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Abstract 
Previous work has shown the superiority of the 
optimistic protocols over the lock-based 
protocols for scheduling soft or firm real-time 
transactions. However, optimistic protocols 
cannot provide schedulability analysis for hard 
real-time transactions because of uncertain 
transaction restarts. In this paper, we develop 
new combined locking approach for using 
optimistic concurrency control to schedule hard 
real-time transactions. This approach can resolve 
serious conflicts, which cannot be resolved via 
dynamic adjustment of serialization order using 
timestamp intervals, and thus avoid transaction 
restarts. Furthermore, the combined locking 
approach can be integrated with the priority 
ceiling mechanism to achieve single-blocking 
and deadlock-free properties, and perform 
schedulability analysis for hard real-time 
transactions. 

1. Introduction 
There has been growing interest in the performance of 
transaction systems that have significant response time 
requirements. These requirements are usually specified as 
deadlines on individual transactions and a concurrency 
control algorithm must attempt to meet the deadlines as 
well as preserve data consistency. The most serious 
problem of the traditional concurrency control protocols 
in real-time databases is priority inversion [1]. In order to 
alleviate this situation, various conflict resolution 
strategies have been suggested to resolve data conflicts 
for different types of real-time transactions, e.g., soft, firm, 
and hard real-time transactions. The strategies are mainly 
based on transaction restart or data reservation. The well-
known lock-based mechanism in controlling the priority 
inversion problem is priority ceiling protocol (PCP), 
which is originally used for scheduling periodic tasks in 
hard real-time systems and has been extended for hard 
real-time transactions [1,2]. Although the deadlines of all 

the hard real-time transactions can be guaranteed, PCP is 
not suitable for processing soft and firm real-time 
transactions due to the dynamic and unpredictable 
behaviors of these transactions [3].  

In addition to the lock-based protocols, many real-
time concurrency control protocols are based on the 
optimistic method, in which the resolution of data 
conflicts is delayed until a transaction has finished all of 
its operations. A validation test is performed to ensure 
that the resulted schedule is serializable, and a transaction, 
which passes the test, is allowed to commit. Various 
forward validation schemes, such as wait-50 and sacrifice, 
were proposed [4,5]. In particular, previous work [4,5,6] 
has shown that the superiority of the optimistic protocols 
over the locked-based protocols for firm and soft real-
time protocols. And the OCC-DATI [7,8], which supports 
dynamic adjustment of serialization order using 
timestamp intervals, is the best optimistic concurrency 
control protocol available.  

Concurrency control protocols normally employ 
transaction blocking to resolve data conflicts among 
transactions for data consistency [10]. Since the lock-
based protocols tend to bring unnecessary transaction 
blockings, and the optimistic methods increase the 
concurrency degree of transaction execution at the cost of 
transaction restarts, it is a favourable approach to combine 
the lock-based protocols with the optimistic methods for 
scheduling hard real-time scheduling, so as to reduce 
unnecessary transaction blockings and avoid restarting the 
conflicting transactions. In this paper, we proposed a 
combined locking approach for resolving transaction 
restarts in optimistic concurrency control protocols. This 
approach can resolve serious conflicts, which cannot be 
resolved via dynamic adjustment of serialization order 
using timestamp intervals, and thus avoid both transaction 
restarts existing in optimistic concurrency control 
protocols, and unnecessary transaction blockings existing 
in lock-based protocols. Furthermore, the combined 
locking approach can be integrated with the priority 
ceiling mechanism to achieve single-blocking and 
deadlock-free properties, and perform schedulability 
analysis for scheduling hard real-time transactions. 
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2. The combined locking approach 
The predictability will be possible only if the system has 
the comprehensive knowledge of transactions. For most 
hard real-time systems, application semantics are well 
known, and data requirements and execution 
characteristics of the ‘canned’ transactions should be 
available. Otherwise, hard deadlines of transactions 
cannot be guaranteed. Therefore, we assume that a 
transaction system consists of a fixed set of transactions, 
i.e., Г = {Ti | i=1,2…n}. We are interested in the context 
of uniprocessor priority-driven preemptive scheduling. 
The real-time database can be either memory-resident or 
disk-resident.  

