computing them explicitly. By saying “the most salient landmark among others”,
there must be implied a spatial restriction from which landmarks are selected.
This restriction can be derived from the principle of relevance [13], which we
apply here by a second assumption. We expect that the landmark has to include
the destination within their neighborhood – a concept that needs to be further
formalized. If the destination is not in the neighborhood of the landmark, the re-
lationship is too weak to use in the destination description, since the relationship
to another landmark is stronger. So the second assumption is:

– The landmark is chosen only if the destination is within the landmark’s
neighborhood.

By referring to a chosen landmark, the speaker wants to ensure that the listener
can figure out the destination effectively and unambiguously. If there are two
pizza shops in the neighborhood of the landmark, the speaker has some choices
to disambiguate. They can specify the name of the target one, such as “the Pizza
Hut next to the petrol station” (i.e., not Domino’s), or employ another landmark
to avoid such confusion, like “the pizza shop opposite the church” (which is also
next to the petrol station, but does not apply for Domino’s). Or they can name
a disambiguating spatial relation, like “the pizza shop left of the petrol station”
(instead of the one right of the petrol station). Except for the third case, it can
be inferred that in destination descriptions the destination is unique within the
neighborhood of the chosen landmark. The third case can be discovered either
from inflection (where the relation would be stressed), or from discovering the
ambiguities in the interpretation. The third case requires special treatment, but
for the other cases we can make our third assumption:

– The landmark is chosen because it is sufficient enough to disambiguate the
destination.

These assumptions require a computational model of neighborhood. Moulin et
al. advise that the influence area of a spatial feature defines the portion of
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neighborhood in which every other features are spatially related to the located
feature in a qualitative way [14]. The influence of a spatial feature can be used
to define its neighborhood in the environment. Salience of landmarks represents
their influence: the more salient a landmark, the larger its influence area. Win-
ter et al. suggest a method of generating a hierarchical partition establishing
the neighborhoods of landmarks at different levels of salience (or context) [15]:
landmarks are grouped by their salience at different levels in a hierarchy, and
then Voronoi cells representing the neighborhood of landmarks are created at
each level (Figure 1).

Fig. 1. Illustration of Voronoi diagram between landmarks of similar salience.

The interpretation of a destination description starts with a list of identified
potential destination candidates. In the example above, it would start with a
list of all known pizza shops. If there is no destination (no pizza shop) found
in the database, the interpretation fails, similar to lacking common ground in
human-to-human communication. If there is only one pizza shop found in the
database, the interpretation completes successfully, and the relation to the land-
mark can only be used in an affirmative way. But if there are multiple destination
candidates found, then the assumptions above will allow the disambiguation of
destination candidates. This disambiguation process will use only the locations of
landmarks, the salience of landmarks, and the location of destination candidates.
The interpretation process computes a second list, namely a list of landmark can-
didates, e.g., all petrol stations. If this list is empty, no common ground could be
established. If exactly one landmark candidate is found, the nearest destination
is considered as a solution. If multiple landmarks are found, their neighborhoods
are computed [15], and the one that has a unique destination candidate in its
neighborhood identifies the destination.

This algorithm discovers automatically the third case – where the spatial
relation is used for disambiguation – when no landmark has a unique destination
candidate in their neighborhood. In this case the algorithm has to fall back to
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computing the spatial relations (which is possible, but not addressed in this
paper).

This interpretation process offers an approach that avoids in many cases
computing of spatial relations. The next section explains by example how this
approach works.

4 Example and Discussion

Angela wants to meet her friend for lunch, and says “let’s meet at the pizza shop
next to the 7-Eleven”. The pizza shop is the destination (x), and the 7-Eleven
is chosen as the landmark (y). This section demonstrates how the cognitively
motivated approach interprets the spatial relation in this destination description,
and finds “the pizza shop”. At first it is supposed that the spatial restriction of
this communication is known from context (the area shown in Figure 2). In this
area three 7-Eleven and three pizza shops are found (Figure 2, left). The 7-Eleven
are of similar salience, therefore no hierarchy is created. The neighborhoods of
three 7-Eleven are defined by Voronoi cells. In Figure 2, left, the 7-Eleven at the

Fig. 2. Left: Three 7-Elevens and three pizza shops found in neighborhoods of the
landmarks; Right: Two pizza shops are Pizza Hut, and one is Domino’s.

right-bottom corner has no pizza shop in its neighborhood, thus does not define
any destination; the 7-Eleven on the top has two pizza shops in its neighborhood,
thus destination candidates are found ambiguous; and the 7-Eleven on the left
has a unique pizza shop in its neighborhood. Assuming the rules of relevance
theory, this pizza shop would be the target destination. Therefore, the hypothesis
is proven. This is the general process of the cognitively motivated approach,
and the computation complexity is O(n). In comparison, other computational
approaches need to compute the spatial relation between each 7-Eleven and
pizza shop, and then check whether the relationship is a “next to” relation. If
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this process identifies any nearest pizza shop to a 7-Eleven, it could omit less
relevant pizza shops. Thus the computation complexity is O(n2).

In some cases, the general process cannot obtain a unique result. For example,
Angela specifies the name of the pizza shop by saying “let’s meet at the Pizza
Hut next to the 7-Eleven”. Figure 2, right, shows a unique Pizza Hut in two
7-Eleven’s neighborhood separately. In this case, the two 7-Eleven (on the top
and on the left) are results through this cognitively motivated approach, and
further refinement to resolve the remaining ambiguity is needed.

Computational approaches require separate computation algorithms for var-
ious types of spatial relations, i.e., topology, orientation, distance relations. As
natural language is flexible, categorizing spatial relation in destination descrip-
tions may introduce error. Mismatching between the identified types from de-
scriptions and the preset types in algorithms will also cause failure. This cogni-
tively motivated approach only checks the uniqueness of destination candidates
within neighborhood of each landmark candidates, therefore avoids these risks.
However the precision of this approach depends on the appropriate definition of
landmark neighborhood. Imprecision may also be produced when spatial rela-
tions are used to disambiguate destinations.

5 Experimental Evaluation

To evaluate the performance of the cognitively motivated approach, a gazetteer
was built, including 36,134 instances. The gazetteer data is based on the point of
interest data from Whereis1 and VicNames data2 over the entire area of Victoria,
Australia. Each instance consists of three essential attributes: the place name,
the category of place, and a geographic location provided by the data sources
[16].

The only other attribute needed is a salience value. Salience is derived here by
a method suggested by Duckham et al. [17] utilizing the categories of gazetteer
instances. Each category in a gazetteer is assessed by an expert on nine cri-
teria (physical size, proximity to road, visibility, difference from surroundings,
ubiquity, nighttime vs. daytime salience, permanence, length of description and
spatial extents) in two ways: the average salience of individual instances in a cat-
egory (suitability) and their standard deviation (typicality). The final salience
of each category is then normalized in the range [0,1]: 1 represents the highest
suitability, and 0 represents the lowest suitability.

From salience, the influence areas of all instances are computed at all levels
of a salience hierarchy, according to Winter et al. [15]. This concludes the pre-
processing of generating a suited gazetteer.

After preparing the gazetteer data, we collected 57 destination descriptions
given by participants in an interview experiment. Examples of these collected
destination descriptions are “Yarra Bend Park near Alphington”, and “Lorne
on the Western Coast Road, between Geelong and Apollo Bay, about half way

1 www.whereis.com.au
2 http://services.land.vic.gov.au/vicnames/
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between each”. In total, 80 individual places were mentioned in the collection
of destination descriptions, including street names, suburb names, names of sta-
tions, restaurants, shopping centers, hospitals, clubs, universities, and parks.
Besides individual places, there are 15 paraphrased places found in the collec-
tion, such as “the library”. In the collected data, there are 38 descriptions (67%)
including spatial relations and reference place names.

For this experiment the cognitively motivated approach was implemented to
interpret the given destination descriptions. Participants were asked to judge the
interpretation results. For comparison, we also developed an approach computing
topological, orientation and distance relations. According to their judgement, 27
destination descriptions were interpreted correctly by the cognitively motivated
approach, and 28 by the approach computing relations explicitly (the cognitively
motivated approach was not allowed to fall back on the explicit computation of
relations). The results show that the performance of the cognitively motivated
approach is almost as good as the approach with explicit computation of rela-
tions.

6 Conclusions

Destination descriptions can use various qualitative spatial relations, thus com-
puting spatial relations can be computationally expensive. This may be one of
the reasons why no commercial navigation system has implemented methods
for interpreting spatial relations (Google Maps, for example, ignores any given
relationship and imposes a ‘near’ relationship on any destination description,
of which the semantics remains opaque, of course). Compared to other com-
putational approaches, this cognitively motivated approach is relatively simple,
because no computation of individual spatial relation needed.

This paper proposes a cognitively motivated approach to interpreting desti-
nation descriptions without computing spatial relations. This approach is based
on disambiguating combinations of the multiple destination and landmark can-
didates found in gazetteers. Given the context, further discussion is needed to
retrieve relevant destination candidates and salient landmark candidates from
gazetteers. Furthermore, the cognitive adequacy of the construction of the hier-
archy of neighborhoods also needs further study.
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Abstract. We investigate using Amazon Mechanical Turk (AMT) for
building a low-level description corpus and populating VigNet, a com-
prehensive semantic resource that we will use in a text-to-scene gener-
ation system. To depict a picture of a location, VigNet should contain
the knowledge about the typical objects in that location and the ar-
rangements of those objects. Such information is mostly common-sense
knowledge that is taken for granted by human beings and is not stated
in existing lexical resources and in text corpora. In this paper we focus
on collecting objects of locations using AMT. Our results show that it is
a promising approach.
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1 Introduction

Our aim is to populate VigNet, a comprehensive semantic resource that we will
use in a text-to-scene generation system. This system follows in the footsteps
of Coyne and Sproat’s WordsEye [2], but while WordsEye did only support a
very limited number of actions in a static manner and mostly accepted low-level
language as input (John is in front of the kitchen table. A cup is on the table.
A plate is next to the cup. Toast is on the plate) the new system will support
higher-level language (John had toast for breakfast).

VigNet is based on FrameNet[1] and contains lexical, semantic and spa-
tial/graphical information needed to translate text into plausible 3D scenes. In
VigNet frames are decomposed into subframes and eventually into primitive spa-
tial relations between frame participants (frame elements), describing one way
a frame can be depicted graphically. We call a frame that is decomposable into
such primitives a vignette. Even though the technical details are not crucial to
understand this paper we refer the interested reader to [4].

This paper deals with the collection of spatial information to populate Vig-
Net. Even though VigNet contains vignettes for actions and other events, com-
plex objects and situations, this paper focuses only on the induction of location
vignettes. Knowledge about locations is of great importance to create detailed
scenes because locations define the context in which an action takes place. For



instance when someone takes a shower he usually does so in the bathroom, inter-
acting with the ‘affordances’ provided by this room (i.e. shower cabin, curtain,
shower head, shower tap etc.) in a specific way. Note that location vignettes can,
but do not have to be evoked by lexical items. We can say John took a shower
in the bathroom, but this seems redundant because bathrooms are the preferred
location for taking a shower. VigNet records knowledge of this type that can be
accessed in the text-to-scene generation process.

In this paper we propose a methodology for collecting semantic information
for locations vignettes using Amazon Mechanical Turk (AMT). The next section
first discusses location vignettes in more detail. We then review related work in
section 3. We describe how we use AMT to build an image description corpus
and collect semantic information for locations in section 4 and compare different
methods in an evaluation. Section 5 concludes.

2 Location Vignettes

As mentioned before, location vignettes are important because they provide the
context in which actions can take place. Locations involve the spatial composi-
tion of several individual objects. For example, in ‘John sat in the living room’,
we might expect the living room to contain objects such as a sofa, a coffee table,
and a fireplace. In addition, these objects would be spatially arranged in some
recognizable manner, perhaps with the fireplace embedded in a wall and the cof-
fee table in front of the sofa in the middle of the room. In order to represent such
locations graphically we are adding knowledge about the typical arrangements
of objects for a wide variety of locations into VigNet.

Any given location term can potentially be realized in a variety of ways and
hence can have multiple associated vignettes. For example, we can have multiple
location vignettes for a living room, each with a somewhat different set of objects
and arrangement of those objects. This is analogous to how an individual object,
such as a couch, can be represented in any number of styles and realizations. Each
location vignette consists of a list of constituent objects (its frame elements) and
graphical relations between those objects (by means of frame decomposition).
For example, one type of living room (of many possible ones) might contain a
couch, a coffee table, and a fireplace in a certain arrangement.

living-room 42(left wall, far wall, couch,
coffee table, fireplace)

touching(figure:couch, ground:left wall)
facing(figure:couch, ground:right wall)
front-of(figure:coffee table, ground: sofa)
embedded(figure:fire-place, ground:far wall)

The set of graphical primitives used by location vignettes control surface
properties (color, texture, opacity, shininess) and spatial relations (position, ori-
entation, size). This set of primitive relations is sufficient to describe the basic
spatial layout of most locations (and scenes taking place in them). Generally we
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do not record information about how the parts of a location can be used in an
action, but rather consider this knowledge to be part of the action.

