
Modeling and managing ETL processes

Alkis Simitsis

National Technical University of Athens,
Dept. of Electrical and Computer Eng., Computer Science Division,

Iroon Polytechniou 9, Zografou 15773,
Athens, Greece

asimi@dbnet.ece.ntua.gr

Abstract
Extraction-Transformation-Loading (ETL) tools
are pieces of software responsible for the
extraction of data from several sources, their
cleansing, customization and insertion into a data
warehouse. The design, development and
deployment of ETL processes, which is
currently, performed in an ad-hoc, in house
fashion, needs modeling, design and
methodological foundations. Unfortunately, the
research community has a lot of work to do to
confront this shortcoming. Our research explores
a coherent framework for the conceptual, the
logical, and the physical design of ETL
processes. We delve into the modeling of ETL
activities and provide a conceptual and a logical
abstraction for the representation of these
processes. Moreover, we focus on the
optimization of the ETL processes, in order to
minimize the execution time of an ETL process.

1. Introduction
In order to facilitate and manage the data warehouse
operational processes, specialized tools are already
available in the market, under the general title Extraction-
Transformation-Loading (ETL) tools. To give a general
idea of the functionality of these tools we mention their
most prominent tasks, which include: (a) the identification
of relevant information at the source side; (b) the
extraction of this information; (c) the customization and
integration of the information coming from multiple
sources into a common format; (d) the cleaning of the
resulting data set, on the basis of database and business
rules, and (e) the propagation of the data to the data
warehouse and/or data marts.

To probe into the aforementioned issues, we have to
clarify how the ETL processes fit in the data warehouse
lifecycle. The lifecycle of a data warehouse begins with
an initial Reverse Engineering and Requirements
Collection phase where the data sources are analyzed in

order to comprehend their structure and contents. At the
same time, any requirements from the part of the users
(normally a few power users) are also collected. The
deliverable of this stage is a conceptual model for the data
stores and the activities. In a second stage, namely the
Logical Design of the warehouse, the logical schema for
the warehouse and the activities is constructed. Third, the
logical design of the schema and processes is refined to
the choice of specific physical structures in the warehouse
(e.g., indexes) and environment-specific execution
parameters for the operational processes. This stage is
called Tuning and its deliverable, the physical model of
the environment. In a fourth stage, Software Construction,
the software is constructed, tested, evaluated and a first
version of the warehouse is deployed. This process is
guided through specific software metrics. Then, the cycle
starts again, since data sources, user requirements and the
data warehouse state are under continuous evolution. An
extra feature that comes into the scene after the
deployment of the warehouse is the Administration task,
which also needs specific metrics for the maintenance and
monitoring of the data warehouse.

In our research, we provide a complete framework for
the modeling of ETL process and we focus on the
modeling and the optimization of ETL scenarios. The
uttermost goal of our research is to facilitate, manage and
optimize the design and implementation of the ETL
processes both during the initial design and deployment
stage and during the continuous evolution of the data
warehouse. Briefly, our main contributions are:

- The provision of a novel conceptual and a novel

logical model for the representation of ETL processes
with two characteristics: genericity and customization.

- The presentation of a palette of several templates,
representing frequently used ETL activities along with
their semantics and their interconnection. In this way,
construction of ETL scenarios, as a flow of these
activities, is facilitated.

- The introduction of a set of algorithms to find the
optimal ETL scenario according to a cost model.

- To complement the aforementioned issues, we have
prototypically implemented a graphical tool, named
ARKTOS II, with the goal of facilitating the design and
the (re-)use of ETL scenarios, based on our model.

This paper is organized as follows. In section 2, we

present related work. In section 3, we describe the
conceptual model for ETL processes. In section 4, we
focus on the logical design of ETL processes. In section 5,
we delve into the optimization of ETL processes. Finally,
in section 6, we conclude our results with a prospect to
the future.

2. Related Work
In this section we discuss the state of art and practice for
research efforts, commercial tools and standards in the
field of ETL tools, along with any related technologies.
For lack of space, we refer the interested reader to
[VaSS02, VaSS02a] for an extended discussion of the
issues that we briefly present in this section.

