CONSISTENCY BASED SNAPSHOT MANAGEMENT
IN DATA GRIDS

Lutz Schlesinger

University Erlangen-Nuremberg
Department of Database Systems
Martensstr. 3, 91058 Erlangen
Germany

schlesinger @informatik.uni-erlangen.de

Abstract

Almost over the last 20 years grid technology has
been developed to exploit unutilized computing
capacity around the world. The two major appli-
cation areas are solving computing intensive pro-
blems having less data (computational grid) or
operating on large volumes of data (data grid).
From a database perspective it is advisable to
replicate data sets at different nodes in the grid
before executing asingle query. The query proces-
sor assigns a query to those nodes, which do not
operate at full capacity and which have stored the
appropriate replica. As the replica may be outda-
ted usualy a synchronization mechanism is
necessary. Thismay be extremely expensiveif full
consistency between original data and replica is
required. To avoid synchronization we follow the
approach to store multiple versions of static
snapshots. New versions of local data setsare dis-
tributed to the different nodes in the grid and
added to the set of locally stored snapshots. Hol-
ding multiple versions of snapshots, the user has
the possibility to combine snapshots taken at dif-
ferent pointsin time to get a more globally consi-
stent, but possibly older view. The access to out-
dated snapshots is acceptable, if the user has
knowledge about the degree of staleness or the
degree of inconsistency if unsynchronized repli-
cas are combined for a global view. This paper
focuses on the quantification of the inconsistency
and the snapshot management at inidividual mem-
bers of aglobal datagrid.

Wolfgang L ehner

Dresden University of Technology
Database Technology Group
Duererstr. 26, 01069 Dresden
Germany
|ehner@inf.tu-dresden.de

1. Introduction

On the one hand statistics show that in the average only
5% of the CPU time of a desktop computer is used
([BersD2]). On the other hand many applications (e.g.
SETI@Home Project SETI: Search for Extraterrestical
Intelligence, http://setiathome.ssl.berkeley.edu/) need tre-
mendous computing time to solve their specific problems.
Theinternet consists of millions of computers and provides
an infrastructure for pure data exchange. Theideaof agrid
([FoKe99a]) as the new technology for the advanced Web
([Gent01]) is to build a network between computers with
unutilized machine time to solve computing (computa-
tional grid, [FoKe99b]) or data (data grid, [MBM+99])
intensive problems. The Global Grid Forum (http://
www.gridforum.org/) coordinates the standardization efforts
(e.g. Open Grid Service Architecture (OGSA, http://
www.globus.org/ogsa/)) and develops toolkits (e.g. The
Globus Toolkit ([FoKe99c], http://www.globus.org/toolkit/)
for an easier development of grid applications.

In the context of a data grid, applications operate on
huge quantities of data, which are located on several usu-
ally geographically distributed nodes ([FoKe99a]). To be
able to use unutilized computing power at run time, datais
replicated before executing a single query ([Bers02]). The
necessary infrastructural prerequisite isahigh datatransfer
rate (> 10GB/s, [FoKe99a]), which becomes available
nowadays (gigabit network over fibre). Data replication
reduces data access latency by avoiding data shipping at
run time and increases the performance and robustness.
However, two major problems arise: One problem is loca
ting and managing of replicated data sets. The other topic
concerns maintaining the consistency between updated
origina data and replicas.

Related Work

Related work in the area of replica management pro-
poses mostly high level concepts for distributing and loca-
ting replicas. For example [GLK+02] describes general
requirements for a replica management service in the grid.
[BCC+02] presents an overview of necessary functionsin
general and introduces a gridOpen()-command for locating
replicas in more detail. A framework for areplication ser-
vice and a prototypical implementation, named Giggle, is
presented in [FIR+02]. [GLK+02] introduces the idea of a
master copy in combination with a two-stage update pro-
cess implemented in the Reptor project. In this approach
the master copy is modified and the replicas remain in an
old state leading to an inconsistency between master copy
and replicas. In a second step the replicas are asynchro-
nously updated by using the changed master copy. Finally
Cameron ([Came02], the Optor project) locatesthereplicas
on those nodes where they are most probably used. Finding
areplicawith lowest transfer costs is based on an auction.
Common to all is an enhanced version of FTP (JABB+02])
as protocol for efficient data transport, e.g. GridFTP, as
well as replica catalogues (e.g. [StHa02]).