3 Related work

Existing lexical and common-sense knowledge resources do not contain the spa-
tial and semantic information required to construct location vignettes. In a few
cases, WordNet [5] glosses specify location-related information, but the number
of such entries with this kind of information is very small, and they cannot be
used in a systematic way. For example, the WordNet gloss for living room (a
room in a private house or establishment where people can sit and talk and re-
lax) defines it in terms of its function, not its constituent objects and spatial
layout. Similarly, the WordNet gloss for sofa (an upholstered seat for more than
one person) provides no location information. FrameNet [1] is focused on verb
semantics and thematic roles and provides little to no information on the spatial
arrangement of objects.

More relevant to our project is OpenMind [8] where online crowd-sourcing
is used to collect a large set of common-sense assertions. These assertions are
normalized into a couple dozen relations, including the typical locations for ob-
jects. The list of resulting objects found for each location, however, is noisy and
contains many peripheral and spurious relations. In addition, even the valid rela-
tions are often vague and represent different underlying relations. For example,
a book is declared to be located at a desk (the directly supporting object) as
well as at a bookstore (the overall location). In addition, like most existing ap-
proaches, it suffers from having objects and relations being generalized across all
locations of a given type and hence is unable to represent the dependencies that
would occur in any given specific location. As a result, there’s no clear way to
reliably determine the main objects and disambiguated spatial relations needed
for location vignettes.

LabelMe [7] is a large collection of images with annotated 2D polygonal
regions for most elements and objects in a picture. It benefits from the coherence
of grounding the objects in specific locations. It suffers, though, from the lack
of differentiation between main objects and peripheral ones. Furthermore, it
contains no 3D spatial relations between objects.

One of the well-known approaches for building lexical resources is automatic
extracting lexical relations from large text corpora. For a comprehensive review
of these works see [6]. However, a few works focus specifically on extracting
semantic information for locations, including [10] and [11], which use the vector-
space model and a nearest-neighbor classifier to extract locations of objects. Also
directly relevant to this paper is work by Sproat [9] which attempts to extract
associations between actions and locations from text corpora. This approach
provides some potentially useful information, but the extracted data is noisy
and requires hand editing. In addition, it extracts locations for actions rather
than the objects and spatial relations associated with those locations.
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Furthermore, much of the information that we are looking for is common-
sense knowledge that is taken for granted by human beings and is not explicitly
stated in corpora. Although structured corpora like Wikipedia do mention asso-
ciated objects, they are often incomplete. For example in the Wikipedia entry
for kitchen there is no mention of a counter or other surface on which to prepare
food but the picture that goes with the definition paragraph (labeled “A modern
Western kitchen”) clearly has one.

In this paper we investigate using Amazon Mechanical Turk (AMT) for build-
ing a low-level description corpus for locations and for directly collecting objects
of locations vignettes. We will compare the accuracy of collected data to several
gold standard vignettes generated by an expert. We show that we can tune our
information collection method to scale for large number of locations.

4 Using AMT to build location vignettes

In this section we discuss how we use Amazon Mechanical Turk (AMT) to build
a location description corpus and for collecting the typical objects of location
vignettes. AMT is an online marketplace to co-ordinate the use of human in-
telligence to perform small tasks such as image annotation that are difficult for
computers but easy for humans. The input to our AMT experiments are pic-
tures of different rooms. By collecting objects and relations grounded to specific
rooms we capture coherent sets of dependencies between objects in context and
not just generalized frequencies that may not work together. In each task we
collected answers for each room by five workers who were located in the US
and had previous approval rating of 99%. Restricting the location of the workers
increases the chance that they are native speakers of English, or at least have
good command of the language. We carefully selected input pictures from the
results of image searches using the Google and Bing search engines. We selected
photos that show ‘typical’ instances of the room type, e.g. room instances which
include typical large objects found in such rooms. Photos should show the entire
room. We then defined the following task:

Task 1: Building low-level location description corpus: In this task,
we asked AMT workers to provide simple and clear descriptions of 85 pictured
room. We explicitly asked AMT workers that their descriptions had to be in the
form of naming the main elements or objects in the room and their positions
in relation to each other, using verbs such as is or are (i.e. linking verb). Each
description had to be very precise and 5 to 10-sentence long. Our collected
description corpus contains around 11,000 words.

In order to extract location information from the low-level location descrip-
tion corpus, the text is first processed using the NLP module of WordsEye. We
extracted the objects and other elements of locations which are mainly in the
form of relation–ground–figure and extract the objects and elements which
are represented as figure or ground. We then further processed the extracted
locations as is explained in sub-section 4.1.
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Task 2: Listing functionally important objects of locations: Accord-
ing to this criterion, the important objects for a room are those that are required
in order for the room to be recognized or to function in this way. One can imagine
a kitchen without a picture frame but it is rarely possible to think of a kitchen
without a refrigerator. Other functional objects include a stove, an oven, and
a sink. We asked workers to provide a list of functional objects using an AMT
hit such as the one shown in figure 1. We showed each AMT worker an example
room with a list of objects and their counts. We gave the following instructions:

“ Based on the following picture of a kitchen list the objects that you really
need in a kitchen and the counts of the objects.

1. In each picture, first tell us how many room doors and room windows do
you see.

2. Again, don’t list the objects that you don’t really need in a kitchen (such
as magazine, vase, etc). Just name the objects that are absolutely required
for this kitchen. ”

Task 3: Listing visually important objects of locations: For this task
we asked workers to list large objects (furniture, appliances, rugs, etc) and those
that are fixed in location (part of walls, ceilings, etc). The goal was to know
which objects help define the basic structural makeup of this particular room
instance. We used the AMT input form shown in figure 1 again, provided a single
example room with example objects and and gave the following instruction:

“ What are the main objects/elements in the following kitchen? How many
of each?

1. In selecting the objects give priority to:
– Large objects (furniture, appliances, rugs, etc).
– Objects that are fixed in location (part of walls, ceilings, etc).

The goal is to know which objects help define the basic makeup and structure
of this particular kitchen.

2. In each picture, first tell us how many room doors and room windows do
you see. ”

4.1 Post-processing of the extracted object names from AMT

We post-processed the extracted objects from the location description corpus
and the objects that were listed in tasks 2 and 3 in the following steps:

1. Manual checking of spelling and converting plural nouns to singular.
2. Removing conjunctions like“and”, “or”, and “/”. For example, we converted

“desk and chair” to “desk” and “chair”.
3. Converting the objects belonging to the same WordNet synset into the most

frequent word of the synset. For example we converted tub, bath, and bathtub
into bathtub with frequency of three.

4. Finding the intersection from the inputs of five workers and selecting the
objects that listed three times or more
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Fig. 1. AMT input form to collect functionally important objects (task 2) or visually
important (task 3) objects in locations. Workers are asked to enter the name of each
object type and the object count.

5. Finding major substrings in common: some input words only differ by a space
or a hyphen character such as night stand, night-stand, and nightstand. We
convert such variants to the simplest form i.e. nightstand.

6. Looking for head nouns in common: if the head of the compound noun input
such as projector screen can be found in another single-word input i.e. screen,
we assume that both refer to the same object i.e. screen.

7. Recalculating the intersections and selecting the objects with frequency of
three or more.

4.2 Evaluation

For evaluating the results we manually built a set of gold standard vignettes
(GSVs) for 5 rooms which include A) a list of objects in each room, and B) the
arrangements of those objects. Selected objects for GSVs are the ones that help
define the basic makeup and structure of the particular room. We are comparing
the extracted object from AMT tasks against the list of objects in the GSVs.

Table 1 shows the comparison of the AMT tasks against GSVs. The “Ex-
tracted Objs” row shows the number of objects we extracted from each AMT
tasks for 5 rooms. The “Correct Objs” row shows the number of extracted ob-
jects from AMT that are present in our GSVs of each room and the precision
score derived based on that. The “Expected Objs” row shows the number of all
the objects in GSVs that we expected the workers to list, and the recall score
based on that.
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AMT Task Free Description Functional Visual
Extracted Objs 39 32 32
Correct Objs 26 Pre: 67% 28 Pre: 87% 29 Pre: 91%
Expected Objs 33 Rec: 79% 33 Rec: 85% 33 Rec: 88%

Table 1. The accuracy of each AMT tasks for the objects of 5 rooms compared to
GSVs. (See the above paragraph for the definition of rows and columns.)

5 Conclusion and future work

In this paper we explored different approaches to populate VigNet, a resource
containing spatially grounded lexical semantics, with locational information (lo-
cation vignettes) using Amazon Mechanical Turk. In one approach we used AMT
to collect a low-level description corpus for locations. We then used the Words-
Eye NLP module to extract the objects from each description. For comparison
we asked AMT workers to directly list objects of locations shown in photographs,
either based on visual or on functional criteria. We then post-processed the ex-
tracted objects from each experiment and compared them against gold standard
location vignettes.

We have shown that we can extract reasonably accurate objects from pro-
cessing the description corpus as well as spatial relations and arrangements of
objects. The results achieved using the functional and visual object listing tasks
approximate the gold standard even better, with the visual elicitation criterion
outperforming the functional one.

In current work, due to the good results on the small training set we are using
the visual object listing paradigm to induce descriptions of 85 rooms. We are
planing to collect vignettes for a variety of other indoor and outdoor locations.

Location vignettes also contain the spatial arrangement of objects. In ad-
dition to the extracted relations from the description corpus, we also designed
a series of AMT tasks for determining the arrangements of objects in different
locations using the objects that we collected in the present work. For each room
we ask AMT workers to determine the arrangements of the previously collected
objects in that particular room. For each object in the room, workers have to
determine its spatial relation with A) one wall of the room and B) one other
object in the room. We did not include the results in this paper since we are still
exploring methods to evaluate the spatial arrangements task. The gold standard
location vignettes include arrangements of objects, but it is difficult to directly
compare the gold standard to the AMT workers’ inputs as there are different
possibilities to describe the same spatial layout.
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Abstract. This paper describes a corpus-based study addressing the spatial 
positioning of hands in Italian Sign Language (LIS). The corpus includes LIS 
sentences extracted from TV news concerning weather forecasting. The results 
shows that spatial relations depend on contextual and geographical features. 
These results have been exploited in the implementation of a planning module 
that generates a sequence of commands that drive the generator of a virtual 
character. The planner is part of an Italian to LIS translation system whose goal 
is the automatic translation of weather forecast programs.  

Keywords: Sign languages, automatic translation, signs place of articulation. 

1   Introduction 

This paper describes the module of an Italian to LIS (Italian Sign Language) 
translator that takes care of hand positioning in the animation of the virtual character. 
The overall organization of the translator, the ATLAS project (Automatic Translation 
into the Language of Signs), includes various software modules taking care of the 
linguistic translation and of the virtual character animation. Most of these modules, in 
particular the ones devoted to language interpretation, have been used in various 
projects and aim at a wide coverage of linguistic structures. However, the structure of 
the planner, which which covers hands position, is based on the results of a corpus-
based study on spatial relations in LIS, and takes care of the general principles of 
hand positioning in sign languages. 

Sign languages (SL), namely the languages used by Deaf people for everyday 
exchanges, are visuo-spatial languages in the sense that they use the visual apparatus 
to perceive the linguistic input and use space as a crucial component to transmit 
linguistic meaning. Signers (like speakers) may adopt two different perspectives to 
convey spatial information: either they use a route perspective where the viewpoint is 
within the scene, or they use a survey perspective where the viewpoint is outside the 
environment [1]. In the route perspective the signing space reflects the individual’s 
perspective of the environment in a 3-D like representation, while in the survey 
viewpoint it takes a fixed bird’s eye view over a horizontal plane. Weather forecasting 



provides an interesting case study of the use of space in SLs. Weather conditions 
always refer to geographic areas and a common way to conceptualize them, in the SL 
use, is by adopting survey perspective. The domain of weather forecasting offers a 
slightly different survey perspective from the bird’s eye view. Specifically, the 
perspective adopted in this situation is mapped onto imaginary geographical maps 
displayed along the vertical axis, reflecting the standard way of illustrating 
forecasting on TV news. For instance, the sign ALPS1 in LIS (i.e. the mountain chain 
in the north of Italy) is iconically realized in the upper part of the signing space (i.e. in 
the north of the imaginary map), as illustrated in (1a). Accordingly, meteorological 
events happening in that part of the country would be articulated in the same spatial 
location. For instance, this could be the case of the sign CLOUD-GATHERING, as in 
(1b). If the cloud gathering had happened in the south of Italy, say in Sicily, the place 
of articulation of that sign would have changed accordingly.  