Conceptual models for data warehouses. The front
end of the data warehouse has monopolized the research
on the conceptual part of data warehouse modeling.
Research efforts can be grouped in the following trends:
(a) dimensional modeling [KKRT98]; (b) (extensions of)
standard E/R modeling [SBHD98, CDL+99, HuLV00,
TrBC99] (c) UML modeling [TrPG00] and (d) sui-generis
models [GoMR98] without a clear winner. We must stress
that our model is orthogonal to these efforts.

Conceptual models for ETL. There are few attempts
around the specific problem of this work, although we are
not aware of any other approach that concretely deals with
the specifics of ETL activities in a conceptual setting
[BoFM99, CDL+99]. In terms of industrial approaches,
the model that stems from [KRRT98] would be an
informal documentation of the overall ETL process.

Related work on ETL logical and physical aspects.
There is a variety of ETL tools in the market; we mention
a recent review [Gart03] and several commercial tools
[Arde02, Data02, ETI02, IBM02, Info03, Micr02,
Orac02]. There also exist research efforts including
[Sara00, VVS+01, LWGG00]. Research prototypes
include the AJAX data cleaning tool [GFSS00] and the
Potter’s Wheel system [RaHe00]. These two prototypes
are based on algebras, which we find specifically tailored
for the case of homogenizing web data.

In the context of this research, we develop the design
tool ARKTOS II. Compared to the design capabilities of
the aforementioned approaches, our technique contributes
(a) by offering an extensible framework through a
uniform extensibility mechanism, and (b) by providing
formal foundations to allow the reasoning over the
constructed ETL scenarios. It is also interesting to note
that results in the field of data cleaning [Sara00] could be
treated as special-purpose templates of ARKTOS II. In

general, techniques provided by research in the field can
be plugged-in orthogonally to our template library.

3. Conceptual Model
In this section, we focus on the conceptual part of the
definition of the ETL process. For a detailed presentation
of our conceptual model and formal foundations for the
representation of ETL processes, we refer the interested
reader to [VaSS02a, SiVa03].

More specifically, we are dealing with the earliest
stages of the data warehouse design. During this period,
the data warehouse designer is concerned with two tasks
which are practically executed in parallel: (a) the
collection of requirements from the part of the users; (b)
the analysis of the structure and content of the existing
data sources and their intentional mapping to the common
data warehouse model. Related literature [KRRT98,
Vass00] and personal experience suggest that the design
of an ETL process aims towards the production of a
crucial deliverable: the mapping of the attributes of the
data sources to the attributes of the data warehouse
tables. The production of this deliverable involves several
interviews that result in the revision and redefinition of
original assumptions and mappings; thus it is imperative
that a simple conceptual model is employed in order to
facilitate the smooth redefinition and revision efforts and
to serve as the means of communication with the rest of
the involved parties.

Figure 1: Conceptual design of our example

To motivate the discussion we introduce an example
involving two source databases S1 and S2 as well as a
central data warehouse DW. The scenario involves the
propagation of data from the concept PARTSUPP(PKEY,
SUPPKEY,QTY,COST) of source S1 as well as from the
concept PARTSUPP(PKEY,DEPARTMENT,SUPPKEY,QTY,
DATE,COST) of source S2 to the data warehouse. In the
data warehouse, DW.PARTSUPP(PKEY,SUPPKEY,DATE,
QTY,COST) stores daily (DATE) information for the
available quantity (QTY) and cost (COST) of parts (PKEY)
per supplier (SUPPKEY). We assume that the first supplier
is European and the second is American, thus the data
coming from the second source need to be converted to

European values and formats. Throughout all the paper,
we will clarify the introduced concepts through their
application to this example.

In Figure 1, we depict the full fledged diagram of the
example, in terms of our conceptual model.

Figure 2: Notation for the conceptual model

In Figure 2, we graphically depict the different entities
of the proposed model. We do not employ standard UML
notation for concepts and attributes, for the simple reason
that we need to treat attributes as first class citizens of our
model. The main entities of our model are the following.