Contribution

In this paper we focus on the problem of avoiding the
extremely expensive synchronization process by extending
theideaof [GLK+02]. Themain ideaisto localy storethe
replica as snapshots, which are not synchronized with the
master copy. To establish global consistency from time to
time a snapshot of the master copy islocally stored oncein
a while, which avoids the complex process of asynchro-
nously updates. If the new snapshot is added to the set of
existing snapshotsinstead of replacing an old one, aversion
history of snapshotsis set up. This enablesthe user to build
an amost global, but possibly older consistent view by
selecting different snaphotsin time, if an accessto outdated
replicasis acceptable. To quantify and to compare different
possible selection methods of snapshots a specification of
the inconsistency is introduced in section 2. As the local
storage for the snapshots is limited a management mecha-
nism with regard to the inconsistency is introduced in
section 3. Section 4 closes with a short summary.

Atime

| |
3 3 s3
tnow rs1 T52 =L
451 4S5 JEA
hd Y ad
| | | data
oSi Sb Sk
T T T
I 1 T
D, D, D, data sources

(a) optimal case

I
Q

2. Specification of Data Set I nconsistency

To provide the service of distributed query execution
with lowest cost and to pick snapshots with different age
algorithms for a parameterized selection of snapshots and
operations between the selected snapshots are needed. At
each node the existing snaphots can be illustrated in an
object-time-diagram as shown in figure 1, where the time
represents the valid time of the snapshots.

valid time
I I I |
t
NOW——a)—S:ZL—__'g_.'___
|
. L i |
¢ 1 ' 2
+Sl 2 #Sn data
s3 | 1
by 1P
%
T
IIDl IIDZ IIDi . Dp data sources

Fig. 1: Example for an object-time-diagram at a single node

Historic Cut

In a classical database middleware approach the snap-
shots reflecting the current state are selected and joined
together. The selected snapshots are the closest snapshots
to the horizontal line tyoyy reflecting the current timein the
object-time-diagram. In our approach, where an arbitrary
number of snapshots of the same data source exists, a selec-
tion at any timet, (t. < tyow), called the historic cut, is pos-
sible. Inthe optimal case all snapshotsare valid at the same
time (figure 2a) while in our data grid scenario the snap-
shots may have different valid times. Therefore, the con-
necting line t; is no longer a straight line (figure 2b). The
curve reflects the inconsistency relating to the different
valid times. A metric to quantify the inconsistency is
defined in thefollowing. Algorithmsfor selecting the snap-
shots under consideration of the metric and the age of the
snapshots are discussed in [ScLe02].

Quantifying the Inconsistency

Basically the inconsistency metric considers the time
and the data change rate of a set of snapshots. Disregarding
the second aspect for a moment, the time inconsistency for
asingle data source is defined as the distance between the

Atime

| <3 | |
tnow 1 e
e ;
| TS |
PEE— |5, daa
st
1> ' | |Sl
o~n
I 1 T
D; Dy D, data sources

(b) real case

. 2: Selection of snapshots in the optimal case and in comparison to the real case

time A
6 5
15f
4L o 45
1 0o ra)
A\ A\ 4
12} @
u o o 35
10 3
9 o
8 o 25
o)) WaY
. N ¥ A 2
5 o 15
4 o
3 Bl 1
2 . 05
1 o o
° 1 2 3 » 0

data source

A inconsistency

10 11 12 1B 14 lSl
time

25 4 5 6 8§ 9

Fig. 3: Example for the selection of historic cuts and the resulting inconsistency curve

valid time of the snapshot and the time point of the historic
cut. For k selected snapshots the inconsistency | is defined
on the basis of the L ,-metric:

k) »
> (time(S))—t,)

i=1

The example of figure 3 shows snapshots of three data
sources in an object-time-diagram (figure 3 left) with
p = 1. According to the formula the inconsistency at point
13is1and O at point 7 (figure 3 right). This simple exam-
ple illustrates the conflict between age and inconsistency:
At point 7 theinconsistency islower than the inconsistency
at time point 13, but the age is much higher.

While the above inconsistency formula is based on the
distance in time, the formula may be extended to additio-
nally consider the data change rate. For each data source i
we introduce a data change rate Ad; reflecting the data
changes of the object. This signature considers existential
changes (insertions and del etions of objects) and has values
between 0 and 1 (0-100%). This data change rate is a
parameter of the reusage rate p at atime point t with tg as
the time point of the globally oldest snapshot:

0 <Ad, <05 :p(t) = =1 .

24d,
|t =(tnow=15) =1

(

o(t—(tyow—ts)) + 1) +1

or+ 1)

Ivow—1s

1 .(-]
= _ t —t
2 < 1 Myow—ls

(t+1)

0,5 <Ad; <1:p(t) =

At time point tyows p has a value of 100% indepen-
dendly of Ad; and at time point tg the valueis 0. The value
pattern between these pointsis determined by Ad; andillus-

trated in figure 4. The combination of the distance in time
and the reusage degree leads to an extended inconsistency
formula, where o denotes weights for each single data
sourceand S are the selected snapshots:

1(time(S];), - time(S'Zf)) =

= Z(ak.

k=1

(time(SJ,:“)—tC) o(l—pk(time(SJ;'f))))

The following two cases are very interesting:

e p=1,4t=0and p =0, 4t = 0 (for all snapshots)
Since the time of each snapshot is equal to the time of
the historic cut, the selected snapshots are always most
up-to-date and the inconsistency is equal to O inden-
pendendly of the reusage degree.

