

Representing And Reasoning with Functional Knowledge

for Spatial Language Understanding

Kalyan Moy Gupta
1
, Abraham R. Schneider

1
, Matthew Klenk

2
, Kellen Gillespie

1
, and

Justin Karneeb
1

1Knexus Research Corporation; Springfield, VA 22153
2 Naval Research Laboratory, Washington, DC 20745

firstname.lastname@knexusresearch.com |

Abstract. One of the central problems in spatial language understanding is the
polysemy and the vagueness of spatial terms, which cannot be resolved by lexical
knowledge alone. We address this issue by developing a representation framework for
functional interactions between objects and agents. We use this framework with a
constraint solver to resolve and recover the meanings of spatial descriptions for object
placement tasks. We describe our approach in a virtual environment with an example
of object placement task.

1 Introduction

Virtual scene (re)construction or object placement is a vital task in many practical
applications such as background layout in 3-D animated movies, accident or crime
scene simulation, and navigation maps for video game development. Using natural
language (NL) commands can be a natural and efficient alternative to an otherwise
effort intensive manual placement of objects in a virtual world (e.g., Coyne and
Sproat, 2001; and Dupuy, 2001). However, machine understanding of natural
language commands is notoriously difficult due to polysemy and vagueness of spatial
terms. Only considering lexical semantic knowledge of spatial terms is clearly
insufficient for this task; world knowledge and pragmatics must be considered for
understanding language in a form that can be acted upon by autonomous agents.

Over the past couple of decades much research in spatial term semantics has focused
on developing computational models that map utterances to semantics (e.g., Regier
and Carlson, 2001; Coventry et al., 1994). Although, such research recognizes the
need for pragmatic and functional knowledge about objects, the development of
computational models for representing and using such knowledge has received little
attention. To address this gap, we present a framework for representing world
knowledge that can be effectively translated into spatial constraints to resolve vague
and underspecified natural language commands. We present an algorithm that utilizes
such knowledge for interpreting natural language commands and to perform valid
least cost object placements.

We organize the remainder of this paper as follows. We explain the nature of
linguistic underspecification in object placement tasks in the next section. We follow
this with a description of our representation framework and an algorithm that
performs linguistically commanded single object placement task. Next, we illustrate
our approach with an example. Finally, we discuss the strengths and limitations of
our approach and conclude the paper.

2 Vagueness in NL driven Object Placement

Consider the task of generating a static scene described by text utterances in a 3D
virtual environment. For example, generating a scene with “a chair in front of the
table” and subsequently placing a “printer on the table.” The desired rendering of the
scene is shown in Figure 1.

Figure 1. Example scene imagination based on linguistic description

The central issue in such a task is interpreting vague spatial prepositions such as on
and in-front-of into valid object placements. The utterance “printer on the
table” can only be judged as vague when attempting to place the printer in the World.
For instance, the possible placements on the table are to the left, right, front, and
behind the monitor. However, the placements in front and back of the monitor are
functionally invalid for a human user. The utterance also does not specify the suitable
orientation of the printer. Without such a specification, the printer could be oriented
in numerous ways in relation to the monitor and the chair, only some of which would
be valid. For example, the orientation shown in Figure 1 is a valid one. However, the
orientations of the printer such as upside down or facing the wall would be invalid.

Clearly, functional knowledge of interaction between objects must be considered for
generating valid placements. The question is what should be the content of such
functional and world knowledge and how can it be utilized to recover the unspecified
elements and generate a complete and valid specification for object placement. We
answer this question in the next section.

3 Representation and Reasoning for Linguistically commanded

Object Placement

Problem Task: Given a world, W, containing a set of objects, O, located in various
places in the world and an underspecified linguistic command requesting to place a
target object, ot in W, find a location with the least interaction cost to place ot. We
return to the notion of interaction cost later in this section.

Functional Knowledge Representation. We introduce an autonomous agent, α, as
the central element of a functional representation of objects, O, and their parts in the
World. Given our goal of building agents that interact with humans, our
representation encodes spatial constraints accordingly. We assume that α is human-

like and interacts with objects using a set of primitive actions or perceived
affordances (Gibson, 1977, Norman, 2002). We introduce a set of the following
primitive actions:
1. Reach: the agent reaches for objects to manipulate and interact with them. Given

our assumption that α is human-like, we subcategorize the reach interaction as
follows:
1.1. Reach.Arm: the agent reaches for objects with arms fully extended.
1.2. Reach.Forearm: the agent reaches for objects with only the forearm

extended.
1.3. Reach.Foot: the agent reaches for object with its foot.
1.4. Reach.Assisted: the agent reaches for objects with tools.