In the next section we describe the architecture of the translator; section 3 presents 
the corpus analysis, section 4 sketches the plan-based implementation, while section 5 
concludes the paper.  

 

  
(1)    a. ALPS   b. CLOUD-GATHERING 

2   System architecture 

The translator is based on a traditional rule-based approach, where the input 
sentences are interpreted in terms of an ontology-based logical representation, which 
acts as input to a linguistic generator that produces the corresponding LIS “sentence” 
in a language we called AWLIS (Atlas Written Italian Sign Language). A LIS 
sentence is a sequence of glosses, annotated with some syntactic pieces of 
information; the sequence is sent to a planner that takes a decision about the position 
where a sign must be articulated and its output is analyzed by a character animator 
that visualizes the movements of the virtual character on different media (see Fig.1). 
 The syntactic analysis is carried out by the Turin University Parser (TUP), which 
returns syntactic structures in dependency format. Dependency grammars represent 
syntactic relations by means of labeled binary relations between pairs of words (a 
Head and a Dependent). The parser includes a chunking step, where chunks (usually 
nominal groups) are collected and a verbal analysis step, where the chunks are 
connected to verbs on the basis information about verbal subcategorization (e.g. 
transitive vs. intransitive). Semantic interpretation is based on an ontology describing 

                                                
1 Throughout the paper, we use all-capital words to refer to the glosses of the LIS signs. 
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the concepts of the weather forecasting domain. The interpreter analyses the syntactic 
tree and, by accessing the ontology, builds a logical formula that takes advantage of 
thematic relations in order for assessing the semantic role of the verbal dependents.  
This formula is used as input for a CCG (Combinatory Categorial Grammar) 
linguistic generator  [2]. This module uses rules describing the AWLIS grammar that 
have been designed by exploiting the straightforward syntax-semantics interface that 
is one of the main features of CCG grammars. These rules account for various 
linguistic phenomena, as the morphological realization of plural, and coordination. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 1: Architecture of the Atlas system 
 
The resulting AWLIS sentence is fed to a hierarchical planner that produces a 

representation of the signed LIS where various visual features (as facial expression, 
hand movements, body position, etc.) are explicitly encoded (see section 4). Finally, 
the planner output is used by a character animation module that generates the actual 
character movements on the screen. 

3   Corpus analysis 

Within the ATLAS project, a corpus has been collected, consisting in the 
translation from Italian into LIS of 40 weather forecasting news recorded from the 
national broadcasting network. The corpus has been annotated with ALEA, a web 
application developed for the annotation of video content [3]. The following steps 
compose the annotation process:  

• Sentence segmentation and tokenization (sequential ID association and 
linking of each token with a lemma entry in the LIS signary) 

• Phonological tagging (manual and non-manual components)  
• Morphological tagging (part of speech and lexical field) 
• Syntactic tagging (syntactic dependencies) 
• Discourse tagging (topic and focus identification)  

In particular, the annotators indicated Sign Spatial Location (SSL). If the sign is in 
its standard location (as encoded in the signary) the SSL is left empty. In the case of a 
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location diverging from the citation form, two options are possible: either the sign is 
relocated in the neighborhood of another (preceding or following) sign (attractor), or 
the sign is relocated absolutely, i.e. without an overt attractor. The former case is 
illustrated by the example in (1b) above, where the sign for CLOUD-GATHERING is 
relocated in the same spatial position where the sign for ‘Alps’ is produced. In 
presence of an attractor, the annotator encoded the sequential ID number of the 
attractor, and the relative position of the relocated sign with respect to the attractor 
(top, bottom, left, etc.). Absolute relocation is illustrated by the examples in (2a-b). In 
(2a), the sign for LIGURIA, a region in the northwest of the country, is produced in 
its citation form, i.e. the one you find in standard LIS dictionaries. Its place of 
articulation is in the middle of the signing space in front of the signer. However, the 
variant in (2b) is relocated on the left side of the signer, positioning the region on the 
northwest part of an imaginary map of Italy. In this case, there is no sign working as 
an attractor. In the case of absolute relocation, the notation simply indicates the 
position toward which the sign location has shifted (up, down, left, etc.). 

 

   
(2) a. LIGURIA (citation form)  b. LIGURIA (absolute relocation) 
 
Two studies on sign spatial location based on 10 out of 40 weather forecasting 

news have been conducted. In the first study we investigated the potential causes 
triggering relocation, while in the second study we addressed the issue of what 
triggers assimilation-style relocation or absolute relocation.  

For the first study, we excluded from the 1027 annotated items those signs that 
never undergo the relocation process. Among the 513 remaining items (“relocatable”) 
the most frequent option is to maintain the standard place of articulation (61% of the 
cases), while in the 39% of the cases signs are produced in a relocated position. 
Several multivariate analyses, considering five potential predictors for the distribution 
of relocated vs. non-relocated signs: part of speech, lexical field, absence/presence of 
non-manual components, one/two-handed sign, and absence/presence of second-hand 
activity (i.e. whether the second hand was anticipating or perseverating the handshape 
of another signs in the utterance). The results reported in table 1 show the two 
predictors emerged as significant (p<0.05) in the VARBRUL analysis [4]: lexical 
field and number of hands. 
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Table 1. Input value: 0.381, total chi-square = 4.6363 (chi-square/cell = 0.5795), Log 
likelihood = –326.326. 

Predictor Level Application value: relocated yes 
  Factor Weight2 % 
Lexical field Geographic .666 52% 
 Meteorological  .569 46% 
 Functional .477 35% 
 Other .307 23% 
Hand-number Two-handed  .534 40% 
 One-handed .422 37% 
 

Lexical field had the strongest effect on the distribution of relocated and non-
relocated signs (range = 0.359). Geographic and meteorological terms favors 
relocation (FW= .666 and FW= .569, respectively), while functional signs and the rest 
of the signs disfavor relocation (FW= .477 and FW= .307, respectively). A weaker 
but still significant effect is found for number of hands (range = 0.112): Two-handed 
signs slightly favor relocation (FW = .534); while one-handed signs disfavor it (FW= 
.422).  

For the second study we concentrated only on those items showing relocation (i.e. 
on the 200 relocated signs). The results show that most relocated signs have an 
attractor preceding it in the clause, surfacing as cases of anticipatory assimilation 
(73%), while relocated signs with a following attractor are very rare (4%). A good 
portion of tokens shows absolute relocation (27%). For the purposes of the statistical 
analysis we only considered cases of perseverative assimilation and cases of absolute 
relocation and we found a significant effect of lexical field, as illustrated in table 2. 

Table 2. Input value: 0.752. Total chi-square = 0.000 (chi-square/cell = 0.000). Log likelihood 
= –104.908. 

Predictor Level Application value: anticipatory 
assimilation 

  Factor Weight % 
Lexical field Functional .804 93% 
 Other .531 77% 
 Meteorological  .518 77% 
 Geographic .292 56% 
 
The main effect of lexical field is due to the extreme behavior of functional and 

geographic signs. The former strongly favor anticipatory assimilation (FW= .804), 

                                                
2 Factor weights (also known as factor probabilities) are a numerical measure of the strength of 

each level of a predictor. Values that are close to 1 favor the application value (i.e. the level 
of the dependent variable used as ‘baseline’), values close to 0 disfavor it, while values 
around 0.5 are neutral. In this case, values close to 1 favor relocation, while values close to 0 
disfavor it. Factor weights can be easily converted into logits [7]. 
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while the latter strongly disfavor anticipatory assimilation (FW= .292), therefore 
favoring absolute relocation. Other signs favor assimilation over absolute relocation 
(FW= .531), as well as meteorological terms, although only weakly (FW= .518). 

The fact that geographic and meteorological signs favor relocation can be 
interpreted as the result of a mapping of spatial relations onto an imaginary 
geographical map stretched on the vertical plane, forcing displacement of signs 
somewhere on the map. In a sense, the domain of weather forecasting makes the 
iconic component of these signs extremely relevant forcing a schematic isomorphism 
between the aspects of the linguistic signal and aspects of the spatial scene [5]. 
However, geographic terms and meteorological signs crucially differ on the type of 
relocation in which they are involved. The former favor absolute relocation as the 
result of a direct link with the imaginary map, while the latter depend upon an already 
established spatial relation (e.g. the presence of a geographic sign, as in ‘it’s raining 
on the Alps’). Interestingly, absolute relocation is extremely unlikely in the case of 
functional signs. This is quite expected since the iconic component is virtually absent 
from these signs.3 

4   The planner 

The planner module has the specific role of organizing the sign flow in the signing 
space. Its input is the sequence of the lemmas and information on the semantic roles 
as produced by the generator module. The output returns the same sequence enriched 
with information on where hands has to be positioned in the signing space.  

We use the SHOP2 planning system [6], which relies on the formalism of 
Hierarchical Task Networks (HTN). Given the sequence of signs, the planning 
component accounts for the use of the signing resources, namely hands, facial 
expression, torso, head, and the organization of the signing space in order to 
accomplish the animation of the given sign sequence. A library of linguistic plans 
describes how signs can be adapted to the context of a specific sentence (encoded in 
the AEWLIS input representation), given the constraints provided by the 
communicative situation and the interpreter’s configuration (signing resources, 
availability of the resources, etc.) [8].  

Figure 2 represents the top-level portion of the hierarchical task networks (HTN). 
The high-level task (LIS-sign) decomposes into the task of assigning the signs to the 
interpreter’s hands (not shown), finding the location for each sign (Localize in the 
figure, achieved through the Find-position sub-task), then performing the sign (Make-
sign). Also, the planner determines the initial and final location of the signs that have 
a parameterized trajectory, such as movement verbs (Sign-relation task). 

 

                                                
3 Pointing signs, whose deictic nature might force absolute relocation, would represent a 

relevant exception within the class of functional signs. However, the number of pointing 
signs was extremely low in our corpus possibly due to the formal register used by the 
interpreters, therefore we couldn’t test this prediction.  
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Figure 2: the top level of HTN encoding the signing strategy of the planning component. 

Dark boxes represent primitive actions. 

For each sign the planner produces an ordered pair of spatial coordinates: the first 
one corresponds to the location of the sign in its citation form, the second one is 
generated by the planner itself and corresponds to the position in the signing space 
where the sign will be actually articulated. These latter coordinates are the result of 
the planning process, which currently take into account only spatial relations lexically 
expressed by specific lemmas (e.g. NORTH ‘in the north’, LEFT ‘on the left’, 
BOTTOM ‘at the bottom of…’, etc.), as provided by the generator module. This, 
however, fails to provide the correct spatial location coordinates for cases where signs 
are relocated without an overt indication of the spatial relation. These are precisely 
the situations of absolute relocation and assimilation of the place of articulation 
described in section 3. In order to fix this problem, we implement the planner by 
adding two further conditions on the generation of the final coordinates. The first 
condition introduces additional contextually salient information like the presence of a 
geographic map that in turns generates an imaginary map in the signing space. This 
will be used for the purposes of absolute relocation. The second condition capitalizes 
on the semantic information provided by the generator module. Specifically, we use 
the semantic role of location (in addition to lexically specified phonological 
constraints) to identify potential attractors that drive the assimilation of place of 
articulation. We illustrate here this latter case by considering the sign CLOUD-
GATHERING, already introduced above. The first spatial coordinates produced for 
the sign CLOUD-GATHERING are those of its citation form. If no attractor is 
present in the utterance, the planner will use these coordinates as the final coordinates 
for the sign. If an attractor (e.g. ALPS) is present, the coordinates of the attractor are 
copied as the final coordinates for the sign CLOUD-GATHERING. 
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Conclusions 

In this paper we presented the architecture of a generation module of the Italian into 
LIS automatic translator ATLAS. One of the crucial aspect of the grammar of SLs is 
the used of space in order to convey linguistic meaning. In the sign stream, signs can 
be articulated in positions different from their citation vocabulary-like position. We 
identified two modes of relocation: relative and absolute. A corpus study on weather 
forecasting revealed that both articulatory and grammatical factors are responsible for 
relocation. In particular, the mental representation of spatial relations is projected onto 
a virtual ‘geographical’ map along the vertical axis that is used as a guide for 
relocation. We implemented these findings as a set of rules that drive the behavior of 
a planner. The planning module gets as input a “symbolic” representation of the 
sentence in a written form (AWLIS) and takes the decision about where to put the 
hands, according to the principles identified in the corpus study.  
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Abstract. In this paper we outline how to translate verbal subjective descriptions of spatial 

relations into metrically meaningful positional information, and extend this capability to 
spatiotemporal monitoring. Document collections, transcriptions, cables, and narratives 
routinely make reference to objects moving through space over time. Integrating such 
information derived from textual sources into a geosensor data system can enhance the overall 
spatiotemporal representation in changing and evolving situations, such as when tracking 
objects through space with limited image data.  We focus on landmark identification, since it 
proves to be a more tractable problem than open-domain image recognition.  

