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Abstract. One of the central problems in spatial language understanding is the 
polysemy and the vagueness of spatial terms, which cannot be resolved by lexical 
knowledge alone. We address this issue by developing a representation framework for 
functional interactions between objects and agents. We use this framework with a 
constraint solver to resolve and recover the meanings of spatial descriptions for object 
placement tasks.  We describe our approach in a virtual environment with an example 
of object placement task.  

1 Introduction 

Virtual scene (re)construction or object placement is a vital task in many practical 
applications such as background layout in 3-D animated movies, accident or crime 
scene simulation, and navigation maps for video game development.  Using natural 
language (NL) commands can be a natural and efficient alternative to an otherwise 
effort intensive manual placement of objects in a virtual world (e.g., Coyne and 
Sproat, 2001; and Dupuy, 2001). However, machine understanding of natural 
language commands is notoriously difficult due to polysemy and vagueness of spatial 
terms.  Only considering lexical semantic knowledge of spatial terms is clearly 
insufficient for this task; world knowledge and pragmatics must be considered for 
understanding language in a form that can be acted upon by autonomous agents.   

Over the past couple of decades much research in spatial term semantics has focused 
on developing computational models that map utterances to semantics (e.g., Regier 
and Carlson, 2001; Coventry et al., 1994).  Although, such research recognizes the 
need for pragmatic and functional knowledge about objects, the development of 
computational models for representing and using such knowledge has received little 
attention. To address this gap, we present a framework for representing world 
knowledge that can be effectively translated into spatial constraints to resolve vague 
and underspecified natural language commands.  We present an algorithm that utilizes 
such knowledge for interpreting natural language commands and to perform valid  
least cost object placements.     

We organize the remainder of this paper as follows. We explain the nature of 
linguistic underspecification in object placement tasks in the next section.  We follow 
this with a description of our representation framework and an algorithm that 
performs linguistically commanded single object placement task. Next, we illustrate 
our approach with an example.  Finally, we discuss the strengths and limitations of 
our approach and conclude the paper.  



 

 

 

 

 

 

2 Vagueness in NL driven Object Placement 

Consider the task of generating a static scene described by text utterances in a 3D 
virtual environment. For example, generating a scene with “a chair in front of the 
table” and subsequently placing a “printer on the table.” The desired rendering of the 
scene is shown in Figure 1. 

 
Figure 1. Example scene imagination based on linguistic description 

The central issue in such a task is interpreting vague spatial prepositions such as on 
and in-front-of into valid object placements.  The utterance “printer on the 
table” can only be judged as vague when attempting to place the printer in the World. 
For instance, the possible placements on the table are to the left, right, front, and 
behind the monitor. However, the placements in front and back of the monitor are 
functionally invalid for a human user.  The utterance also does not specify the suitable 
orientation of the printer. Without such a specification, the printer could be oriented 
in numerous ways in relation to the monitor and the chair, only some of which would 
be valid. For example, the orientation shown in Figure 1 is a valid one. However, the 
orientations of the printer such as upside down or facing the wall would be invalid.   

Clearly, functional knowledge of interaction between objects must be considered for 
generating valid placements.  The question is what should be the content of such 
functional and world knowledge and how can it be utilized to recover the unspecified 
elements and generate a complete and valid specification for object placement.  We 
answer this question in the next section. 

3 Representation and Reasoning for Linguistically commanded 

Object Placement 

Problem Task:  Given a world, W, containing a set of objects, O, located in various 
places in the world and an underspecified linguistic command requesting to place a 
target object, ot in W, find a location with the least interaction cost to place ot.  We 
return to the notion of interaction cost later in this section. 

Functional Knowledge Representation.  We introduce an autonomous agent, α, as 
the central element of a functional representation of objects, O, and their parts in the 
World.  Given our goal of building agents that interact with humans, our 
representation encodes spatial constraints accordingly. We assume that α is human-



 

 

 

 

 

 

like and interacts with objects using a set of primitive actions or perceived 
affordances (Gibson, 1977, Norman, 2002). We introduce a set of the following 
primitive actions: 
1. Reach: the agent reaches for objects to manipulate and interact with them. Given 

our assumption that α is human-like, we subcategorize the reach interaction as 
follows: 
1.1. Reach.Arm: the agent reaches for objects with arms fully extended. 
1.2. Reach.Forearm: the agent reaches for objects with only the forearm 

extended. 
1.3. Reach.Foot: the agent reaches for object with its foot. 
1.4. Reach.Assisted: the agent reaches for objects with tools. 

2. See: the agent obtains visual information from objects to perform reach actions. 
For an agent to see objects it must be oriented toward the objects. In certain 
situations the agent must be able to read the information present on the object.  
We represent this with the read action, a tighter constraint than see: 
2.1. Read: an agent reads the information present on the object such as signs or 

writing. Clearly, this can be subcategorized to read fine print, read normal 
print, read large print, read poster print etc. 