2. See: the agent obtains visual information from objects to perform reach actions.
For an agent to see objects it must be oriented toward the objects. In certain
situations the agent must be able to read the information present on the object.
We represent this with the read action, a tighter constraint than see:
2.1. Read: an agent reads the information present on the object such as signs or

writing. Clearly, this can be subcategorized to read fine print, read normal
print, read large print, read poster print etc.

We further assume that the agent performs these activities while it is located at certain
places in W called activity stations, S. In addition, we assume that an agent has the
following human-like poses; sitting, standing, and lying down.

We categorize the functional relation between objects into the following three types:

1. Support: this is a functional relation typically implied by the preposition “on” in
English. For example, a table supports a printer and a printer is
supportedBy a table.

2. Contain: this is a functional relation typically implied by the preposition “in”.
For example, a box contains the printer and a printer is containedBy a
box.

3. Group: relates multiple objects into a spatial group. For example, a computer
keyboard and display monitor may be related to each other by a spatial group
relation.

Table 1. Example representation of functional interaction constraints for a Printer

Object/parts Object Agent

 Interaction Interaction Pose Activity Station

Printer/Parent • Reachable.Arm

• Visible

• Stand

• Sit

Perimeter

 Control panel supportedBy(parent) • Readable

 Connection panel supportedBy(parent) • Reachable.Arm

 Paper tray containedBy(parent)

contains(paper)

• Reachable.Arm

An object and its various parts may solicit different functional interaction constraints
for agents. A representation of functional interaction constraints for a printer is shown
in the Table 1. We assume a canonical geo-orientation for the printer, that is, it is
upright. The table specifies that the printer control panel must be readable to the
agent, for example.

We introduce the notion of a possible interaction space, PIS, for an agent at an
activity station (e.g., see Kurup & Cassimatis, 2010). As a simplification in this

paper, we assume that the possible interaction space is a two dimensional region.
Figure 2 shows the PIS

Figure 2. Possible interaction spaces

We introduce the notion of a
well. For example,
inFrontOf(Printer
the intersection of individual
linguistically commanded s

Linguistically command
The algorithm begins by
smallest subset of that satisf
interaction knowledge of the objects in the World
constraints. Next, it uses possibility spaces to identify
selects the one with least cost. We detail these steps below:

Inputs
1. O, set of objects in
2. ot, the target object to be placed (e.g., Printer)
3. lcs, linguistically expressed placement constraint
4. KB, the functional interaction knowledge base containing

interaction knowledge covering all
5. α

psp
 the possibility space parameter for

to be performed.

Output
1. P, a set of placements with minimum cost of functional interaction for agent

Processing steps
1. Find the smallest set of

interaction constraints
the KB for a given category of object
object oi are located

2. Set the candidate placements
3. Set candidate stations
4. For each activity station

paper, we assume that the possible interaction space is a two dimensional region.
 with reachability, visibility, readability spaces.

. Possible interaction spaces for agent α and possible linguistically constrained space

for infrontOf(Printer)

We introduce the notion of a possible linguistically constrained space, PLCS
 Figure 2 shows the region selected by the function

Printer). The possible space resulting from multiple constraints is
the intersection of individual possible spaces. We will use this approach in the
linguistically commanded single object placement algorithm presented next.

inguistically commanded single object placement algorithm.
The algorithm begins by generating the set of potential activity stations to identify the

set of that satisfies the spatial constraints in the World. The functional
interaction knowledge of the objects in the World is transformed into spatial

Next, it uses possibility spaces to identify the candidate placements and
selects the one with least cost. We detail these steps below:

in W.
rget object to be placed (e.g., Printer).

linguistically expressed placement constraint (e.g., on the table).
functional interaction knowledge base containing the agent and object

interaction knowledge covering all objects in W (O and ot).
he possibility space parameter for α for which the minimal cost placement is