Keywords: Spatial language, geolocating, spatial configurations, landmarks.  

1   Introduction 

The relation between language and space has long been an area of active research. 
Human languages impose particular linguistic constructions of space, of spatially-
anchored events, and of spatial configurations that relate in complex ways to the 
spatial situations in which they are used. Establishing tighter formal specifications of 
this relationship has proved a considerable challenge and has so far eluded general 
solutions. One reason for this is that the complexity of spatial language has often been 
ignored. In much earlier and ongoing work, language is assumed to offer a relatively 
simple inventory of terms for which spatial interpretations can be directly stated. 
Examples of this can be found not only in accounts that focus on formalizations of 
particular tasks, such as path and scene descriptions, navigation and way-finding, but 
also in foundational work on the formal ontology of space, on qualitative spatial 
calculi, and on cognitive approaches.  

Visual information in human experience is frequently accompanied by a linguistic 
description of the image or scene. Consider, for example, the image in Figure 1. If the 
goal is to identify the region of the image where one should look for the lost keys, one 
first must identify the correct tree. If this image is automatically segmented using a 
stock library of images for trees and entrances (Millet et al., 2005; Hollink et al., 
2004), several candidate regions for “tree” and “entrance” will be identified. Each 
candidate region may then be ranked with respect to how likely it is to correspond to a 
tree or an entrance, producing two ranked lists of candidate regions, T = (T1; T2; : : :) 



and E = (E1;E2; : : :), where Ti are the candidate regions for “tree”, Ti ranks higher 
than Ti+1, and Ej are the candidate regions for “entrance”. The associated verbal 
description invokes the “left of” relation, thereby restricting the search for the 
appropriate pair of candidate regions by imposing the corresponding spatial 
constraint: LEFT_OF(Ti;Ej). The (Ti;Ej) pairs that do not satisfy the specified spatial 
relation are given lower ranking, thus increasing the likelihood of identifying 
correctly the relevant region in the image. 

 

 
 

Fig. 1: Speaker: See the tree to the left of the entrance? 
I dropped my keys under that tree. 

 
Over the past decade, image annotation has been the focus of attention within 

several research areas, in particular, in the context of content-based image retrieval 
(CBIR). Some research, including the work done within the TRIPOD project at 
Sheffield, examines the different ways that geo-referenced images can be described 
(Edwardes et al., 2007), though different approaches, such as the ESP Game can also 
be used to address this problem. Much of the work on text-based image retrieval has 
relied on extracting information about the image from image captions, as well as the 
surrounding text and related metadata, such as filenames and anchor text extracted 
from the referring web pages, as for example, in Yahoo!’s Image Search. Another 
kind of image annotation data has become available with the rise of “citizen 
geography”. User-annotated geo-referenced digital photo collections allowing for 
image content labeling and annotation are being generated in distributed 
environments, such as Flickr and GoogleEarth. Images are indexed with user-supplied 
labels that typically form a particular language subset (Grefenstette, 2008). Under 
such schemes, however, detailed image content annotation is not provided. A notable 
exception is the “Flickr notes” feature that allows users to annotate regions within 
images. This and other adaptations of the Fotonotes image annotation standard and 
the associated software provide an opportunity for detailed annotation of images with 
both captions and extended free text associated with each annotated image region.  
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2   Geolocating Descriptions of Landmark Configurations 

While such efforts as those discussed above are useful metadata encodings over 
images, there remain significant problems with unconstrained object recognition. 
Hence, in this paper, we will focus on linguistic descriptions of landmark 
configurations. Landmarks are visually identifiable objects with fixed spatial 
locations, which carry semantic meaning for large groups of individuals. They are 
typically large man-made or physical structures (e.g. buildings, communication 
antennas, hills) and play an important role in navigation and wayfinding decisions 
(see e.g. Werner et al, 1998; Steck and Mallot, 2000). For example, routes can be 
expressed as sequences of landmarks (Duckham et al., 2010) and paths connecting 
them. The saliency of different landmarks can be expressed in terms of their 
perceptive, cognitive, and contextual value (Caduff and Timpf, 2008). In this section 
we address their role for geolocating an observer describing their relative orientational 
properties in his/her view of a scene. 

Let us consider the scene depicted in Fig. 2, taken from Google StreetView, of the 
intersection of Huntington and Mass. Avenues in Boston.  In it we can identify 
reference landmarks, namely three buildings: Horticultural Hall (HC), Prudential 
Center (PC) and the Christian Science Monitor building (CSM). It also comprises 
various other objects, for example a white van, a black truck, and a red car. Our 
interest is in geolocating the observer of this scene by using orientational descriptions 
of the relative appearance of the landmarks contained in it.   

 

 
Fig. 2 Landmarks and objects identified in a ground-view. 

 
Assuming that a narrator is familiar with these three landmarks, he/she could describe 
the scene as follows: 
 

I see the SW and SE sides of Horticultural Hall, and  
to the right of it I see the SW and SE sides of the Prudential Center, and  
to the right of it I see the Christian Science Monitor Building. 
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In this situation the narrator has described the scene through three types of statements: 
 
• explicit reference to specific landmarks, positioning the scene in their vicinity,  
• explicit description of orientational properties expressing the relative 

positions of these landmarks in an observer-centric system1, and 
• implicit visibility declarations, whereby she indicates that she can observe  

specific façades of landmark buildings. 
 
The orientational properties are modeled using ISO-Space (Pustejovsky et al., 2011). 
ISO-Space distinguishes two major types of elements: entities and relations. Entities 
include location, spatial entity, motion, event (or spatial state), and path. The two 
main relations between these entities are the distance relation and the qualitative 
spatial relation, which can be either a topological or a relative spatial relation. 
   Relations such as “to the right of” are annotated as a relative spatial relation 
between two elements, the figure and the ground, and the viewer perspective is 
accounted for by two further attributes on the link tag: rframe, with values absolute, 
relative and intrinsic, and viewer, which contains a variable indexed to the viewer 
(Levinson, 2003, Freksa 1992, Ligozat, 1998). Using the three kinds of information 
above (landmarks, relative positions and visibility declarations), we can identify the 
three landmarks in a GIS (Fig. 3), and proceed to estimate the location of the observer 
through a series of view analysis and visibility polygon overlays as we describe 
below. 
 

 
Fig. 3 Map location of Horticultural Hall. 

 
For every visibility statement we can identify a visibility zone through viewshed 

analysis, using the local GIS information (Kim et al., 2004). The 2D visibility zone of 
a specific façade (or any other object in space) is the locus of all points from which at 
least a part of this façade is visible. For example, in Fig. 4, the visible zone of façade 

                                                             
1 An alternative would be to use the intrinsic orientation of the landmark, in which case "to the 

right" would be interpreted relative to the landmark and not relative to the observer. Clearly, 
both options would need to be explored down-stream. 
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F1 is shown as the gray-shaded area. From any point outside this area it would be 
impossible to see façade F1.  
 

 
Fig. 4. The visibility zone (gray shaded area) for façade F1 of Building A. 

Each additional visibility statement introduces additional visibility zone 
information, and the location of the narrator can be eventually determined through the 
intersection of the corresponding visibility zones through polygon clipping 
techniques, such as Weiler-Atherton (1977). Fig. 5 shows the implementation of this 
process for the scene of Fig. 1, through a progressive assessment of visibility 
conditions for HC, CSM, and PC.   

 

 

   

  

Visibility zones (Z 1 in red, Z 2 in 
blue) of two visible facades of 
Horticultural Hall  

sub-region=Z 1 ! Z2  

Visibility zones (Z 3) of one visible 
facade of GSN  

sub-region =Z 3!(Z1 ! Z2)  

Visibility zones (Z 4) of anther 
visible facade of GSN  

sub-region = Z3!(Z1 ! Z2 ) 

Visibility zones (Z 5) of one visible 
facade of Prudential Center  

sub-region = Z 5! (Z3!(Z1 ! Z2 )) 

Visibility zones (Z 6) of one visible 
facade of Prudential Center  

sub-region = Z 5! (Z3!(Z1 ! Z2 )) 

 
Fig. 5. The progressive visibility intersection process 
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The narrator position estimated through the process visualized in Fig. 5 is shown 

on the local map in Fig. 6, marked as a red triangle. The triangle corresponds to all 
positions from which the narrator would have a view of our scene that would be 
comparable to the one depicted in Fig. 2 in terms of the orientational relationships of 
the three depicted landmarks. 

 

 

Fig. 6. The estimated location of the narrator, indicated as a red triangle, and the 
views used to estimate it. 

3   Conclusion 

In this paper, we discuss the integration of multi-source data analysis for spatial 
knowledge extraction from images. In particular, we focused on the specific 
contribution of verbal subjective descriptions of spatial relations involving 
orientation, and how these can be translated into metrically interpretable positional 
statements within a GIS environment. We concentrated on the more tractable 
subproblem of landmark identification. Orientational information in language was 
modeled with ISO-Space annotation, providing both qualitative spatial relations and 
anchored GPS values, once geolocating is performed.  
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   This work is ongoing research aimed to allow for the integration of information 
available from different sources, better addressing the evolving needs of the 
geoinformatics community. Our preliminary results suggest that scene content 
information provided by verbal description can be mapped faithfully to metrically 
grounded information. As this is preliminary work, there are clearly many details to 
be worked out. For example, we have not yet precisely defined how orientational 
relations are used to identify a landmark in a GIS, especially with anonymous 
landmarks, a problem exacerbated when an ambiguity between intrinsic and observer-
based relative orientation cannot be easily resolved.  
   One of the ultimate goals of this research is the development of algorithms that take 
an image and accompanying verbal utterances and maps these to a partition of a 2D 
grid. This application would be tuned to deal with more natural utterances than the 
somewhat stilted verbal descriptions given with Fig. 2 above.  
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Abstract. We present first results of an analysis of a corpus of linguistic descriptions that 
were collected in controlled experiments. This corpus and its analysis add to the body of 
knowledge on formal models for spatial language, language interpretation and generation. 
The experiments are grounded in qualitative formalisms (RCC and Intersection Models, 
IM) that have a long standing tradition as means to bridge formal and linguistic descrip-
tions of space and spatial relations. Our experiments address dynamically changing spa-
tial relations (movement patterns/geographic events). By keeping the formal spatial char-
acterizations identical across experiments but changing the semantics (that is, we used 
movement patterns across seven different geographic domains such as a hurricane in rela-
tion to a peninsula, plus two geometric figure domains) we contribute to disentangling 
spatial and domain specific aspects of spatial (event) language. We briefly discuss here 
two aspects: First, we hand examine the corpus by selecting participants that show the 
same conceptual behavior as identified through RCC/IM; second, we analyze the domain 
specific sub-corpora to address similarities and dissimilarities between individual do-
mains. 

Keywords: Event language, topology, corpus analysis. 

1   Introduction 

Formal models of spatial language play an import role in several disciplines addressing ques-
tions of (natural) language processing, natural language generation, the automatic description 
of spatial scenes, or the design of unifying frameworks for multimodal information systems 
and processing [1–4]. While we are in the age of spatio-temporal representation and reasoning, 
the four-dimensional treatment of spatial language (and information in general) is still a hotly 
debated topic. With respect to language, research shows that naming of events is more chal-
lenging than naming of object [5] and it is therefore not surprising that the insights gained 
from describing static spatial relations linguistically need to be carefully evaluated and extend-
ed to the dynamic domain. This contribution is addressing this issue by combining approaches 
to model events employing qualitative spatial formalisms with linguistic analysis. 



2   Approach 

We have developed an experimental paradigm that allows us to evaluate the influences of do-
main semantics on the conceptualization of movement patterns as well as how movement pat-
terns are linguistically described. Here we focus on the linguistic descriptions. Our framework 
is based on a topologically defined conceptual neighborhood graph [6–8]. Figure 1 provides an 
overview of the different semantic domains that we have subjected to behavioral validation. In 
a nutshell: We distinguish movement patterns on the basis of formal path characteristics as 
identified by the conceptual neighborhood graph. The shortest path (in each scenario) is a sin-
gle topological relation, DC (disconnected), the longest path (in each scenario) is defined as 
follows: DC-EC-PO-TPP-NTPP-TPP-PO-EC-DC. To give an example, a boat that never 
touches or crosses an area of shallow water will always be disconnected (DC) from it. In con-
trast, a boat that makes it completely across an area of shallow water will exhibit the long path 
characteristics with the start and end relation being identical (DC). Our participants have to 
perform a grouping task as a way to elicit conceptual knowledge. After performing this task, 
participants are presented with the groups that they created again and are asked to provide 
linguistic descriptions: a short label and a longer description detailing the grouping rational. 