The execution of a transaction Ti consists of three 
phases: read phase, validation phase and write phase as in 
optimistic concurrency control protocols. As we known, 
abortion strategy used in optimistic concurrency control 
protocols can reduces the transaction blocking time at the 
expense of restart overheads. However, it complicates and 
even disables the system schedulability analysis. 
Therefore, a concurrency control protocol for hard real-
time transactions normally employs blocking to resolve 
data conflicts among transactions for data consistency. 
For using optimistic concurrency control methods to 
schedule hard real-time transactions, we must analyze that 
under what situations transaction restarts will occur 
inevitably. The combined locking approach is proposed to 
prevent these situations from occurring.  
Notations: 
RS (Ti) denotes the read set of transaction Ti.  
WS (Ti) denotes the write set of transaction Ti.  
ri[x] denotes that transaction Ti reads a data object x. 
wi[x] denotes that transaction Ti writes a data object x.  
r_locki[x] denotes that transaction Ti read-locks a data 
object x. 
w_locki[x] denotes that transaction Ti write-locks a data 
object x. 

2.1   Dynamic adjustment of serialization order 

Suppose there are a validating transaction Tv and a set of 
active transactions Tj (j=1,2…m). There are three possible 
types of data conflicts that can induce a serialization order 
between Tv and Tj:  
1) RS (Tv) ∩ WS (Tj) ≠ Ø (read-write conflict)  
A read-write conflict between Tv and Tj can be resolved 
by adjusting the serialization order between Tv and Tj as 
Tv → Tj so that the read of Tv cannot be affected by the 
write of Tj. This type of serialization adjustment is called 
forward ordering or forward adjustment.  
2) WS (Tv) ∩ RS (Tj) ≠ Ø (write-read conflict)  
A write-read conflict between Tv and Tj can be resolved 
by adjusting the serialization order between Tv and Tj as 
Tj → Tv. It means that the read phase of Tj is placed 
before the write of Tv. This type of serialization 
adjustment is called backward ordering or backward 
adjustment.  

3) WS (Tv) ∩ WS (Tj) ≠ Ø (write-write conflict)  
A write-write conflict between Tv and Tj can be resolved 
by adjusting the serialization order between Tv and Tj as 
Tv → Tj so that the write of Tv cannot overwrite the write 
of Tj through forward ordering.  

In the OCC-DATI protocol, if an active transaction 
has to be both backward and forward adjusted with 
respect to the validating transaction, a serious conflict is 
said to occur and some of the conflicting transaction has 
to be restarted. On the other hand, those active 
transactions, which need only either backward adjustment 
or forward adjustment, are allowed to continue their 
execution.  

From the above discussion, we can find that there are 
three situations, which may result in transaction restarts:   
1) RS (Tv) ∩ WS (Tj) ≠ Ø and WS (Tw) ∩ RS (Tj) ≠ Ø  
Let us consider the following transactions Tj, Tv, Tw and 
history:  
Tj: rj[x] wj[y] vj cj 
Tv: rv[y] vv cv 
Tw: ww[x] vw cw 
H1: rj[x] ww[x]vw cw rv[y] vv cv wj[y] vj  
Based on the OCC-DATI protocol, Tj must be restarted. 
Similarly, consider Tj and another transaction Tv′:  
Tv′: rv′[y] wv′[x] vv′ cv′  
H2: rj[x] rv′[y] wv′[x] vv′ cv′ wj[y] vj  
In this case, Tj has to be restarted, too.  
2) WS (Tv) ∩ RS (Tj) ≠ Ø and WS (Tw) ∩ WS (Tj) ≠ Ø  
Consider the following history H3 over Tj, Tv and Tw, and 
history H4 over Tj and Tv′:  
Tj: rj[x] wj[y] vj cj 
Tv: wv[y] vv cv 
Tw: ww[x] vw cw 
Tv′: wv′[x] wv′[y] vv′ cv′ 
H3: rj[x] ww[x] vw cw wv[y]vv cv wj[y] vj  
H4: rj[x] wv′[x] wv′[y] vv′ cv′ wj[y] vj  
It can be found that, Tj has to be restarted in both histories 
by the OCC-DATI protocol.  
3) WS (Tv) ∩ RS (Tj) ≠ Ø and WS (Tw) ∩ RS (Tj) ≠ Ø 
Consider the following history H5 over Tj, Tv and Tw, and 
history H6 over Tj and Tv′:  
Tj: rj[x] rj[y] vj cj 
Tv: wv[y] vv cv 
Tw: ww[x] vw cw 
Tv′: wv′[x] wv′[y] vv′ cv′ 
H5: rj[x] ww[x] vw cw wv[y]vv cv rj[y] vj  
H6: rj[x] wv′[x] wv′[y] vv′ cv′ rj[y] vj  
It can be found that, Tj has to be restarted in both histories 
by the OCC-DATI protocol.  