» p=1, At #0 (for all snapshots)
The snapshots are older than the historic cut. Since the
reusage degree is 100% (no data changes), an access to
old snaphshots corresponds to an access to snapshots,
which have the time of the historic cut. Therefore, the
inconsistency valueisO.

100%

reusage degree

40%

tnow increasing age of the data source ts

Fig. 4: Dependency of reusage degree and age

o

data source

3

4

3.

25
2

15

05

0

A inconsistency
5

5
4
5
3

1

10 11 12 13 14 15I

time

g 9

Mg

Fig. 5: Example of removing snapshots during the first step

3. Local Snapshot Management

Asthelocal buffer for the snapshotsislimited to amaxi-
mum size B,y a replacement strategy considering the
inconsistency is presented in this section. On the basis of
the inconsistency graph a probably user behaviour may be
recognized. Thisinfluences strongly the proposed strategy.
It removes snapshots in an iterative manner until the cur-
rently used buffer B, plus the size of the new snapshot
Bhay IS smaler or equal to B,y (buffer constraint:
Beur + Brew < Brmay)- After each step the buffer constraint is
checked and the algorithm stops if the condition holds.

In the first step the existence of alower bound for selec-
ting the historic cut is used because a user would never
select a historic cut being older than the lower bound. This
bound is determined by the global minimum of the
inconsistency graph. If more than asingle time point exists
with the same inconsistency value, then the point with the
higher timestamp is selected. The reason for as the
lower bound is caused in the fact that a user would never
choose a historic cut which is older and more inconsistent
than a more up-to-date and more consistent point mg.
Therefore, all snapshots being older than my and not con-
tributing to my may be freely removed. Continuing the
example of figure 3in figure 5 right, the time point 7 isthe

time
154

ER

data source

global minimum and all snapshot in the shaded area of
figure 5 left are eliminated except of the snaphots marked
by acircle.

The second step starts with finding the local minimum
m, most current. Theinconsistency is denoted with 1(my) at
my. All snapshotswith the following property are no longer
of any interest for the user: Either the snapshots are older
than m, or they contribute to an inconsistency value higher
than I(my). Thisis caused by the assumed user behaviour in
two directions: A user selects a newer historic cut than m,
and accepts a higher inconsistency value. Alternatively a
much older historic cut isonly selected if the inconsistency
value is smaller than I1(my). The area involved being of no
interest for the user is determined by the points my and by.
Thepoint b, isolder than my, but closest to my and theincon-
sistency I(by) isequal to I(my). Thispoint can be determined
only agorithmically, because the function for computing
theinconsistency isnot reversible. In figure 6 right the grey
shaded area marks the range of the inconsistency curve
between by and my. The snapshotsin the grey shaded area of
figure 6 left are the corresponding candidates. From this set
those snaphots are eliminated which are selected snapshots
at historic cuts my and by. These snapshots are marked by a
circle. The remaining snapshots can be removed.

A inconsistency

5
45
4
35
3
25
2
15
1
0.5
0

15I

time

8 9 10 11 12

i3 i

m

Fig. 6: Example of removing snapshots during the second step

If By is still too small to store the new snapshot, snap-
shots are stepwise eliminated in the following manner: As
for each data source at least the newest snapshot should be
kept, the remaining snapshots are removed in ascending
order of their benefit, which is the quotient of age and size
of the snapshot. The fina step depends on the data source
of the new snapshot: If the new snapshot is from a data
source where no old snapshot is avail able then the snapshot
is stored. Otherwise an existing snapshot of the same data
source is replaced by the new snapshot. In both cases, the
buffer must have a capacity to store this snapshot, other-
wise the buffer istoo small and the storage size is automat-
icaly extended or the system administrator isinformed.

In comparison to traditional buffer replacement algo-
rithms ([GrRe93], [RaGe02]) this incremental algorithm
removes possibly more than one snapshot in the first and
second step and extends automatically the buffer in the
third step. The selection of snapshotsis similiar to the pro-
blem of generating the optimal combination of aggregates
resulting in lowest costsin the context of materialized view
selection ([HaRu96], [BaPT97]).