Attributes. A granular module of information. The role
of attributes is the same as in the standard ER/dimensional
models (e.g., PKEY, DATE, SUPPKEY, etc.).

Concepts. A concept represents an entity in the source
databases or in the data warehouse (e.g., S1.PARTSUPP,
S2.PARTSUPP, DW.PARTSUPP).

Transformations. Transformations are abstractions
that represent parts, or full modules of code, executing a
single task and include two large categories: (a) filtering
or data cleaning operations; and (b) transformation
operations, during which the schema of the incoming data
is transformed (surrogate key assignment transformation
(SK), function application (f), not null (NN) check, etc.).

ETL Constraints. They are used in several occasions
when the designer wants to express the fact that the data
of a certain concept fulfill several requirements (e.g., to
impose a PK constraint to DW.PARTSUPP for the attributes
PKEY, SUPPKEY, DATE)

Notes. Exactly as in UML modeling, notes are
informal tags to capture extra comments that the designer
wishes to make during the design phase or render UML
constraints attached to an element or set of elements
[BoJR98] (e.g., a runtime constraint specifying that the
overall execution time for the loading of DW.PARTSUPP
cannot take longer than 4 hours).

Part-of Relationships. We bring up part-of
relationships, not to redefine UML part-of relationships,
but rather to emphasize the fact that a concept is
composed of a set of attributes, since we need attributes as
first class citizens in the inter-attribute mappings.

Candidate relationships. A set of candidate
relationships captures the fact that a certain data
warehouse concept (S1) can be populated by more than
one candidate source concepts (AnnualPartSupp,
RecentPartSupp).

Active candidate relationships. An active candidate
relationship denotes the fact that out of a set of

candidates, a certain one (RecentPartSupp) has been
selected for the population of the target concept.

Provider relationships. A 1:1 (N:M) provider
relationship maps a (set of) input attribute(s) to a (set of)
output attribute(s) through a relevant transformation.

Transformation Serial Composition. It is used when
we need to combine several transformations in a single
provider relationship (e.g., the combination of SK and γ).

The proposed model is constructed in a customizable
and extensible manner, so that the designer can enrich it
with his own re-occurring patterns for ETL activities,
while, at the same time, we also offer a 'palette' of a set of
frequently used ETL activities, like the assignment of
surrogate keys, the check for null values, etc..

4. Logical Model
The ETL conceptual model is constructed in the early
stages of the data warehouse project during which, the
time constraints of the project require a quick
documentation of the involved data stores and their
relationships, rather than an in-depth description of a
composite workflow. In this section we present a logical
model for the activities of an ETL environment that
concentrates on the flow of data from the sources towards
the data warehouse through the composition of activities
and data stores. Moreover, we provide a technical solution
for the implementation of the overall process. For lack of
space we present a condensed version of the model; the
full-blown version and the formal representation of the
model can be found in [VSGT03, VaSS02].

The full layout of an ETL scenario, involving
activities, recordsets and functions can be deployed along
a graph in an execution sequence that can be linearly
serialized. We call this graph, the Architecture Graph.
The design of this graph can be performed by the
graphical tool ARKTOS II, provided that some construction
rules are obeyed. The basic entities of our model are the
following.

Attributes and part-of relationships. The first thing to
incorporate in the architecture graph are the structured
entities (activities and recordsets) along with all the
attributes of their schemata. Then, we incorporate the
functions along with their respective parameters and the
part-of relationships among the former and the latter.

Data types and instance-of relationships. Next, we
incorporate data and function types.

Parameters and regulator relationships. Afterwards, it
is time to establish the regulator relationships of the
scenario. In this case, we link the parameters of the
activities to the terms (attributes or constants) that
populate them.

Provider relationships. The last thing to add in the
architecture graph is the provider relationships that
capture the data flow from the sources towards the target
recordsets in the data warehouse.

Derived provider relationships. There are certain
output attributes that are computed through the
composition of input attributes and parameters. A derived
provider relationship is another form of provider
relationship that models the situation where the activity
computes a new attribute in its output. In this case, the
produced output depends on all the attributes that
populate the parameters of the activity, resulting in the
definition of the corresponding derived relationship.