The essential reason for Tj’s restart is that, the 
serialization order of Tj has to be adjusted forward by 
conflicting transaction Tv after backward adjustment by 
conflicting transaction Tw. If Tv and Tw may induce Tj to 
restart, we consider that there exists an induce-to-restart 
relationship. Without question, all the induce-to-restart 
relationships among a transaction set can be determined 
by making an analysis on the read sets and write sets of 



these transactions. To avoid potential transaction restarts, 
the induce-to-restart relationships must be broken. 

2.2   Formal analysis 

We first define three kinds of dependency relationships in 
serializable order that capture read/write conflicts of two 
different transactions on the same data object.  

It is said that an active transaction Tj read-depends on 
committed transaction Tv if Tv writes some data object x 
and Tj reads the version of x that is just installed into the 
database by Tv. An active transaction Tj write-depends on 
committed transaction Tv if Tv installs a version of x and 
Tj installs x’s next version in the database. On the other 
hand, if an active transaction Tj reads some data object x 
and committed transaction Tv writes the next version of x, 
it is said that Tj anti-read-depends on Tv in serializable 
history. If an active transaction Tj writes some data object 
x and committed transaction Tv reads the previous version 
of x, it is said that Tj anti-write-depends on Tv in 
serializable history.  

It can be found that the induce-to-restart relationships 
come from different combination of dependency 
relationships. Different strategies can be used to avoid the 
above three situations:  
1) If Tj anti-read-depends on Tw, we must prevent from Tj 
anti-write-depending on a transaction Tv including Tw.  
2) If Tj anti-read-depends on Tw, we must prevent from Tj 
write-depending on a transaction Tv including Tw. 
3) If Tj anti-read-depends on Tw, we must prevent from Tj 
read-depending on a transaction Tv including Tw. 

In these situations, the transaction Tj is denoted as 
potential restarted transaction, Tw and Tv are denoted as 
trigger transaction and firer transaction respectively. The 
trigger and firer transaction may be the same transaction.  

Now we define the Dependency Relation Graph or 
DRG. Each data object x can be represented as a node, 
with two kinds of marks – read marks and write marks. 
The indexes of transactions that read data object x are 
read marks of node x, which are marked on top of the 
node. The indexes of transactions that write data object x 
are write marks of node x, which are marked under the 

node. Furthermore, if a transaction Tj includes operations 
rj[x] and wj[y], and there exist some transactions Tw 
including operation ww[x] and some transactions Tv 
including operation rv[y] or wv[y], an directed edge may 
be drawn from the node x to the node y (see Figure 1.a 
and 1.b). If a transaction Tj includes operations rj[x] and 
rj[y], and there exist some transactions Tw including 
operation ww[x] and some transactions Tv including 

operation wv[y], an directed edge may also be drawn from 
the node x to the node y (see Figure 1.c).  

2.3   Combined locking 

We can found that all the induce-to-restart relationships 
existing in a transaction set can be expressed in its DRG. 
To avoid transaction restarts, we now propose combined 
locking to break these relationships. That is to say, we 
must prevent an active transaction Tj anti-write-depends, 
read-depends or write depends on another transaction Tv, 
when Tj has anti-read-depended on other transactions.  