 
Fig. 1. Nine scenarios from our experi-
ments. Left: four scaling movement pat-
terns: An extending desert in relation to a 
recreational park, two geometric figures 
showing a static diamond and an extend-
ing/shrinking circle, a lake extending in 
relation to a house, and an oil slick extend-
ing in relation to an island. Right: five 
translation scenarios: A hurricane in rela-
tion to a peninsula, a tornado in relation to 
a city, a ship in relation to a body of shal-
low water, a cannonball in relation to a 
city, and two geometric figures. They are 
arranged around the Rosetta Stone because 
all movement patterns in all our experi-
ments are characterized by topologically 
equivalent paths through the conceptual 
neighborhood graph (which is overlaid on 
top of the Rosetta Stone). 
 
 
 
 
 
 

3   Some results 

As rich as our data set is, the flexibility of natural language has made it a challenging task to 
analyze it. We are presenting two approaches. First we had a look into linguistic descriptions 
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for specific paths. Here we show results from four domains, two from our translation move-
ment patterns (geometry and hurricane) and two from scaling movement patterns (geometry 
and lake). This path (DC) could be described as a hurricane not making landfall or a lake not 
flooding the house. Our goal was to analyze the variety of linguistic descriptions that partici-
pants use to this relatively simple scenario. Table 1 provides some representative examples. 
The important distinction that we made for both scenarios is whether the spatial information 
(about the movement patterns) in these two scenarios is linguistically encoded using spatial 
language, or, whether this information is encoded using domain specific language. The two 
corresponding geometry scenarios serve as a reference as they obviously do not easily allow 
for using domain semantics. 

With respect to the spatial language we find very diverse ways of conveying spatial infor-
mation. We do believe that this diversity is fostered by the fact that our research is addressing 
geographic events / spatio-temporal information (rather than static spatial relations). Especially 
in the hurricane example we find the following strategies: relative reference frames focusing 
on the end relations of the geometric characteristics of figure and ground; qualitative distance-
based descriptions; negation of what the path does not do; absolute reference; (experiment) 
context specific descriptions; explicit topological descriptions; intrinsic reference induced by 
the movement. Interestingly, the explicit spatial descriptions in the lake scenario seem to be 
less varied, indicating a potential difference between scaling and translation movement pat-
terns that are indistinguishable from a topological perspective. 

In both scenarios we also find descriptions that are encoding the spatial event in terms of 
domain specific language (to different degrees). While, for example, a statement such as “no 
hit”, “weak hit”, “no landfall” are still rather explicit, a statement such as “weak hurricane” 
relies heavily on background knowledge of a scenario and is open to interpretation. In case of 
the lake, the descriptions are much less varied, again, and in most cases refer to a flood not 
happening. 

Table 1. Linguistic descriptions for the shortest possible path (DC). 

Hurricane Lake Geometry translation Geometry scaline 
Right side stopping 
circles 
Hurricane stops short of 
land 
Path doesn't cross 
Completely off east 
coast 
Right side 
Outside right 
Before land 
 
Don't make it 
Hurricanes that never 
made it to shore  
No hit or weak hit 
Calm right before the 
storm 
Weak hurricane 
Weak hurricanes 
No landfall 
No landing 
Pre-landfall hurricanes 

Below house 
Away from the house 
Not touched 
Not covered 
Water reaches short of 
house 
 
 
 
Not flooded 
No flood 
Dry house 
Short flood 
No flooded house 
No house flood 
No flooding 
Lower risk 
Tiny lakes 
 

Outside right 
Outside right 
Any part outside the 
triangle 
Balls outside triangles 
Before 
Fully outside 
Off to the right 
Right 
Stopped on right of 
triangle 
To the right 
Far outside on the right 
Ball on triangle 
Too short 
Outside 
Outside right 

Under the box 
Up and didn't get too far 
Team grow 
Bellow box 
Circle grows beneath 
box. 
Half way to the dia-
mond 
Straight 1/4 
Fall short 
Expand before 
Below 
Before diamond stop 
Expanding short stop. 
Expand halfway 
No contact 
Stop short 
Grow stop between 
Out not close to square 
Far away 
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These findings led us to explore differences between the sub-corpora (the nine different 
scenarios). First, some domain-corpus properties can be extracted using AntCont [9]. The 
token occurrences are visualized using Wordle (http://www.wordle.net/), seeFigure 2. 

 

Fig. 2.  Frequently appearing words in 9 corpora 

From the tag clouds in Figure 2, we can see that top frequent words are mostly related to 
domain specific semantics. For example, city, desert, and island are referring to objects illus-
trated in each scenario. It is not surprising that participants make use of the domain semantics 
for reference to objects in the scenario, as it is a direct and succinct way to describe an object 
and distinguish it from surroundings. However, for the topological change depicted in different 
icons, participants would have to use more complicated descriptions such as verb phrases and 
prepositional phrases. This is the reason that spatial language terms such as on, middle, at, 
outside, left, right, through, and ended also appear prominent in the tag cloud. Our analytical 
question is: given scenarios where only domain semantic is different, how different will the 
descriptions be? 

In the next step, we used the Stanford POS tagger [10]. We investigate the most frequently 
appearing nouns, verbs, adjectives, and prepositions: 
 The most frequently appearing nouns are domain specific ones (see Figure 1). Domain specific nouns 

with top frequency in one corpus are often never found in other corpora, such as tornado, oil, and 
desert. Nouns that can be found across domains are common referral terms, such as side, icons, mid-
dle, and bottom. 

 Frequently appearing verbs seem to be not as domain specific as nouns. Common verbs are various 
forms of be, end, touch, have, and go. However, there are a few verbs that appear frequently in some 
corpora but not in others. Hit and miss frequently appear in the Cannon, Hurricane, and Tornado 
corpus. Cover, expand and grow frequently appear in the Desert, Oil, and Lake corpus. It is not sur-
prising because hit and miss can be naturally used for describing “translation” while cover, expand 
and grow naturally relate to “scaling”, which is the major difference in the above two corpora sets. 
There are also cases where verbs are specific to a domain. Landed used as a verb frequently appears 

43



in Cannon and Hurricane. Flooded used as a verb appears exclusively in Lake. Sailed exclusively 
appears in Ship. This shows that domain semantic also influences verb usage, but not as explicit as 
nouns. More examples are recede, retreat, leave, surrounded, shrink, and disappear. 

 Adjectives seem to even less domain specific. Common adjectives across all corpora are middle, same, 
right, and lower. The few cases where adjective are domain specific are the use of colors. Blue, grey, 
and red appears as to provide additional referral information respectively in Ship, Geometry, and 
Desert corpus. Exclusively in the Ship corpus, shallow, light and dark are frequently used to refer to 
the boundaries or the center of the water body. Adjectives about size were also used. Large appear 
more often in Oil. 

 Prepositions are the least domain specific lexical category. Few prepositions are domain specific. 
Across frequently appears in translation scenarios but not in scaling ones. 

In sum, POS-tagging offers possibilities to examine linguistic usages by lexical categories. 
Examining the nine corpora, frequently appearing nouns are highly domain specific; a few 
verbs and adjectives are domain specific and a general difference in translation vs. scaling can 
be found; prepositions are least domain specific, only the word “across” is found to be differ-
entiable between translation scenarios vs. scaling scenarios. 

The last analysis step here involves topic modeling [11,12]. It is a method for discovering 
“topics” shared among documents within a corpus. It can be viewed as cluster analysis for 
documents. Applying topic modeling to all documents (one for each participant, 20 documents 
per scenario) in the nine corpora (180 documents in total), we can evaluate whether documents 
might be clustered based on their domain. Mallet (Machine Learning for LanguagE Toolkit) 
[13] is used to realize topic modeling. Setting the “number of topics” to be nine, we can see if 
the nine topic models correlate with the nine domains (scenarios). Because topic models are 
data-driven and don’t imply any predefined knowledge, we want to compare the topic model-
ing result with domain semantics and see if they are comparable to each other. Each topic is 
defined by the keywords appearing most frequently and most distinctively. 

Table 1. Keywords for the nine topic models (TopicID). 

Topic ID Keywords 

0 bottom diamond circle stops top stop back grows expand box expands halfway corner mid-
dle diamond grey expanded moves touches  

1 middle ended lower blue light ships upper boats side boat left top corner chose screen sec-
tion hand cross horizontal  

2 area half touch past stopping retreat point square part retreats short tan position contact full 
expanding small space pass  

3 left side triangle inside ball end center circles middle ends line landed start high dot touching 
fell location images  

4 water house flood back entire recedes reaches flooded touching halfway spread lake lakes 
front receded show past starting receeding 

5 group desert reserve stopped fully put based touched nature partially chose groups anima-
tions criteria reached red shape sand choose  

6 island oil covers completely covered cover spill stop reach ocean tip covering islands barely 
large pattern reaches spills animation  

7 city edge icons tornado cannon balls region tornadoes border gray grouped tornados east 
boundary enter missed southwest town block  

8 shallow land hit peninsula hurricanes hurricane moving made mid close west coast ship part 
central move hits low 

Table 1 shows the keywords that identify each topic model. Unsurprisingly, domain specific 
nouns are distributed across topic models. These topic models can be used to evaluate the 
probability of one document (descriptions created by one participant) being associated with a 
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specific topic model (ideally catching the domain). Assigning the most probable topic ID to a 
document allows for using topic models for document classification. To evaluate the correla-
tion between topics and domain semantics further, we use the already built topic models to 
classify each document. The results and evaluations are shown in Table 2. 

Table 2. Matching nine topic models to the nine domains in a confusion matrix. 

Out of 20 documents from each 
domain, we evaluated the proportion 
of documents being classified into 
the same topic model, which ideally 
should correspond to the domain 
(this correspondence worked except 
for tornado and cannon, where most 
of both are assigned to Topic ID 7). 
The bold numbers in Table 2 shows 

the topic model (see also Table 1) that most documents from a domain are assigned to. As 
shown in Table 2, it is reasonable to match each topic ID to one domain semantic and the 
matching proportion (sum of diagonal cells divided by total) is 70.56%.  Cross-examining the 
domain semantic with keywords from corresponding topic models (see Table 1) we find that a 
large proportion of documents are classified correctly. 

However, the above matching of topic models and domain semantics may be skewed by the 
high volume of domain specific nouns. Hence, as a comparison, we removed all the domain 
specific nouns from all corora and rebuilt the topic models. 

Table 3.  Keywords for nine topic models (excludes domain specific nouns). 

TopicID Keywords 

0 area hit grows box half gray touch tan past enter missed grow leaving boxes consumes 
retreat green direction paths  

1 half covers cover covered fully entire recedes tip touch reach ocean covering recede oil 
starting sand island retraction affected  

2 land icons touching chose center grouped landed hand border put close section location 
barely didn mass shore passed landing  

3 left side middle top bottom end corner ends start high starts drop adjacent moved inbetween 
flush receds hang till  

4 shallow stopped blue light moving made screen based cross horizontal vertical route low 
make angle map body path sailed 

5 edge inside ended city line mid dot west east fell ball boundary central criteria south images 
portion impacts southwest 

6 completely point flood stopping square touched icons retreat receded show house groups 
large pattern space receeding grass part recession 

7 back stops stop halfway reaches past short grey retreats expanded front full moves touches 
position hits expanding reached disappears  

8 group lower upper expand region part expands spread animations straight red shape shrink 
partially grew diamond slightly icon movement  

As shown in Table 3, because all domain specific nouns are excluded, the keywords are not 
as clearly correlated to domain semantics. Nouns that are not domain specific, verbs, 
adjectives, prepositions and all other words are still kept and were used for building another 
topic model. In the following we analyze if these words can create document clusters that 
correlate to domain semantics, too. 

            Topic ID  
Domain  

0 1 2 3 4 5 6 7 8 

Geometry_translation 16 0 0 1 1 0 1 1 0 
Desert 1 14 0 0 1 0 2 0 2 
Lake 0 0 19 0 0 0 1 0 0 
Cannon 3 0 0 3 3 1 0 10 0 
Hurricane 0 0 0 1 16 0 1 1 1 
Geometry_scaling 0 4 0 1 0 14 1 0 0 
Oil 5 0 1 3 0 0 11 0 0 
Tornado  0 0 0 0 3 0 2 15 0 
Ship 0 0 0 0 0 0 1 0 19 
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Table 4. Matching nine topic models (excluding domain specific nouns) to the nine domains in a 
confusion matrix. 

From Table 4, we can see that 
document from each domain are being 
classified as belonging to various topic 
models. It is a stretch to relate topic IDs 
from this topic model to the nine 
domains and the highest possible 
matching proportion is only 29.44%. 
This result shows that excluding domain 
specific nouns lets the correspondance 
between topic models and domain 
semantics disappear. 

