
Combined Locking Approach for Scheduling Hard Real-Time
Transactions in Real-Time Databases

Qiang Wang, Hong-An Wang and Guo-Zhong Dai

Institute of Software, Chinese Academy of Sciences
P.O.Box 8718, Beijing 100080, China

wq@iel.iscas.ac.cn

Abstract
Previous work has shown the superiority of the
optimistic protocols over the lock-based
protocols for scheduling soft or firm real-time
transactions. However, optimistic protocols
cannot provide schedulability analysis for hard
real-time transactions because of uncertain
transaction restarts. In this paper, we develop
new combined locking approach for using
optimistic concurrency control to schedule hard
real-time transactions. This approach can resolve
serious conflicts, which cannot be resolved via
dynamic adjustment of serialization order using
timestamp intervals, and thus avoid transaction
restarts. Furthermore, the combined locking
approach can be integrated with the priority
ceiling mechanism to achieve single-blocking
and deadlock-free properties, and perform
schedulability analysis for hard real-time
transactions.

1. Introduction
There has been growing interest in the performance of
transaction systems that have significant response time
requirements. These requirements are usually specified as
deadlines on individual transactions and a concurrency
control algorithm must attempt to meet the deadlines as
well as preserve data consistency. The most serious
problem of the traditional concurrency control protocols
in real-time databases is priority inversion [1]. In order to
alleviate this situation, various conflict resolution
strategies have been suggested to resolve data conflicts
for different types of real-time transactions, e.g., soft, firm,
and hard real-time transactions. The strategies are mainly
based on transaction restart or data reservation. The well-
known lock-based mechanism in controlling the priority
inversion problem is priority ceiling protocol (PCP),
which is originally used for scheduling periodic tasks in
hard real-time systems and has been extended for hard
real-time transactions [1,2]. Although the deadlines of all

the hard real-time transactions can be guaranteed, PCP is
not suitable for processing soft and firm real-time
transactions due to the dynamic and unpredictable
behaviors of these transactions [3].

In addition to the lock-based protocols, many real-
time concurrency control protocols are based on the
optimistic method, in which the resolution of data
conflicts is delayed until a transaction has finished all of
its operations. A validation test is performed to ensure
that the resulted schedule is serializable, and a transaction,
which passes the test, is allowed to commit. Various
forward validation schemes, such as wait-50 and sacrifice,
were proposed [4,5]. In particular, previous work [4,5,6]
has shown that the superiority of the optimistic protocols
over the locked-based protocols for firm and soft real-
time protocols. And the OCC-DATI [7,8], which supports
dynamic adjustment of serialization order using
timestamp intervals, is the best optimistic concurrency
control protocol available.

Concurrency control protocols normally employ
transaction blocking to resolve data conflicts among
transactions for data consistency [10]. Since the lock-
based protocols tend to bring unnecessary transaction
blockings, and the optimistic methods increase the
concurrency degree of transaction execution at the cost of
transaction restarts, it is a favourable approach to combine
the lock-based protocols with the optimistic methods for
scheduling hard real-time scheduling, so as to reduce
unnecessary transaction blockings and avoid restarting the
conflicting transactions. In this paper, we proposed a
combined locking approach for resolving transaction
restarts in optimistic concurrency control protocols. This
approach can resolve serious conflicts, which cannot be
resolved via dynamic adjustment of serialization order
using timestamp intervals, and thus avoid both transaction
restarts existing in optimistic concurrency control
protocols, and unnecessary transaction blockings existing
in lock-based protocols. Furthermore, the combined
locking approach can be integrated with the priority
ceiling mechanism to achieve single-blocking and
deadlock-free properties, and perform schedulability
analysis for scheduling hard real-time transactions.

mailto:wq@iel.iscas.ac.cn

2. The combined locking approach
The predictability will be possible only if the system has
the comprehensive knowledge of transactions. For most
hard real-time systems, application semantics are well
known, and data requirements and execution
characteristics of the ‘canned’ transactions should be
available. Otherwise, hard deadlines of transactions
cannot be guaranteed. Therefore, we assume that a
transaction system consists of a fixed set of transactions,
i.e., Г = {Ti | i=1,2…n}. We are interested in the context
of uniprocessor priority-driven preemptive scheduling.
The real-time database can be either memory-resident or
disk-resident.