Therefore, if a transaction Tj includes operations rj[x] 
and wj[y], and there exist some higher-priority 
transactions Tw including operation ww[x] and some 
higher-priority transactions Tv including operation rv[y] or 
wv[y], then Tj must read-lock x and at the same time 
write-lock y, which can be represented as u_lockj[x, y]. If 
a transaction Tj includes operations rj[x] and rj[y], and 
there exist some transactions Tw including operation ww[x] 
and some transactions Tv including operation wv[y], then 
Tj must read-lock x and at the same time read-lock y, 
which can be represented as r_lockj[x, y]. Furthermore, 
when Tw write-locks x after u_lockj[x, y], read and write 
locks on y will be denied so as to avoid restarting Tj. 
When Tw write-locks x after r_lockj[x, y], write locks on y 
will be denied so as to avoid restarting T j. The lock 
compatibility of combined locking is shown in Figure 2. 
The u_lockj[x, y] and r_lockj[x, y] are called as combined 
locks, w_lockw[x] is called as trigger lock, r_lockv[y] or 
w_lockv[y] is called as denied locks. The trigger locks 
may be a part of denied locks when they belong to the 
same transaction, as shown in the first row of Figure 2.  

The combined locking can be applied with two-phase 
technique to control conflicting data accesses in read 
phase. Then transaction restarts will be impossible to 
occur in the validation phase, where the validation test is 
similar to that of OCC-DATI. 

2.4   Priority  ceiling management 

The lock compatibility of combined locking shows the 
necessary condition to avoid a transaction locking data 
objects for both the requirements of data consistency and 
of no transaction restarts. However, it is not yet sufficient 
to maintain the single-blocking and deadlock-free 
properties, which are important for schedulability analysis 
of hard real-time transactions. Therefore, it is necessary to 

    Combined Locks 
Trigger Locks u_lock[x, y] r_lock[x, y] 

--- u_lock[y, x] and 
w_lock[x, y] 

w_lock[x, y] 
(x≠y) 

w_lock[x] r_lock[y] and 
w_lock[y] w_lock[y] 

Figure 2. The lock compatibility of combined locking 
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utilize the priority ceiling mechanism for achieving these 
two important properties. In most priority ceiling 
protocols, two types of priority ceilings are defined for 
each data object for the semantics of transaction’s 
read/write operations. The purpose of priority ceilings is 
to block the operations of lower priority transactions that 
may conflict and block those of higher priority 
transactions in advance, so that a higher priority 
transaction will only be blocked by a single lower priority 
transaction. Since combined locking approach is not for 
single data object, it is for the induce-to-restart 
relationships. Therefore, one priority ceiling, called 
trigger priority ceiling, which is the priority of the highest 
priority transaction that may be blocked because a lower 
priority obtain a combined lock on [x, y], is needed to 
control potential transaction restarts. The trigger priority 
ceiling will come into effect only when another 
transaction obtains the trigger lock on x.  

3.   Discussion and future work 
In this paper, combined locking approach is proposed for 
resolving potential serious conflicts that cannot be 
resolved through dynamic adjustment of serializability 
order using timestamp intervals. This approach can avoid 
both transaction restarts existing in optimistic 
concurrency control protocols, and unnecessary 
transaction blockings existing in lock-based protocols. 
Through integrating the combined locking with the 
priority ceiling mechanism, a new concurrency control 
protocol called Combined Locking with Dynamic 
Adjustment of serialization order using Timestamp 
Intervals (CL-DATI) has been proposed to achieve single-
blocking and deadlock-free properties. The schedulability 
condition for hard real-time transactions under CL-DATI 
is better than that under other priority ceiling protocols 
because CL-DATI can avoid unnecessary conflicts 
blocking and ceiling blocking.  

The combined locking approach is mainly for 
scheduling hard real-time transactions. In fact, the formal 
analysis method proposed in this paper can also be used in 
conflict check algorithm to schedule firm/soft real-time 
transactions, as does in serialization graph test algorithm.  

Moreover, different types of real-time transactions 
may co-exist in a real-time database system. The 
performance objective is usually to minimize the number 
of deadline missing of soft/firm real-time transactions, 
and at the same time, to guarantee the deadline 
satisfaction of hard real-time transactions. It can be 
observed that the combined locking approach can be 
integrated with optimistic concurrency control protocols 
easily for scheduling mixed transactions in real-time 
databases. 
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