4   Conclusions 

Two observations are important: In the first part of this paper we showed an analysis by hand 
that allows for relating a qualitative formal description of a movement pattern to a linguistic 
description. The linguistic descriptions are varied and participants used manifold strategies to 
characterize formally identical movement patterns. However, we seem to be able to clearly 
reveal domain specific differences, especially if we look into whether or not domain semantics 
is present. In the second part of this paper we tried to use this insight and compared the docu-
ments from each domain (one document with all linguistic descriptions per participant, 20 
documents in each domain). We found that figure and ground (moving entity and reference 
entity) are the dominating linguistic features used and that these nouns allow for classifying 
documents largely correctly. However, once we remove these obvious, domain specific fea-
tures, classification and identification of documents becomes very inaccurate despite the dif-
ferences we found in the first part. 

There could be a number of reasons for this. Instead of comparing all documents of a par-
ticular domain, which contains linguistic descriptions of several, topologically distinguishable 
paths, we may need a finer granularity for the analysis. For example, we could extract all DC 
descriptions from all domains and focus only on these. Likewise, we could extract all descrip-
tions for movement patterns that could be labeled across in the translation scenarios and ex-
pand-and-retreat in the scaling scenarios. We could perform this analysis for all topologically 
equivalent movement patterns that we used to design our experiments. 

It also could be that the topic modeling approach we used needs refinement. Topic models 
make use of terms and co-occurrences with documents to discover topics. It is an effective 
method for knowledge discovery from large corpora without predefined knowledge. However, 
we are specifically looking for spatial language usage in this study. In order to reduce the in-
fluence of domain specific nouns, we use a crude method which is removing the domain spe-
cific nouns. Integrating predefined knowledge (in our case, specific target language and con-
texts) into topic models would allow an analysis to focus on certain term usages, which would 
enhance the capability of topic modeling.  

To sum up, we presented a first exploratory analysis of a corpus that is the result of the con-
ceptualization of movement patterns in different semantic domains. The unique aspect of our 

               Topic ID  
 
Domain 

0 1 2 3 4 5 6 7 8 

Geometry_scaling 5 5 0 1 1 2 6 0 0 
Hurricane 1 1 4 3 4 2 1 4 0 
Tornado  1 0 10 1 1 2 4 0 1 
Lake 3 1 0 7 0 2 3 0 4 
Ship 8 3 0 0 9 0 0 0 0 
Desert 0 0 0 1 0 5 3 1 10 
Geome-
try_translation 

1 2 1 1 1 4 2 7 1 

Cannon 2 2 6 1 1 1 0 6 1 
Oil 3 0 0 5 0 3 1 0 8 
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experiments is that grounding the design in qualitative spatial representation and reasoning 
frameworks allows for keeping the spatial information identical across domains only changing 
the semantic (domain specific) context. We are hopeful that this corpus can contribute to a 
better understanding of the relation between formal/computation models and spatial language 
across different domains. 
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Abstract. The explorative study presented in this paper investigates indoor way- 
finding strategies and inferences of users in an unknown building. Participants were 
asked to find two consecutive targets in a multilevel building with the help of written 
route instructions. Routes were generated by a dialogue system and tested against 
adjusted instructions containing additional architectural information. The empirical 
findings suggest that selectively adding structural information can help (1) to build up 
a participant’s cognitive map and support inferences about returning paths, (2) a 
guidance system optimize its wayfinding process to avoid redundancy with respect to 
the human-friendly principle, and (3) to improve to a great extent the effectiveness 
and efficiency of the system itself, and generate more adaptive and intuitive route 
instructions. 

Keywords: indoor wayfinding strategies, spatial inferences, cognitive map 

1 Introduction 

The purpose of the study was to test whether selectively adding information about the 
architectural structure of a building to a set of instructions provides additional inferences 
about the returning path, leading the user to choose another, perhaps shorter way back.  

As for the instructions we used a dialogue system that automatically generates indoor 
route instructions when asked about locations, using text-based natural language input and 
output (cf. [2]). We are interested in how the behavioral findings could help (1) to improve 
route instruction generation according to cognitive principles underlying human route 
descriptions [6], and (2) to improve, to some extent, the effectiveness and efficiency of the 
system itself and generate more adaptive and intuitive route instructions. 

   Recent approaches to indoor wayfinding have encountered difficulties in their 
investigation in conference centers [3], libraries [1], and others. Hölscher et al. [4, 5] for 
instance, suggest the following taxonomy in cases of incomplete spatial information for 
complex multilevel buildings (a) central point strategy – more likely to be used by first-
time-visitors/unexperienced users – hanging on to well-known parts of the building (e.g. 
main entry hall, main stairs etc.); (b) direction strategy; (c) floor strategy. 

According to Kuipers [7] places can be connected by associated movement responses; 
concatenating such place recognition-triggered responses then constructs a linear route. If 
two or more crossing routes are merged together, a network occurs, i.e. an internal mental 
representation of the environment. This representation is dynamic enough to describe 
intuitive spatial relationships and relative positions of places.  

2 Infokiosk 

The written instructions given in-advance were derived from a dialogue system – called 
Infokiosk – which was developed and implemented in our research group I5-DiaSpace.  



The route instructions generator of the current system runs on a combined computational 
model that consists of three sequential processing steps:  
• GUARD (Generation of Unambiguous, Adapted Route Directions, cf. [2]) generates 

the “context-specific” low level route directions out of raw route paths that lead to a 
given destination. 

• GOHLI (Generation of High Level Instructions, cf. [2]) segments the low-level route 
directions coming from GUARD and generates the high-level route instructions on 
the basis of major direction changes. 

• GOSLRI (Generation of Structuring Landmarks Related Instructions), which is the 
primary focus in this paper, takes high-level route instructions from GOHLI as input, 
and generates High-level structuring landmarks-based route instructions. 

3 Experiment  

32 participants (20 women/12 men) with little or no prior familiarity were asked to 
undertake wayfinding tasks in a multi-level building (GW2 – University of Bremen). They 
were all German native speakers and university students with an average age of 22.91 (age 
range 20-35, SD=4.518). For participation they received either course credit or were paid 
€6 Euro each. With the given detailed written paper-based route instructions, they had to 
find two consecutive targets - as well as their way back to the starting point.  

 
Fig. 1. Map views of the test environment, GW2, University of Bremen. (a) Shows building 

segments A/B, 1st and 2nd floor. Continuous lines indicate the path from the start point to first target 
(T1) and to target (2a) and (2b) on 2nd floor; dashed lines present a continuum of chosen returning 
paths. (b) Block scenario on 2nd floor. 

Instructions were always given with respect to the point of departure. The movement 
commands in the instructions were all aligned to an egocentric frame of reference, e.g. 
"Turn around and go straight until the next hallway on the left-hand side." Adjusted 
versions were preceded by a short description, containing the floor and section of the 
building, in or on which the target is determined. Furthermore and most importantly for the 
scenario, on the 2nd floor we provided the explicit naming of an additional structuring 
path+landmark: go around the block. The block is a salient, structuring element of this 
particular environment (22x7meter), already perceivable while going up the stairs (see Fig. 
1b).  

The first target to reach was situated on the 1st floor and stayed the same for each subject 
– room B1620. The only difference was that each participant was given only either a 
system-generated (IS) or an adjusted instruction (IA). The second goal was on the 2nd floor 
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and was divided into target (2a), room A2420, and target (2b), room A2500 (see Fig. 1b) – 
selection was done by taking into account the block structure and visibility of the stairs. 
That is, participants with target 2b had to walk further around the block (see Fig. 1b). The 
transition took place at a staircase in building segment A. The task started and ended on the 
1st floor at room B1420. For this, as well as for the whole wayfinding task the users were 
instructed to think aloud and verbalize their thoughts and considerations. After reaching 
target (2a/b) the participants were instructed to hand back the instructions and walk to the 
starting point (they were not given any restrictions or assignments). After the task was 
completed, each participant was asked to fill two questionnaires – one for individual 
differences in spatial orientation, and the other asked about the performed task. 

4 Results  

All participants reached the two described targets (1, 2a/b) and got back to the starting 
point. By coding the chosen paths back by total numbers it was feasible to apply a set of 
nonparametric tests to the collected data. Analysis was carried out particularly for the type 
of instruction, i.e. target to reach on 2nd floor (T2a/b), and floor.  

A total number of 23 participants chose the same returning path on the 2nd floor. Just 6 
out of 32 participants continued walking around the block and used it as shortcut on the 2nd 
floor – 5 of them got the adjusted instruction (Target 2b) vs. one with a system generated 
instruction (T2b).  A chi-square test was used for analysis based on floors and by 
comparable conditions, i.e. IS1 → T2a vs. IA1 → T2a on the one hand, and IS2 → T2b vs. 
IA2 → T2b on the other hand. For 1st floor for conditions IS(1) and IA(1) from target (2a) 
to the starting point (χ2 =1.3, df=4, p>0.85; Cramér's V=0.28), and for IS(2) and IA(2) from 
target (2b) ((χ2 =0.34, df=2, p>0.84; Cramér's V=0.14). For 2nd floor from target (2a) (χ2 
=1.1, df=2, p>0.58; Cramér's V=0.25), from target (2b) ((χ2 =4.26, df=1, p<0.05; Cramér's 
V=0.51). This result supports the above described distribution of returning paths by total 
numbers for respective floors. Participants who handed out instruction IA2 were more 
likely to take the shortcut on their way back on 2nd floor in order to reach the stairs, i.e. to 
go back to the starting point, compared with their counterparts with IS(2). 

This holds also for the evaluation of the walking distance of IS(2) compared with IA(2). 
A one-way ANOVA revealed a significant effect for walking distance on 2nd floor: F (1, 
14)=5.091, p<0.05; η2=0.27. This is mainly due to the fact that 7 out of 8 participants in 
condition IS(2) chose the same and thus longer returning path (~29.4m) – compared to 3 in 
condition IA(2). The shortcut (~21m) further around the block and thus in the direction of 
the stairs was selected by four participants in both conditions.  

Participants’ walking paths used for their return on the 1st floor back to the starting point 
showed a wide continuum of total returning paths across all conditions (see Fig.1a). This 
suggests a combination of central-point strategy and recognition-triggered response. The 
first review of the elicited data confirmed the behavioral findings for 1st floor: the central-
point strategy was applied by 17 and recognition-triggered response by 13 people.  

Furthermore, the analysis of question (9a) of the general questionnaire revealed, that 
participants who started with the system generated instruction (IS2) would change their 
walking preferences if confronted with a bird’s-eye view of the scenario on the 2nd floor. 
Six out of eight would choose the shortcut (χ2 =8.0, df=2, p<0.05; Cramér's V=1.0). 

5 Discussion 

The task was to reach two consecutive targets in a multilevel building with the help of a 
given route instruction. Both types of instruction served their purpose – all participants 
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successfully reached their respective target on the 2nd floor and starting point. The 
qualitative analyses support the assumption that, due to the additional structural cue block + 
path, the participants built up (or faster updated) a more detailed internal mental 
representation of the environmental setting and thus were more likely to choose another, 
shorter returning path.  

Therefore, the presented block structure is believed to be a good landmark, regarding the 
choice of a cognitively efficient return path. This in turn could be utilized for the generation 
of route descriptions by the presented guidance system. By accordingly annotating maps 
and implementing these kind of block structures as salient structuring landmarks it is not 
only possible to save user/body turns and make the generated adaptive instructions briefer 
and thus easier to recall, but also help novice building users with this cue to build up (i.e. 
faster update) their internal mental representation.  

One key feature of an adaptive wayfinding guidance system is that, route instructions 
should be generated according to the cognitive principles underlying human route 
descriptions [6]. However, good general cognitive principles that can provide useful 
wayfinding information specifically suitable to human users within certain situations are in 
fact very difficult to discover. The empirical finding involving structuring landmarks such 
as blocks in this paper can help a guidance system optimize its wayfinding process to avoid 
redundancy with respect to the human-friendly principle, and therefore, improve to a great 
extent the effectiveness and efficiency of the system itself and generate more adaptive and 
intuitive route instructions. Specific landmarks such as blocks will be instantiated as salient 
structuring landmarks and used by the GOSLRI component to generate high-level 
structuring landmark-based route instructions.  

Further research will address the degree of complexity and accuracy regarding additional 
architectural information implemented in indoor wayfinding instructions, e.g. regarding 
block size etc. 
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Abstract. This paper discusses spatial terms in Japanese. Common nouns such
as ue “on/over/above” and naka “inside” are used in Japanese to represent spa-
tial and temporal locations, as front in in front of, or center in in the center of
in English. I consider Japanese common nouns that represent spatial locations to
be relational nouns that are two-place predicates, one of whose argument slots
is filled by the entity represented by the other NP in the NP1-no NP2 construc-
tion. Since the corpus data [1] suggest that spatial nouns are often semantically
ambiguous among physical, metaphorical, and temporal locations, the unified se-
mantic entry in the Generative Lexicon (GL) [2] proves to be useful for handling
the semantic ambiguity.