The execution of a transaction Ti consists of three
phases: read phase, validation phase and write phase as in
optimistic concurrency control protocols. As we known,
abortion strategy used in optimistic concurrency control
protocols can reduces the transaction blocking time at the
expense of restart overheads. However, it complicates and
even disables the system schedulability analysis.
Therefore, a concurrency control protocol for hard real-
time transactions normally employs blocking to resolve
data conflicts among transactions for data consistency.
For using optimistic concurrency control methods to
schedule hard real-time transactions, we must analyze that
under what situations transaction restarts will occur
inevitably. The combined locking approach is proposed to
prevent these situations from occurring.
Notations:
RS (Ti) denotes the read set of transaction Ti.
WS (Ti) denotes the write set of transaction Ti.
ri[x] denotes that transaction Ti reads a data object x.
wi[x] denotes that transaction Ti writes a data object x.
r_locki[x] denotes that transaction Ti read-locks a data
object x.
w_locki[x] denotes that transaction Ti write-locks a data
object x.

2.1 Dynamic adjustment of serialization order

Suppose there are a validating transaction Tv and a set of
active transactions Tj (j=1,2…m). There are three possible
types of data conflicts that can induce a serialization order
between Tv and Tj:
1) RS (Tv) ∩ WS (Tj) ≠ Ø (read-write conflict)
A read-write conflict between Tv and Tj can be resolved
by adjusting the serialization order between Tv and Tj as
Tv → Tj so that the read of Tv cannot be affected by the
write of Tj. This type of serialization adjustment is called
forward ordering or forward adjustment.
2) WS (Tv) ∩ RS (Tj) ≠ Ø (write-read conflict)
A write-read conflict between Tv and Tj can be resolved
by adjusting the serialization order between Tv and Tj as
Tj → Tv. It means that the read phase of Tj is placed
before the write of Tv. This type of serialization
adjustment is called backward ordering or backward
adjustment.

3) WS (Tv) ∩ WS (Tj) ≠ Ø (write-write conflict)
A write-write conflict between Tv and Tj can be resolved
by adjusting the serialization order between Tv and Tj as
Tv → Tj so that the write of Tv cannot overwrite the write
of Tj through forward ordering.

In the OCC-DATI protocol, if an active transaction
has to be both backward and forward adjusted with
respect to the validating transaction, a serious conflict is
said to occur and some of the conflicting transaction has
to be restarted. On the other hand, those active
transactions, which need only either backward adjustment
or forward adjustment, are allowed to continue their
execution.

From the above discussion, we can find that there are
three situations, which may result in transaction restarts:
1) RS (Tv) ∩ WS (Tj) ≠ Ø and WS (Tw) ∩ RS (Tj) ≠ Ø
Let us consider the following transactions Tj, Tv, Tw and
history:
Tj: rj[x] wj[y] vj cj
Tv: rv[y] vv cv
Tw: ww[x] vw cw
H1: rj[x] ww[x]vw cw rv[y] vv cv wj[y] vj
Based on the OCC-DATI protocol, Tj must be restarted.
Similarly, consider Tj and another transaction Tv′:
Tv′: rv′[y] wv′[x] vv′ cv′
H2: rj[x] rv′[y] wv′[x] vv′ cv′ wj[y] vj
In this case, Tj has to be restarted, too.
2) WS (Tv) ∩ RS (Tj) ≠ Ø and WS (Tw) ∩ WS (Tj) ≠ Ø
Consider the following history H3 over Tj, Tv and Tw, and
history H4 over Tj and Tv′:
Tj: rj[x] wj[y] vj cj
Tv: wv[y] vv cv
Tw: ww[x] vw cw
Tv′: wv′[x] wv′[y] vv′ cv′
H3: rj[x] ww[x] vw cw wv[y]vv cv wj[y] vj
H4: rj[x] wv′[x] wv′[y] vv′ cv′ wj[y] vj
It can be found that, Tj has to be restarted in both histories
by the OCC-DATI protocol.
3) WS (Tv) ∩ RS (Tj) ≠ Ø and WS (Tw) ∩ RS (Tj) ≠ Ø
Consider the following history H5 over Tj, Tv and Tw, and
history H6 over Tj and Tv′:
Tj: rj[x] rj[y] vj cj
Tv: wv[y] vv cv
Tw: ww[x] vw cw
Tv′: wv′[x] wv′[y] vv′ cv′
H5: rj[x] ww[x] vw cw wv[y]vv cv rj[y] vj
H6: rj[x] wv′[x] wv′[y] vv′ cv′ rj[y] vj
It can be found that, Tj has to be restarted in both histories
by the OCC-DATI protocol.