The graphical notation for the Architecture Graph is
depicted in Figure 3.

Figure 3: Notation for the Architecture Graph

One of the major contributions that our graph-
modeling approach offers is the ability to treat the
scenario as the skeleton of the overall environment. If we
treat the problem from its software engineering
perspective, the interesting problem is how to design the
scenario in order to achieve effectiveness, efficiency and
tolerance of the impacts of evolution. Therefore, we
assign simple importance metrics to the nodes of the
graph, in order to measure how crucial their existence is
for the successful execution of the scenario. We measure
the importance and vulnerability of the nodes of the graph
through specific importance metrics, namely dependence
and responsibility. Dependence stands for the degree to
which an entity is bound to other entities that provide it
with data and responsibility measures the degree up to
which other nodes of the graph depend on the node under
consideration. Other interesting usages of the
aforementioned measures include: (a) detection of
inconsistencies for attribute population; (b) detection of
important data stores; (c) detection of useless (source)
attributes; and (d) observations after zooming out the
whole scenario. Moreover, we provide several simple
algorithms (e.g., Zoom-In, Zoom-Out, Major-Flow, etc.)
that reduce the complexity of the graph.

Figure 4: Logical design of our example

Figure 5: Optimal design of our example

In Figure 4, we depict a simplified (on account of the
limited space) diagram of our motivating example, in
terms of our logical model.

Similarly to the templates of the conceptual model, we
offer a palette of templates to the logical model too
[VSGT03].

5. Optimizing ETL scenarios
In this section, we focus on the optimization of ETL
scenarios. We consider each ETL scenario as a state and
we fabricate the state space. Thus, we model the ETL
processes optimization problem as a state search problem.
We are working on algorithms to find the optimal
scenario according to a cost model. Moreover, we present
our experimental results in order to validate our methods.

Intuitively, a state is a set of activities, deployed along
a graph in an execution sequence that can be linearly
serialized. Formally, a state consists of: Id, a unique
identifier for the state; Activities, a finite list of activities
(note that by employing a list instead of e.g., a set of
activities, we impose a total ordering on the state);
Attributes, a finite set of attributes; Recordsets, a finite set
of recordsets; Provider relationships, a finite list of
provider relationships among attributes of activities and
recordsets of the state; Part-Of relationships, these
relationships involve attributes and relate them to the
respective activity or recordset to which they belong.

Being a graph, a state comprises nodes and edges. The
involved recordsets and activities of an ETL process
along with their respective attributes constitute the nodes
of the graph. We model the provider and the part-of
relationships as the edges of the graph.

We introduce a finite set of transitions that we can
employ on a state. The application of a transition to a state
results in another state. In the following table, we list this
set of transitions, with their notation and meaning. We
produce the state space as follows. Starting from the first
state (i.e., user’s scenario), we apply a greedy algorithm to
produce a new graph: the state space. This algorithm
implements a sequence of steps to handle the afore-
mentioned transitions in an efficient manner. The optimal
state is chosen according to our cost model’s criteria, in
order to minimize the execution time of an ETL scenario.

Name Notation Meaning
Swap SWA(ai,aj)

ai,aj : unary
Swap activities ai,aj
special case: SWA(ai,ai+1)

Merge MER(ai;j,ai,aj) Merge ai,aj and create ai;j
Split SPL(ai;j,ai,aj) Split ai;j to two new ai,aj
Order ORD(ai) Sort a set of tuples
Replace REP(ai,ai’) Replace activity ai with ai’
Factorize FAC(ai,aj)

ai,aj : binary/unary
Factorization of unary aj
from binary ai

Distribute DIS(aj,ai)
ai,aj : binary/unary

Distributivity of unary aj
with respect to binary ai

In Figure 5, we present a simplified view of CSS’s
results, considering the case of our motivating example
and taking for first state the scenario of Figure 4.