We further assume that the agent performs these activities while it is located at certain 
places in W called activity stations, S.   In addition, we assume that an agent has the 
following human-like poses; sitting, standing, and lying down.   

We categorize the functional relation between objects into the following three types: 

1. Support:  this is a functional relation typically implied by the preposition “on” in 
English. For example, a table supports a printer and a printer is 
supportedBy a table. 

2. Contain:  this is a functional relation typically implied by the preposition “in”. 
For example, a box contains the printer and a printer is containedBy a 
box.  

3. Group: relates multiple objects into a spatial group. For example, a computer 
keyboard and display monitor may be related to each other by a spatial group 
relation. 

Table 1.  Example representation of functional interaction constraints for a Printer 

Object/parts Object Agent 

 Interaction Interaction Pose Activity Station 

Printer/Parent  • Reachable.Arm 

• Visible 

• Stand 

• Sit 

Perimeter 

   Control panel supportedBy(parent) • Readable   

   Connection panel supportedBy(parent) • Reachable.Arm   

   Paper tray containedBy(parent) 

contains(paper) 

• Reachable.Arm   

An object and its various parts may solicit different functional interaction constraints 
for agents. A representation of functional interaction constraints for a printer is shown 
in the Table 1.  We assume a canonical geo-orientation for the printer, that is, it is 
upright.  The table specifies that the printer control panel must be readable to the 
agent, for example.  

We introduce the notion of a possible interaction space, PIS, for an agent at an 
activity station (e.g., see Kurup & Cassimatis, 2010).  As a simplification in this 



 

 

 

paper, we assume that the possible interaction space is a two dimensional region.  
Figure 2 shows the PIS 

 

Figure 2. Possible interaction spaces

We introduce the notion of a 
well. For example, 
inFrontOf(Printer
the intersection of individual 
linguistically commanded s

Linguistically command
The algorithm begins by 
smallest subset of that satisf
interaction knowledge of the objects in the World 
constraints. Next, it uses possibility spaces to identify 
selects the one with least cost. We detail these steps below:   

Inputs  
1. O, set of objects in 
2. ot, the target object to be placed (e.g., Printer)
3. lcs,  linguistically expressed placement constraint
4. KB, the functional interaction knowledge base containing 

interaction knowledge covering all 
5. α

psp
 the possibility space parameter for 

to be performed. 

Output 
1. P, a set of placements with minimum cost of functional interaction for agent 

Processing steps 
1. Find the smallest set of

interaction constraints 
the KB for a given category of object
object oi are located 

2. Set the candidate placements
3. Set candidate stations
4. For each activity station

paper, we assume that the possible interaction space is a two dimensional region.  
 with reachability, visibility, readability spaces. 

 

. Possible interaction spaces for agent α and possible linguistically constrained space

for infrontOf(Printer) 

We introduce the notion of a possible linguistically constrained space, PLCS
 Figure 2 shows the region selected by the function

Printer).  The possible space resulting from multiple constraints is 
the intersection of individual possible spaces. We will use this approach in the 
linguistically commanded single object placement algorithm presented next. 

inguistically commanded single object placement algorithm.   
The algorithm begins by generating the set of potential activity stations to identify the 

set of that satisfies the spatial constraints in the World. The functional 
interaction knowledge of the objects in the World is transformed into spatial 

Next, it uses possibility spaces to identify the candidate placements and 
selects the one with least cost. We detail these steps below:    

in W.  
rget object to be placed (e.g., Printer). 

linguistically expressed placement constraint (e.g., on the table). 
functional interaction knowledge base containing the agent and object 

interaction knowledge covering all objects in W (O and ot). 
he possibility space parameter for α for which the minimal cost placement is 

, a set of placements with minimum cost of functional interaction for agent 

smallest set of activity stations, Smin
, that satisfes the functional 

constraints for all objects oi ∈ O; the constraints are retrieved from 
for a given category of object.  The candidate activity stations for an 

located around its perimeter.  
Set the candidate placements, CP = φ, placement cost, pc=0 
Set candidate stations, Sc = Smin   

activity station sj ∈ Sc 
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a. Compute Possible Placement Space
intersection of 
LCS,  linguistically constrained space

b. Generate candidate placements 
candidate placements are possible placements 
those placements that satisfy all the interaction constraints
violating any of the existing constraints satis
candidate placements are a combination of location
simplicity, we only consider 4 orientations of 
the agent at the activity station.  
existing stations is used for the placement.

5. Select the minimum cost placements 
IF CP ≠φ THEN 
 Return minimum cost placements 
ELSE,  
 Generate new activity stations
       set Sc=Snew,  and

IF pc is 0 set 
activity stations. 

       go to Step 4 
End.  
 
Example 
Consider a world W that includes
on it. In addition, it includes a 
The placement agent receives a linguistic command to place a 
world;   “Place the printer on the table”.  