The essential reason for Tj’s restart is that, the
serialization order of Tj has to be adjusted forward by
conflicting transaction Tv after backward adjustment by
conflicting transaction Tw. If Tv and Tw may induce Tj to
restart, we consider that there exists an induce-to-restart
relationship. Without question, all the induce-to-restart
relationships among a transaction set can be determined
by making an analysis on the read sets and write sets of

these transactions. To avoid potential transaction restarts,
the induce-to-restart relationships must be broken.

2.2 Formal analysis

We first define three kinds of dependency relationships in
serializable order that capture read/write conflicts of two
different transactions on the same data object.

It is said that an active transaction Tj read-depends on
committed transaction Tv if Tv writes some data object x
and Tj reads the version of x that is just installed into the
database by Tv. An active transaction Tj write-depends on
committed transaction Tv if Tv installs a version of x and
Tj installs x’s next version in the database. On the other
hand, if an active transaction Tj reads some data object x
and committed transaction Tv writes the next version of x,
it is said that Tj anti-read-depends on Tv in serializable
history. If an active transaction Tj writes some data object
x and committed transaction Tv reads the previous version
of x, it is said that Tj anti-write-depends on Tv in
serializable history.

It can be found that the induce-to-restart relationships
come from different combination of dependency
relationships. Different strategies can be used to avoid the
above three situations:
1) If Tj anti-read-depends on Tw, we must prevent from Tj
anti-write-depending on a transaction Tv including Tw.
2) If Tj anti-read-depends on Tw, we must prevent from Tj
write-depending on a transaction Tv including Tw.
3) If Tj anti-read-depends on Tw, we must prevent from Tj
read-depending on a transaction Tv including Tw.

In these situations, the transaction Tj is denoted as
potential restarted transaction, Tw and Tv are denoted as
trigger transaction and firer transaction respectively. The
trigger and firer transaction may be the same transaction.

Now we define the Dependency Relation Graph or
DRG. Each data object x can be represented as a node,
with two kinds of marks – read marks and write marks.
The indexes of transactions that read data object x are
read marks of node x, which are marked on top of the
node. The indexes of transactions that write data object x
are write marks of node x, which are marked under the

node. Furthermore, if a transaction Tj includes operations
rj[x] and wj[y], and there exist some transactions Tw
including operation ww[x] and some transactions Tv
including operation rv[y] or wv[y], an directed edge may
be drawn from the node x to the node y (see Figure 1.a
and 1.b). If a transaction Tj includes operations rj[x] and
rj[y], and there exist some transactions Tw including
operation ww[x] and some transactions Tv including

operation wv[y], an directed edge may also be drawn from
the node x to the node y (see Figure 1.c).

2.3 Combined locking

We can found that all the induce-to-restart relationships
existing in a transaction set can be expressed in its DRG.
To avoid transaction restarts, we now propose combined
locking to break these relationships. That is to say, we
must prevent an active transaction Tj anti-write-depends,
read-depends or write depends on another transaction Tv,
when Tj has anti-read-depended on other transactions.

Therefore, if a transaction Tj includes operations rj[x]
and wj[y], and there exist some higher-priority
transactions Tw including operation ww[x] and some
higher-priority transactions Tv including operation rv[y] or
wv[y], then Tj must read-lock x and at the same time
write-lock y, which can be represented as u_lockj[x, y]. If
a transaction Tj includes operations rj[x] and rj[y], and
there exist some transactions Tw including operation ww[x]
and some transactions Tv including operation wv[y], then
Tj must read-lock x and at the same time read-lock y,
which can be represented as r_lockj[x, y]. Furthermore,
when Tw write-locks x after u_lockj[x, y], read and write
locks on y will be denied so as to avoid restarting Tj.
When Tw write-locks x after r_lockj[x, y], write locks on y
will be denied so as to avoid restarting T j. The lock
compatibility of combined locking is shown in Figure 2.
The u_lockj[x, y] and r_lockj[x, y] are called as combined
locks, w_lockw[x] is called as trigger lock, r_lockv[y] or
w_lockv[y] is called as denied locks. The trigger locks
may be a part of denied locks when they belong to the
same transaction, as shown in the first row of Figure 2.

The combined locking can be applied with two-phase
technique to control conflicting data accesses in read
phase. Then transaction restarts will be impossible to
occur in the validation phase, where the validation test is
similar to that of OCC-DATI.