1 Spatial Relational Nouns

Languages such as Chickasaw in North America use relational nouns to express lo-
cations [3], rather than prepositions such as in, on, under, or between as in English.
In (1a), pakna’ “top” is a relational noun, that follows its possessor chokka’ “house.”
Japanese is another language that expresses locations using relational nouns such as
naka “inside,” ue “on/above,” and shita “under” as in (1b).

(1) a. chokka’ pakna’
house top
“the top of the house (the house’s roof)”

[3, 4]

b. mune-no mae-de tenohira-o awase (4179)
chest-GEN front-LOC palms-ACC hold
“Put your palms together in front of your chest”

1

Mae “front” is a relational noun that does not stand alone semantically; therefore,
it always means “the front of something,” for example, musuko which means “son”
always stands for “someone’s son” (e.g., “Bill’s son”). Naka “inside,” ue “on/above,”
and shita “under” are two-place holders, and nouns such as aida “between” that require
another argument are three-place predicates.

1 The numbers in parentheses indicate the sentence IDs of the output of the data in the Yahoo!
Chiebukuro section of [1] using ChaKi.NET 1.2β .



(2) a. [[ue“on/top”]] = λxλy[on(y)(x)]
b. [V P [[NP kohi-no ue]-ni] [miruku-o] [V ireru]]

coffee-GEN on-DAT milk-ACC put
“put milk on (the surface of) coffee”

c. [[kohi−no ue“on co f f ee”]] = λx[on(εy.coffee(y))(x)]

2 Ambiguity among Physical, Metaphorical and Temporal
Locations

Table 1 indicates that Japanese relational nouns are ambiguous among three types of
readings—physical location, metaphorical location, and temporal sequence. For exam-
ple, the most frequent relational word ho “toward” is generally used for comparisons
and indicates preference as in (3a). Such meaning is a metaphorical extension of lit-
eral physical directions as in (3b). On the other hand, mae “front/before” is ambiguous
between physical and temporal locations; for example, shuppatsu-no mae “before de-
parture” (4000) and mune-no mae “in front of the chest” (4179).

Spatial Noun Translation Instances Share Physical Direction(Share) Metaphor(Share) Time(Share)
ho toward 54 0.338 6(0.111) 48(0.889)

naka in 34 0.213 21(0.618) 13(0.382)
aida between/among 10 0.063 6(0.273) 1(0.1) 3(0.3)
ue on 9 0.05 5 1 2

mae in front of/before 6 0.037 5 1
shita under 6 0.038 6(1)
ue-no top 6 0.038 6(1)

ato after 4 0.025 4(1)
chikaku near 4 0.025 4(1)
TOTAL 160 1 75 74 11

Fig. 1. Distribution of Spatial Nouns among 3083 Occurrences of “NP1-no NP2” in the Yahoo!
Chiebukuro portion of [1]

(3) a. Chunichi-yori Hanshin-no ho-ga tsuyoi (2219)
Chunichi Dragons-than Hanshin Tigers-GEN direction-NOM strong
“The Chunichi Dragons are stronger than the Hanshin Tigers”

b. (neko-ga) watashi-no ho-e ki-masu. (5177)
cat-NOM me-GEN direction-GOAL come-HON
“Cats (usually) come toward me.”

3 Modeling Lexical Ambiguity of Spatial Language

3.1 Formal Semantics

This section formalizes the spatial terms in Japanese. Most of them are two-place hold-
ers except aida “between” which is a three-place predicate.
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(4) a. [[mae]] = λx,y[in-front-of(x)(y)]
b. [[mae]] = λ t,t’[before(t)(t’)]

(5) a. [[mune−no mae“in f ront o f the chest”]] = λy.in-front-of(εx.chest(x))(y)
b. [[shuppatsu−no mae“be f ore departure”]]

= λe’.∃e[before(time(e))(time(e’))&departure(e)]

(6) a. [[ho]] = λx,y[toward(x)(y)]
b. [[ho]] = λx,y[to(x)(y)]

(7) a. [[(physical)naka]] = λx,y.in(x)(y)
b. [[(metaphorical)naka]] = λx,y.among(x)(y)

(8) a. [[nabe−no naka“inside the pot”]] = λy.in(εx.pot(x))(y)
b. [[reshipi−no naka“amongrecipes′′]] = λy.among(εx.recipe(x))(y)

(9) a. [[aida]] = λx,y,z[between(x)(y)(z)]
b. [[aida]] = λx,y,z[among(x)(y)(z)]
c. [[aida]] = λ t,t’[t’= during(t)]

(10) a. Ha-to ha-no aida atari-ga chairoku naru-no-desu-ka. (2906)
tooth-and tooth-GEN between vicinity-NOM brown become-GEN-HON-Q
“Have the gaps between your teeth turned brown?”

b. Geinojin-no aida-de hayat-teiru daietto-shokuhin (427)
entertainer-GEN among-LOC popular-PROG diet-food
“The diet food popular among TV entertainers”

c. Koko sukagetsu-no aida (3201)
this a few months-GEN period
“during these few months”

3.2 Lexical Ambiguity in the Generative Lexicon

Contrary to the previous section which listed two-way or three-way ambiguous lexical
entries, the GL [2] has the means to provide unified lexical entries for a single spa-
tial term, due to its elaborate lexical semantic information. In particular, the Lexical
Conceptual Paradigm (LCP) [4, 2] is a powerful tool for resolving semantic ambiguity.

The formal quale in GL contains ontological information. In (11), coffee is a drink
according to its formal quale, and its higher ontological category is a physical entity,
which implies that ue “on” is interpreted physically. The unification profess is described
in the following manner:

(11)




COFFEE

ARGSTR =




ARG1 = x DRINK

D-ARG1 = y HUMAN

D-E1 = e1 PROCESS




QUALIA =




FORMAL = LIQUID
(

x
)

TELIC = DRINK ACT
(

e1 , y , x
)










UE “ON”

ARGSTR =




ARG1 = x PHYSICAL OBJECT

ARG2 = y PHYSICAL OBJECT

D-E1 = e1 STATE




QUALIA =
[

FORMAL = ON
(

e1x , x , y
)]







KOHI-NO UE “ON COFFEE”

ARGSTR =




ARG1 = x PHYSICAL OBJECT

ARG2 = y COFFEE

D-E1 = e1 STATE




QUALIA =
[

FORMAL = ON
(

e1 , x , y
)]



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Mae “in front/before” is lexically ambiguous between physical and temporal loca-
tions. Lexical ambiguity calls for a meta-entry, that is, the LCP, which is a Cartesian
product of the different concepts represented by a single lexical item [2, 5] as in (12).
For example, book is a Cartesian product of a physical entity and the information con-
tained within it, thus, (13a,b) are both grammatically correct.

(12) mae.lcp = {location.time, location, time }
(13) a. The book is on the table.

b. That book was right. An earthquake did happen as it had predicted.

(14)



MAE

“IN FRONT/BEFORE”

ARGSTR =




ARG1 = x PHYSICAL OBJECT

ARG2 = y PHYSICAL OBJECT

E1 = e1 PROCESS

E2 = e2 STATE

D-E1 = e3 STATE




QUALIA =




LOCATION.TIME LCP

FORMAL = R



LOCATION
(

e3 :IN FRONT OF
(

e3 , x , y
))

,

TIME

(
e2 : BEFORE

(
TIME

(
e2
)

, TIME
(

e1
)))













MUNE-NO MAE

“IN FRONT OF CHEST”

ARGSTR =




ARG1 = x PHYSICAL OBJECT

ARG2 = y BODY PART

D-E1 = e1 STATE




QUALIA =




LOCATION.TIME LCP

FORMAL =

LOCATION




e1 :

IN FRONT OF
(

e1 , x , y
)













SHUPPATSU-NO MAE

“BEFORE DEPARTURE”

ARGSTR =


E1 = e1 DEPARTURE

E2 = e2 STATE




QUALIA =




LOCATION.TIME LCP

FORMAL = TIME
(

e2 :BEFORE
(

e2 , e1
))









AIDA

“BETWEEN/AMONG/DURING”

ARGSTR =




ARG1 = x LOCATION HUMAN TIME

ARG2 = y LOCATION HUMAN

ARG3 = z LOCATION HUMAN

E1 = e1 STATE




QUALIA =




LOCATION.MENTAL LOCATION.TIME LCP

FORMAL = R



LOCATION
(

x , y , z
)

,

MENTAL LOCATION
(

x , y , z
)

,

TIME
(

e1 :DURING
(

e1 , x
))










Argument structure also needs to have metaentries since mae “front/before” and
aida “between/among/during” combine with different types of semantic arguments.

4 Conclusion

In this paper, spatial language in the form of “NP1-GEN NP2” constructions in Japanese
was taken from [1] and classified into literal, temporal, and metaphorical meanings.
Spatial terms are semantically ambiguous relational nouns. Lexical meta-entries in the
GL effectively handle the semantic ambiguity of the most common spatial nouns.
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Analyzing directionality: From paths to locations
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Abstract. This paper proposes an alternative to the currently prevalent
analysis of directionality in terms of paths. It is argued that directionality
should be understood as the temporal specification of locative modifica-
tion in its stead. The proposal is compatible with both geometric and
functional representations of space, is corroborated with typological find-
ings, and meets the requirements for the careful development of a spatial
ontology.

Keywords: directionality, locations, paths, event structure, motion

1 Against paths as the primitives of directionality

Spatial expressions are predicates that map a thing or event onto a location.1

This location is specified by the configuration function in terms of a (geomet-
rically or functionally defined) region with respect to a ground. In The ball is
under the table., the ball is said to be in the location specified by under the table.
The predication of locations often is temporarily restricted (cf. [9]). Generally,
an object is mapped to some region for a restricted interval of time only as its
position may change at a later stage. In the present proposal, this change of
configuration is the realm of the directionality function.

In the currently prevalent analysis of directionality, viz. the one by Jackend-
off ([7]), directionality is a function that refers to ordered stretches of space,
so-called paths. For example, the FROM path off refers to a path that has an
ON configuration as its starting point. The first and most important objection
to the analysis of Jackendoff concerns the methodology in the collection of the
data that is said to constitute the directionality domain [7, 168–169]. There is
no independent evidence that the used examples actually are examples of the
same phenomenon, i.e. of directionality. Indeed, some of Jackendoff’s direction-
ality expressions probably express something completely different. For example,
TOWARD is said to belong to the type of paths called directions, which, unlike
a bounded path such as TO, does not include (the region with respect to) the
reference object but would do so if the path were extended by some unspecified
distance. In a non-trivial sense, we probably only want to allow for extensions
in approximately the same direction (otherwise, any direction could be turned

1 Thanks to John Bateman, Carl Schultz, Thora Tenbrink, and two anonymous re-
viewers for valuable comments and discussion.



into a TO path). Now, imagine an enclosure around point A with an opening
at its south side and point B to its north. Because of the enclosure, one can
only go from A to B going southwards, through the opening. To go from A
toward B, however, one should go north. Crucially, the TOWARD path in this
situation cannot be extended in the same direction to become a bounded to B
path. Thus, instead of directionality, toward rather seems to expresses orienta-
tion. When modifying a motion event with this expression, the moving object of
course ends up closer to the ground. And by continuing along this direction, one
will generally end up at this ground too. But this need not be, as this example
shows.

As a second objection, the path reference that is assumed by Jackendoff
may follow from world knowledge instead of being part of the lexical semantics
of directionality (cf. the procedure for the development of a spatial ontology
in [1] and the principle of conceptual abstraction in [16, 595]). We know that
it takes a path from A to B to go from A to B as we cannot but traverse
all points in between when going there. Crucially, however, such paths are not
necessarily what is referred to by directionality expressions. In fact, directionality
expressions are probably better analyzed as predicates (cf. [16], [17]).

Finally, if directional PPs referred to paths, it should be possible to combine
an expression of duration with the continuation along such a path. But this is
not possible with Goal directionality as illustrated by the ungrammaticality of
He is walking into the building (*for hours). (cf. also [18]). Note that this is
not due to the semantics of the verb to walk : If explicit reference is made to a
path, by substituting through for into in the example, it is possible to use an
expression of duration. Thus, the contrast between these sentences shows that
(Goal) directionality is probably not about paths.

2 Directionality in terms of locations

A more careful procedure than the one used by [7] can be followed in the collec-
tion of the data. It has been observed that more grammatical means of expression
tend to make less idiosyncratic meaning distinctions ([14, 178], [6, 178], [1, 1035]).
Also, it has been found that spatial cases primarily express directionality ([8],
[13], [2]). Finally, cross-linguistic agreement is said to suggest relative uniformity
in the way people conceptualize a domain [4]. So not only can we indeed expect
directionality distinctions to be expressed by spatial case systems, also, we can
expect whatever directionality distinctions that are made by spatial case to be
of a more fundamental, conceptual type, especially when they show up in lan-
guage after language. In a cross-linguistic study of spatial case inventories that is
thus motivated, Lestrade [10] identifies three basic distinctions of directionality:
Place, Goal, and Source.