, a set of placements with minimum cost of functional interaction for agent

smallest set of activity stations, Smin
, that satisfes the functional

constraints for all objects oi ∈ O; the constraints are retrieved from
for a given category of object. The candidate activity stations for an

located around its perimeter.
Set the candidate placements, CP = φ, placement cost, pc=0
Set candidate stations, Sc = Smin

activity station sj ∈ Sc

paper, we assume that the possible interaction space is a two dimensional region.

linguistically constrained space

CS, as
function

possible space resulting from multiple constraints is
spaces. We will use this approach in the

y stations to identify the
The functional

transformed into spatial
candidate placements and

the agent and object

for which the minimal cost placement is

, a set of placements with minimum cost of functional interaction for agent α.

the functional
the constraints are retrieved from

The candidate activity stations for an

a. Compute Possible Placement Space
intersection of
LCS, linguistically constrained space

b. Generate candidate placements
candidate placements are possible placements
those placements that satisfy all the interaction constraints
violating any of the existing constraints satis
candidate placements are a combination of location
simplicity, we only consider 4 orientations of
the agent at the activity station.
existing stations is used for the placement.

5. Select the minimum cost placements
IF CP ≠φ THEN
 Return minimum cost placements
ELSE,
 Generate new activity stations
 set Sc=Snew, and

IF pc is 0 set
activity stations.

 go to Step 4
End.

Example
Consider a world W that includes
on it. In addition, it includes a
The placement agent receives a linguistic command to place a
world; “Place the printer on the table”.

We assume that this linguistic command (i.e.,
and its PLCS is computed
step 1 to find Smin

. The algorithm generates
for example, stations s1
satisfy the reachability and readability constraints for the monitor. Similarly
s3 and s5 fail to satisfy the readability constraint of the monitor. Notice that
alternative orientations of

Compute Possible Placement Space, PPSs for the target object ot as the
intersection of PIS, possible interactions space at the activity station and the

linguistically constrained space:

PPSs = PIS ∩ PLCS

candidate placements (cp) and compute their cost, c:
candidate placements are possible placements PPSs if it is not empty.
those placements that satisfy all the interaction constraints of ot without
violating any of the existing constraints satisfied by sj are retained.
candidate placements are a combination of locations and orientations. For

we only consider 4 orientations of ot relative to the orientation of
the agent at the activity station. The cost of a placement is 0 when one of the
existing stations is used for the placement.

minimum cost placements P.

Return minimum cost placements P ⊂ CP

activity stations (Snew) in the neighborhood of stations in S
and

is 0 set pc=1, i.e., cost of placement increases with the number of
activity stations.

that includes a table placed against a wall with a monitor
on it. In addition, it includes a chair located in front of the monitor (see Figure 3)
The placement agent receives a linguistic command to place a printer, ot, in this

printer on the table”.

Figure 3. Place the printer on the table

assume that this linguistic command (i.e., lsc) is interpreted into a semantic form
is computed, which is the entire surface of the table. We begin with

The algorithm generates the potential activity stations in the wor
 through s7. It is easy to see that stations s1, s2, s6 and s7 do not

satisfy the reachability and readability constraints for the monitor. Similarly, stations
fail to satisfy the readability constraint of the monitor. Notice that

alternative orientations of these stations would also fail on reachability constraints of

as the
nteractions space at the activity station and the

 The
 Only

without
are retained. The

and orientations. For
relative to the orientation of

one of the

Sc.

=1, i.e., cost of placement increases with the number of

monitor
(see Figure 3).

in this

into a semantic form
. We begin with

potential activity stations in the world,
do not

, stations
fail to satisfy the readability constraint of the monitor. Notice that the

fail on reachability constraints of

various objects. Activity station s4 is the only one that satisfies the reachability and
readability constraints for the monitor and the reachability constraint of the chair (i.e.,
Smin ={ s4}=Sc). We perform Step 4 and obtain PPS for s4 shown in grey obtained by
the intersection of PIS and PLCS (on table). Since PPS is not empty, we create
candidate placements cp1 through cp4. Although cp1 satisfies the printer’s reachability
and readability constraints, it violates the monitor’s readability constraints for station
s4. Similarly, cp2 fails to satisfy the readability constraint for the printer. Note that
reorienting cp3 to face the agent will create a valid placement. The candidate
placement cp3 satisfies all the constraints and is a valid. Placement cp4 is not in the
PPS space and is shown here for illustration only. Our example illustrates how the
algorithm using functional knowledge about object and agent interactions produces
two valid placements for a printer given a highly underspecified placement directive.