2.4 Priority ceiling management

The lock compatibility of combined locking shows the
necessary condition to avoid a transaction locking data
objects for both the requirements of data consistency and
of no transaction restarts. However, it is not yet sufficient
to maintain the single-blocking and deadlock-free
properties, which are important for schedulability analysis
of hard real-time transactions. Therefore, it is necessary to

 Combined Locks
Trigger Locks u_lock[x, y] r_lock[x, y]

--- u_lock[y, x] and
w_lock[x, y]

w_lock[x, y]
(x≠y)

w_lock[x] r_lock[y] and
w_lock[y] w_lock[y]

Figure 2. The lock compatibility of combined locking

Figure 1. Basic notations of DRG

x y
j

(a) w

j v

j

x y
j

(b) w

j

j,v

x y
j

(c) w

j j

v

utilize the priority ceiling mechanism for achieving these
two important properties. In most priority ceiling
protocols, two types of priority ceilings are defined for
each data object for the semantics of transaction’s
read/write operations. The purpose of priority ceilings is
to block the operations of lower priority transactions that
may conflict and block those of higher priority
transactions in advance, so that a higher priority
transaction will only be blocked by a single lower priority
transaction. Since combined locking approach is not for
single data object, it is for the induce-to-restart
relationships. Therefore, one priority ceiling, called
trigger priority ceiling, which is the priority of the highest
priority transaction that may be blocked because a lower
priority obtain a combined lock on [x, y], is needed to
control potential transaction restarts. The trigger priority
ceiling will come into effect only when another
transaction obtains the trigger lock on x.

3. Discussion and future work
In this paper, combined locking approach is proposed for
resolving potential serious conflicts that cannot be
resolved through dynamic adjustment of serializability
order using timestamp intervals. This approach can avoid
both transaction restarts existing in optimistic
concurrency control protocols, and unnecessary
transaction blockings existing in lock-based protocols.
Through integrating the combined locking with the
priority ceiling mechanism, a new concurrency control
protocol called Combined Locking with Dynamic
Adjustment of serialization order using Timestamp
Intervals (CL-DATI) has been proposed to achieve single-
blocking and deadlock-free properties. The schedulability
condition for hard real-time transactions under CL-DATI
is better than that under other priority ceiling protocols
because CL-DATI can avoid unnecessary conflicts
blocking and ceiling blocking.

The combined locking approach is mainly for
scheduling hard real-time transactions. In fact, the formal
analysis method proposed in this paper can also be used in
conflict check algorithm to schedule firm/soft real-time
transactions, as does in serialization graph test algorithm.

Moreover, different types of real-time transactions
may co-exist in a real-time database system. The
performance objective is usually to minimize the number
of deadline missing of soft/firm real-time transactions,
and at the same time, to guarantee the deadline
satisfaction of hard real-time transactions. It can be
observed that the combined locking approach can be
integrated with optimistic concurrency control protocols
easily for scheduling mixed transactions in real-time
databases.

4. References
[1] L. Sha, R. Rajkumar, S.H. Son and C.H. Chang. A Real-

Time Locking Protocol. IEEE Transactions on Computers,
40(7): 793-800, 1991.

[2] L. Sha, R. Rajkumar and J.P. Lehoczky. Priority
Inheritance Protocol: An Approach to Real-Time
Synchronization. IEEE Transactions on Computers, 39(9):
1175-1185, September 1990.

[3] K. Ramamritham. Real-Time Databases. International
Journal of Distributed and Parallel Databases, 1(2), 1993.

[4] J.R. Haritsa, M.J. Carey, and M. Livny. On Being
Optimistic about Real-Time Constraints. In Proceedings of
the 9th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pp.331-343, 1990.

[5] J.R. Haritsa, M.J. Carey, and M. Livny. Data Access
Scheduling in Firm Real-Time Database Systems. Journal
of Real-Time Systems, 4(3), 203-242, 1992.

[6] A. Chiu, B. Kao, and K. Lam. An Analysis of Lock-Based
and Optimistic Concurrency Control Protocols in
Multiprocessor Databases. Journal of Systems and
Software, 42(3): 273-286, 1998.

[7] J. Lindström and K. Raatikainen. Dynamic Adjustment of
Serialization Order Using Timestamp Intervals in Real-
Time Databases. In Proceedings of the 6th International
Conference on Real-Time Computing Systems and
Applications, pp.13-20, 1999.

[8] J. Lindström. Optimistic Concurrency Control Methods for
Real-Time Database Systems. Report C-2001-9,
Department of Computer Science, University of Helsinki,
Finland, 2001.

[9] K.-W. Lam, S.H. Son, S.-L. Hung, and Z. Wang.
Scheduling Transactions with Stringent Real-Time
Constraints. Information Systems, Vol.25 No.6, pp.431-
452, 2000.

[10] P.A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, Reading, Massachusetts,
1987.

	Abstract
	1. Introduction
	2. The combined locking approach
	4. References
	3. Discussion and future work