We assume that this linguistic command (i.e., 
and its PLCS is computed
step 1 to find Smin

.  The algorithm generates 
for example, stations s1 
satisfy the reachability and readability constraints for the monitor. Similarly
s3 and s5 fail to satisfy the readability constraint of the monitor. Notice that 
alternative orientations of

Compute Possible Placement Space, PPSs for the target object ot as the 
intersection of PIS, possible interactions space at the activity station and the 

linguistically constrained space: 

PPSs  = PIS ∩ PLCS 

candidate placements (cp) and compute their cost, c: 
candidate placements are possible placements PPSs if it is not empty. 
those placements that satisfy all the interaction constraints of ot without 
violating any of the existing constraints satisfied by sj are retained. 
candidate placements are a combination of locations and orientations. For 

we only consider 4 orientations of ot relative to the orientation of 
the agent at the activity station.  The cost of a placement is 0 when one of the 
existing stations is used for the placement. 

minimum cost placements P.   

Return minimum cost placements P ⊂ CP 

activity stations (Snew) in the neighborhood of stations in S
and 

is 0 set pc=1, i.e., cost of placement increases with the number of 
activity stations.  

that includes a table placed against a wall with a monitor
on it. In addition, it includes a chair located in front of the monitor (see Figure 3)
The placement agent receives a linguistic command to place a printer, ot, in this 

printer on the table”.   

Figure 3. Place the printer on the table 

assume that this linguistic command (i.e., lsc) is interpreted into a semantic form 
is computed, which is the entire surface of the table.  We begin with 

The algorithm generates the potential activity stations in the wor
 through s7.  It is easy to see that stations s1, s2, s6 and s7 do not 

satisfy the reachability and readability constraints for the monitor. Similarly, stations 
fail to satisfy the readability constraint of the monitor. Notice that 

alternative orientations of these stations would also fail on reachability constraints of 
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various objects. Activity station s4 is the only one that satisfies the reachability and 
readability constraints for the monitor and the reachability constraint of the chair (i.e., 
Smin ={ s4}=Sc).  We perform Step 4 and obtain PPS for s4 shown in grey obtained by 
the intersection of PIS and PLCS (on table).  Since PPS is not empty, we create 
candidate placements cp1 through cp4.  Although cp1 satisfies the printer’s reachability 
and readability constraints, it violates the monitor’s readability constraints for station 
s4. Similarly, cp2 fails to satisfy the readability constraint for the printer.  Note that 
reorienting cp3 to face the agent will create a valid placement. The candidate 
placement cp3 satisfies all the constraints and is a valid. Placement cp4 is not in the 
PPS space and is shown here for illustration only. Our example illustrates how the 
algorithm using functional knowledge about object and agent interactions produces 
two valid placements for a printer given a highly underspecified placement directive. 

4 Discussion 

Recent research on spatial language understanding has pointed out the need for 
functional representations for understanding spatial utterances.  For example,  
Coventry and Garrord (2004) present a functional geometric framework  which 
includes geometric and dynamic kinematic routines, and object knowledge. Our 
approach also considers the dynamic interactions and object knowledge. However, we 
explicitly consider the role of an agent along with a very small set of interaction 
primitive affordances specialized for the object placement task. Further, we present an 
inferencing algorithm that utilizes the world knowledge to perform valid object 
placement.  Lockwood (2009) also emphasizes the need for functional knowledge but 
focuses on structure mapping as a means learning functional knowledge for a scene 
labeling task. However, she did not include an interpretation method to recover 
meanings of underspecified utterances.  In contrast, we manually encode the 
affordances to recover underspecified spatial semantics in object placement tasks. We 
intend to develop methods of acquiring the interaction knowledge in our future work.   

Although, we demonstrated the use of functional knowledge for generating valid 
object placement, we did not consider the pragmatic and contextual elements such as 
plans, goals, and the situation of the agent requesting object placements.  For 
instance, the directive “put the printer on the table” would carry different functional 
constraints with it if the requester were a mover in an office building or a warehouse 
instead of a worker in an office building.  We plan to extend our models to include 
constraint selection based on the requesting agent’s goals and intentions. 

5 Conclusion 

Interpretation of spatial descriptions and commands, such as those for an object 
placement, poses significant challenges due to polysemy and underspecification of 
spatial term semantics.  To address this issue, we developed a functional interaction 
knowledge representation framework with a very small number of agent action 
primitives and object to object interaction primitives. We described a cost based 
constraint satisfaction algorithm for utilizing world knowledge for object placement.  
In our future work, we will implement and evaluate the performance our algorithm 
with varying number of objects in the scene and consider aspects of visual attention to 



 

 

 

 

 

 

resolve residual ambiguities and diectics (e.g., see Kelleher, 2003).  Additionally, we 
will extend our approach to include the role of goals and intentions of the requesting 
agent in selecting the appropriate spatial constraints for object placement. 
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