4 Discussion

Recent research on spatial language understanding has pointed out the need for
functional representations for understanding spatial utterances. For example,
Coventry and Garrord (2004) present a functional geometric framework which
includes geometric and dynamic kinematic routines, and object knowledge. Our
approach also considers the dynamic interactions and object knowledge. However, we
explicitly consider the role of an agent along with a very small set of interaction
primitive affordances specialized for the object placement task. Further, we present an
inferencing algorithm that utilizes the world knowledge to perform valid object
placement. Lockwood (2009) also emphasizes the need for functional knowledge but
focuses on structure mapping as a means learning functional knowledge for a scene
labeling task. However, she did not include an interpretation method to recover
meanings of underspecified utterances. In contrast, we manually encode the
affordances to recover underspecified spatial semantics in object placement tasks. We
intend to develop methods of acquiring the interaction knowledge in our future work.

Although, we demonstrated the use of functional knowledge for generating valid
object placement, we did not consider the pragmatic and contextual elements such as
plans, goals, and the situation of the agent requesting object placements. For
instance, the directive “put the printer on the table” would carry different functional
constraints with it if the requester were a mover in an office building or a warehouse
instead of a worker in an office building. We plan to extend our models to include
constraint selection based on the requesting agent’s goals and intentions.

5 Conclusion

Interpretation of spatial descriptions and commands, such as those for an object
placement, poses significant challenges due to polysemy and underspecification of
spatial term semantics. To address this issue, we developed a functional interaction
knowledge representation framework with a very small number of agent action
primitives and object to object interaction primitives. We described a cost based
constraint satisfaction algorithm for utilizing world knowledge for object placement.
In our future work, we will implement and evaluate the performance our algorithm
with varying number of objects in the scene and consider aspects of visual attention to

resolve residual ambiguities and diectics (e.g., see Kelleher, 2003). Additionally, we
will extend our approach to include the role of goals and intentions of the requesting
agent in selecting the appropriate spatial constraints for object placement.

Acknowledgements

This research was supported by the Office of Naval Research. Matthew Klenk was

supported by NRC Postdoctoral Research Fellowship. We thank the two anonymous

reviewers for their comments and suggestions.

References

Coventry, K.R. & Garrod, S.C. (2004) Saying, Seeing and Acting: The Psychological

Semantics of Spatial Prepositions. Hove: Psychology Press.

Coventry, K.R., Carmichael, R. & Garrod, S.C. (1994). Spatial prepositions, object-specific

function and task requirements, Journal of Semantics, 11, 289-309.

Coyne, B., & Sproat, R., (2001) WordsEye: An automatic text-to-scene conversion system,

SIGGRAP’01, Proceedings of the 28th annual conference on computer graphics and

interactive techniques, pp. 487-496, New York, NY: ACM.

Dupuy, S. (2001). Generating a 3-D simulation of a car accident from a written description in

natural language: The CARSIM system. Proceedings of the Workshop on Temporal and

Spatial Information Processing, pp.1-8.

Gibson, K.J. (1977). The theory of affordances. In R. Shaw and J Bransford (Eds.), Perceiving,

acting, and knowing: Toward and ecological psychology (pp. 67-82). Hillsdale, NJ:

Erlbaum.

Kelleher, J.D. (2003). A perceptually based computational framework for the interpretation of

spatial language, Ph.D Thesis, Dublin, Ireland: School of Computing, Dublin City

University.
Kurup, U., & Cassimatis, N.L., (2010). Quantitative spatial reasoning for general intelligence,

Proceedings of the Third Conference on Artificial General Intelligence Conference, pp. 1-6,

Lugano, Switzerland: AGF.

Lockwood, K. (2009). Using analogy to model spatial language use and multimodal knowledge

capture, PhD Thesis, Department of Computer Science, Evanston, IL: Northwestern

University.

Norman, D. (2002). The design of everyday things, New York, NY: Basic Books.

Regier, T., & Carlson, L. (2001). Grounding spatial language in perception: An empirical and

computational investigation. Journal of Experimental Psychology: General, 130, 273-298.