4. Summary and Future Work

In data grids, data sets are replicated and stored at diffe-
rent nodes to use unutilized computing power during query
processing. Asthe datafrom different data sources are dis-
tributed before query processing it might be possible that
they reflect different points in time. If old replicas are
replaced by new replicas and stored as snapshots the user
can select different snapshots at the same node. The quan-
tifying of the appearing inconsistency by selecting older
snapshots and the buffer management of the snapshots is
discussed in this paper. The proposed concept and algo-
rithm are currently under implementation within the SCIN-
TRA (semi-consistent integrated time replicated approach)
project. Future work in the area of snapshot management
deals with the extension of the replacement algorithm by
considering semantic connections as well as referential
integrities between the snapshots of different data sources
and the availability of data sources as well as the restoring
of old snapshots.

References

ABB+02 Allcock, B.; Bester, J.; Bresnahan, J.; Chervenak, A.
L.; Foster, |.; Kesselman, C.; Meder, S.; Nefedova,
V.; Quesnel, D.; Tuecke, S.: Data Management and
Transfer in High-Performance Computational Grid
Environments. In: Parallel Computing 28(5)2002,
pp.749-771

Baralis, E.; Paraboschi, S.; Teniente, E.:
Materialized Views Selection in a Multidimensional
Database. In: 23rd International Conference on Very
Large Data Bases (VLDB'97, Athen, Greece,
Aug. 25.-29.), 1997, pp. 156-165

BaPT97

BCC+02 Bell, W. H. ; Cameron, D. G. ; Capozza, L.; Millar,
P; Stockinger, K; Zini, F.: Design of a Replica
Optimisation Framework. Technical report,
DataGrid-02-TED-021215, Geneva, Switzerland,
December 2002

Berstis, V.: Fundamentals of Grid computing. |BM
Redbooks Paper, IBM, 2002

(electronic version: http://www.redbooks.ibm.com/
redpapers/pdfs/redp3613.pdf)

Cameron, D.: Replica Management and
Optimisation for Data Grids. Graduate Report,
University of Glasgow, UK, September 2002

Foster, 1.; lamnitchi, A.; Ripeanu, M.; Chevernack,
A.; Deeddman, E.; Kesselman, C.; Hoschek, W.;
Stockinger, H.; Stockinger, K.; Tierney, B.: Giggle:
A Framework for Constructing Scalable Replica
Location Services. Case Sudy, University of
Manitoba, Winnipeg, Canada, 2002

Foster, |.; Kesselman, C. (eds): The Grid:
Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, 1999

Foster, |.; Kesselman, C.: Computational Grids. In:
Foster, |.; Kesselman, C. (eds): The Grid:
Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, 1999, pp. 15-51

Foster, |.; Kesselman, C.: The Globus Toolkit. In:
Foster, |.; Kesselman, C. (eds): The Grid:
Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, 1999, pp. 259-278

Gentzsch, W.: Grid Computing: A New Technology
for the Advanced Web. In: Advanced Environments,
Tools, and Applications for Cluster Computing,
NATO Advanced Research Wbrkshop (IWCCO1,
Mangalia, Romania, September 1-6), 2001, pp. 1-
15

Guy, L.; Laure, E.; Kunszt, P; Stockinger, H.;
Stockinger, K.: Replica management in data grids.
Technical report, Global Grid Forum Informational
Document, GGF5, Edinburgh, Scotland, July 2002

Gray, J; Reuter, A.. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993

Harinarayan, V.; Rajaraman, A.; Ullman, JD.:
Implementing Data Cubes Efficiently. In:
Proceedings of the 25th International Conference
on Management of Data (SGMOD’ 96, Montreal,
Quebec, Canada, June 4.-6.), 1996, pp. 205-216

MBM+99 Moore, R.W.; Baru, Ch.; Marciano, R.; Rajasekar,
A.; Wan, M.: Data-Intensive-Computing. In: Foster,
T.; Kesselman, C. (eds.): The Grid: Blueprint for
a New Computing Infrastructure. Morgan-
Kaufmann, 1999, pp. 105-129

Open Grid Service Architecture web page, http://
www.globus.org/ogsa/

Ramakrishnan, R.; Gehrke, J.: Database
Management Systems. McGraw-Hill, 2002

Schlesinger, L.; Lehner, W.: Extending Data
Warehouses by Semi-Consistent Database Views.
In: Proceedings of the 4th International Workshop
on Design and Management of Data Warehouses
(DMDWO02, Toronto, Canada, May 27), 2002, pp.
43-51

Stockinger, H.; Hanushevsky, A.. HTTP
Redirection for Replica Catalogue Lookups in Data

Grids. In: ACM Symposium on Applied Computing
(SAC2002, Madrid, Spain, March 10-14), 2002

Bers02

Came02

FIR+02

FoKe99%a

FoKe99%b

FoKe99c

Gent01

GLK+02

GrRe93

HaRu96

OGSA

RaGe02

SclL.e02

StHa02