This kernel of directionality could be described in terms of paths, but, ar-
guably, it is preferable to use locations only as we need these anyway for the
configuration function. Then, Goal and Source directionality denote a change of
location, and Place denotes an absence of such a change. To define Goal and
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Source, we need some ordered dimension: Goal directionality denotes a change
into some location, Source does the opposite.

An ordered dimension can be provided for free by the extended event struc-
ture of the verb. Pustejovsky ([12]) argues that Davidsonian event arguments
may have internal structure. For our present purposes, only the structure in
which there is a strict partial order between the two subevents is relevant:

(1) a. [e3 e1 <α e2 ] =def <α ({e1, e2}, e3)
b. ∀e1, e2, e3[<α ({e1, e2}, e3)↔ e1 � e3 ∧ e2 � e3 ∧ e1 < e2 ∧

∀e[e � e3 → e = e1 ∨ e = e2 ]]

In this definition, event e3 is a complex event structure that consists of two
subevents, e1 and e2, where e1 and e2 are temporally ordered such that each is
a logical part of e3, the first subevent precedes the second, and there is no other
event that is part of e3 [12, 69]. For example, the verb build is analyzed into a
development process and a resulting state.

Pustejovsky [12, 74] explicitly allows for adverbial phrases to take scope over
both the entire event and over individual subevents. Thus, we have three logical
possibilities for spatial modification of motion verbs, which nicely corresponds
to the empirically established kernel: the spatial modification of the entire event
is called Place directionality (note the different use of this term here from the
one by Jackendoff in the above); the modification of the first subevent is called
Source, and the modification of the second subevent is called Goal. For example,
depending on the type of directionality that is imposed by the spatial modifier
and assuming the structure in (1), a walking event e3 of subject x modified by
location y can be decomposed as follows: [walk(e3, x) ∧ loc(e3, x, y)] for Place,
[walk(e1, x) ∧ loc(e2, x, y)] for Goal, and [loc(e1, x, y) ∧ walk(e2, x)] for Source.

In principle, the explicit spatial modification of one subevent by location y
does not exclude the additional implicit modification of the second subevent by
this same location. Following a suggestion of Hendriks et al. [5, chapter 8], we
can ensure a change of location in a system of pragmatic contrasts (cf. also [15]):
The speaker would have modified the whole event if the location had scope over
the whole event, so if she only modifies the first subevent, we know that the
locative function does not apply to the second one by pragmatic implicature.

By only using existing structures that have been established independently
from present purposes, the proposal meets the criterion of Bateman et al. [1]
to exclude the contribution of world knowledge in the development of a spatial
ontology. Also, the account straightforwardly accounts for syncretism patterns in
directionality systems. It has been observed that such syncretisms occur between
Place and Source, between Place and Goal, or between all three distinctions, but
not between Source and Goal to the exclusion of Place (cf. [2], [10], [11]). This
naturally follows from the present proposal: If a language has a special marker
for the spatial modification of the first subevent, the second subevent and the
entire event will be treated uniformly as its complement (and the other way
around), but taking together the two subevents would render the entire event
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(cf. (1-b)) and therefore could not be distinguished from it. Finally, the temporal
specification of a spatial modification does not impose any specific ontological
category to this modification and is thus compatible with both geometrical and
functional representations of space [3].

In conclusion, it was argued that directionality is best analyzed as the loca-
tive modification of an extended event structure. This accounts for the empiri-
cally established kernel of directionality, correctly predicts attested syncretism
patterns, and does not stipulate any additional machinery.
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This presentation extends our previous work in which we build and test a
mobile robot which learns grounded semantic representations of spatial concepts
from human descriptions and its own perception through sensors of a room con-
taining real objects. The learning is performed offline as a machine learning
classification task. In [1] we show that the learning of spatial concepts is success-
ful when the classifiers are evaluated. In [2] we argue that classifier evaluation is
not enough to show that the robot acquired human-like spatial knowledge which
generalises to new spatial configurations. We therefore integrated the classifiers
in our own NL generation system (pDescriber) which produces grounded de-
scriptions of spatial scenes such as “The table is to the left of the chair” and
allows humans to observe the acquired spatial knowledge. The discourse setting
in which these descriptions are made is identical to the one in which they were
sampled before they were learned. In this contribution we examine whether we
can use data-sets and classifiers from the scene description task to answer ques-
tions that (A) locate objects: “Where is the table?” - “The table is to the left
of the chair”; (B) confirming object description: “Is the table to the left of the
chair?” - “No, the table is near the chair.”; (C) find objects: “What is to the left
of the chair?” - “The pillars, the tyres and the wall are to the left of the chair”;
and (D) reference objects: “What is the chair to the left of?” - “The chair is to
the left of the table, the desk and the wall”. We see the task as an experimentally
constrained form of dialogue which contains only two dialogue acts (information
request and answer) which are always performed by the same illocutionary part-
ner: a human directs questions to the robot. Since the dialogue is situated both
spatially and in discourse we do expect to find effects of semantic coordination
of human observers when interpreting the robot’s responses.

Generating question answers (pDialogue) requires more steps than generat-
ing descriptions and hence more factors may influence the evaluation of spatial
knowledge. User utterances must be interpreted as questions and their content
must be matched against dialogue rules which specify how to answer them.
Most dialogue rules require an application of ML classifiers that take linguistic
descriptions and predict perceptual properties rather than reverse (pDescriber).
The classification tells us what state of perception corresponds to a description.
The dialogue rules must then issue commands that bring the robot to this state
or find a configuration of objects that holds in the state. The resulting knowledge
is used to generate natural language sentences.

The system was individually evaluated by 13 non-expert volunteers in a room
environment different from that used in data collection for ML. Each evaluator



considered the robot’s answers to 55 questions which were scripted and were
automatically asked by the evaluation software at four distinct room locations
(L1 to L4). This ensured that various spatial and linguistic conditions were
covered. The evaluators’ task was to indicate whether each robot’s answer is an
intuitive or natural description on a scale from 1 (bad) to 5 (best). Each run
took between 45 to 60 minutes to complete. We estimated evaluator agreement by
calculating Pearson’s correlation coefficient between the scores of each evaluator
per particular question-answer pair and the mean of such scores over all other
evaluators. The overall agreement of 0.583 (the mean of correlation coefficients
from all 13 folds) shows that there is a considerable consensus between the
evaluators on the performance of the system.

To estimate the accuracy of the system the evaluator scores were normalised
to values between 0 and 1 (1=0, 2=0.25, 3=0.5, 4=0.75, 5=1) and summed.
The accuracy per question type is as follows: A - 43.5%, B - 54.2%, C - 54.7%,
D 56.9% and mean - 52.3%. The steps involved in answering questions A are
identical to generating a description in pDescriber (59.3%) [2] – one or two
objects are selected at random and the relation between them is classified –
but the estimated performance of pDialogue on questions A is lower by 15.8%.
The result suggests that a new discourse setting affects the interpretation of
spatial descriptions. When the system generates a description on its own, a
human hearer understands it as a general statement about the scene that both
are observing. However, when an agent in conversation asks a question, they
expect an informative and relevant answer which helps them to interpret the
scene. Choosing a salient reference object is particularly important. Objects can
be salient in their visual properties (visual-salience) or through being previously
discussed and located in dialogue (discourse salience). The modelling of both
kinds of salience is an object of our future investigations.

We also tested two other properties affecting the semantics of spatial descrip-
tions in a situated discourse. The difference in evaluation scores for questions-
answer pairs that involved (a) objects that were in the robot’s visual field (L1
and L2) and those that were not (L3) is statistically significant (t-test: a > b;
α = 2P = 0.000). The interlocutors expect the robot to change its orientation
towards objects referred to in questions and answers. Secondly, the difference
in evaluation scores (a) where the spatial description in questions was unam-
biguous in terms of the reference frame (C at L1: “What is to the left of you?”
– intrinsic ) and (b) where a question could be answered using an alternative
reference frame (“What is to the left of the chair?) is not statistically significant
(t-test: a = b; α = 2P = 0.61 > 0.05.). This shows that human observers align
to the reference frame chosen by the robot (relative to itself) and do not insist
on changing it.
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Abstr act. One of the most broadly investigated topics in the literature on conceptual mappings is 
the importance of spatial construals for thinking and talking about time. In two forthcoming 
articles [1] [7] we explore how people understand timelines – both as graphical objects, in 
discourse about timelines taken from newspapers and the web, and in poetic examples. A 
comparison with metaphors incorporating circular patterns shows that temporal and affective 
meanings can change dramatically when they arise from different spatial structures.  

Keywords: timeline metaphors, time-space mappings, generic templates of conceptual integration, 
material anchors for conceptual blends, image schemas, emotion. 

1   The Timeline 

When instantiated graphically, the timeline serves as a material anchor [4] in a conceptual integration 
network [2] representing partial cognitive models of time, lines, objects, and a hybrid model known 
as a blend. When understood with respect to this network, the analogue properties of the line give it 
novel computational properties that facilitate inferences about the events it represents. 

The history of the modern timeline reflects a distributed cognitive process involving multiple 
individuals over a large span of time. It illustrates the cultural development of conceptual integration 
networks. Conventional mapping schemas are best viewed not as determining the interpretation of 
timelines, but rather as providing soft constraints that help guide meaning construction. 

2   Anchoring the Time-Space Scene: Computational Proper ties of Timelines 

A detailed analysis shows that the cognitive linguistic research on time-space metaphors does not 
merely describe a set of mappings from space to time; it rather describes a particular spatial scene 
with temporal meaning, which recurs across many metaphoric expressions. This scene is framed by a 
simple, familiar spatial event: an object or objects travel towards a reference point or observer.  

The temporal version of the motion scene has restrictive and often contradictory properties. For 
instance, in this schematic narrative all observers are on the same spot, all objects are aligned to 
travel along the same path, objects cannot overtake one another, arrive at the same time or from 
different directions, change trajectory, etc. None of these occur in our normal experience of motion 
through space. These properties rather originate from cognitive constraints set by our existing 
knowledge of time. Instead of being the result of direct space-time projections, they emerge from 
successive integrations of a variety of conceptual materials, including event structure, motion, and a 
cultural mechanism to measure duration [3]. The properties of the line comply with these constraints, 
and provide an adequate topology for the blend, although they clash with many other basic aspects of 



our experience of traversing paths. Thus the timeline has properties distinct from those of the 
cognitive models in each of its inputs. 

Although it instantiates some of the mappings in the TIME IS SPACE metaphor [6] [5], the 
timeline itself is an integrated construct with computational affordances that differ from those 
available in the input domains. For example, studying a timeline might enhance one’s memory for the 
sequence of salient events, or allow us to more easily recognize the most productive periods via the 
density of points. Researchers in the field of information visualization recommend timelines because 
their visual properties facilitate inferences about temporal events (such as temporal and causal 
contingency) that are either difficult or impossible to make using other representational formats [8]. 

Much of the emergent structure of the timeline and its novel computational properties result from 
the compression of temporal relationships to spatial ones, as well as from the congregation in the 
blend of structures from multiple inputs. Rhetorical goals are also crucial, as shown by everyday 
metaphoric expressions providing further emergent properties: timelines can be cut or compressed 
into analogous but shorter ones, years can be taken away from them, they can be accelerated, etc. 

3   Linear  and Circular  Patterns in Poetic Time Metaphors  

In addition to the analysis of the computational properties of timelines and the metaphoric language 
related to them [1], Pagán Cánovas and Jensen [7] compare time metaphors by Borges, Kavafis, 
Heraclitus, Manrique, Lorca, Quevedo, Paz, and Shakespeare, and by recent prose writers Ian 
McDonald and Karen Russell. These metaphors exhibit a linear pattern (such as a river) or a circular 
pattern (such as a winding labyrinth).  

Analysis of this corpus suggests that static lines and circles can acquire narrative properties, be 
instantiated according to relevant cultural frames and rhetorical goals (e.g. a line can be a snake, a 
circle a magnifying glass), blend with the self, with emotional scenarios, with motion along a path, 
etc., while still retaining their temporal values. Although straight lines or circles, or time itself for that 
matter, are not by themselves loaded with emotion or intentionality, the image-schematic properties 
of these blends can be opportunistically exploited on-line for further integrations with contextual and 
background knowledge, in order to produce emergent affective meanings. 

In our poetic examples we see that the linear pattern is more suitable to function as a material 
anchor, which helps ground conceptualization on a perceptual structure. Unlike the timeline, the 
circular pattern is not so appropriate to provide spatial landmarks on which to ground temporal 
relations. Past, future, periods of human life, duration differences, or remaining time available are not 
so easily “seen” at a glance in the circle.  
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