6. Conclusions and Future Work
In our research, we have proposed a novel conceptual and
a novel logical model for the representation of ETL
processes with two main characteristics: genericity and
customization. Also, we have presented an extensible
palette of several templates, representing frequently used
ETL activities along with their semantics and their
interconnection. Thus, we can use these activities to
design and implement ETL scenarios. Moreover, we are
working on a method to optimize the execution plan of an
ETL scenario. To complement the aforementioned issues,
we have prototypically implemented a graphical tool,
named ARKTOS II, with the goal of facilitating the design
and the (re-)use of ETL scenarios, based on our model.

Clearly, a lot of work remains to be done for the
completion of our research approach. The main challenge
is the practical application of this disciplined approach in
real world cases and its further tuning to accommodate
extra practical problems.

7. Acknowledgements
I would like to thank Panos Vassiliadis and Timos Sellis.
Their helpful comments and suggestions improved not
only the presentation of this paper, but allowed me to
clarify the idea of my PhD thesis.

8. Bibliography
[Arde02] Ardent Software. DataStage Suite. Available at

http://www.ardentsoftware.com/
[BoFM99] M. Bouzeghoub, F. Fabret, M. Matulovic.

Modeling Data Warehouse Refreshment Process as
a Workflow Application. In Proc. Intl. Workshop
DMDW’99, Heidelberg, Germany, (1999).

[BoJR98] G. Booch, I. Jacobson, J. Rumbaugh. The Unified
Modeling Language User Guide. Addison-Wesley
Pub Co. (1998)

[CDL+99] D. Calvanese et al. A principled approach to data
integration and reconciliation in data warehousing.
Proc. of DMDW’99, Heidelberg, Germany, (1999).

[Data02] DataMirror Corporation. Transformation Server.
Available at http://www.datamirror.com

[ETI02] Evolutionary Technologies Intl. ETI EXTRACT.
Available at http://www.eti.com/

[Gart03] Gartner. ETL Magic Quadrant Update: Market
Pressure Increases. Available at http://www.gart
ner.com/reprints/informatica/112769.html

[GFSS00] H. Galhardas, D. Florescu, D. Shasha and E.
Simon. Ajax: An Extensible Data Cleaning Tool.
In Proc. ACM SIGMOD, pp. 590, Texas, 2000.

[GoMR98] M. Golfarelli, D. Maio, S. Rizzi. The Dimensional
Fact Model: a Conceptual Model for Data
Warehouses. Invited Paper, International Journal of
Cooperative Information Systems, vol.7(2&3)1998

[HuLV00] B. Husemann, J. Lechtenborger, G. Vossen.
Conceptual data warehouse modeling. In Proc. of
2nd DMDW, pp. 6.1 –6.11, Sweden (2000).

[IBM02] IBM. IBM Data Warehouse Manager. Available at
http://www-3.ibm.com/software/data/db2/dataware
house

[Info03] Incormatica. PowerCenter 6. Available at: http://
www.informatica.com/products/data+integration/
powercenter/default.htm

[KRRT98] R. Kimbal, L. Reeves, M. Ross, W. Thornthwaite.
The Data Warehouse Lifecycle Toolkit. John
Wiley & Sons, February 1998.

[LWGG00] W. Labio et al. Efficient Resumption of Interrupted
Warehouse Loads. In Proceedings of the 2000
ACM SIGMOD, pp. 46-57, Texas, 2000.

[Micr02] Microsoft Corp. MS Data Transformation Services.
Available at www.microsoft.com/sq

[Orac02] Oracle Corp. Oracle9i™ Warehouse Builder
User’s Guide, Release 9.0.2. November 2001.

[RaHe00] V. Raman, J. Hellerstein. Potters Wheel: An
Interactive Framework for Data Cleaning and
Transformation. TR University of California at
Berkeley, 2000. Available at http://www.cs.
berkeley.edu/~rshankar/papers/pwheel.pdf

[Sara00] Sunita Sarawagi (editor). Special Issue on Data
Cleaning. IEEE Data Engineering Bulletin, Vol.
23, No. 4, December 2000.

[SiVa03] A. Simitsis, P. Vassiliadis. A Methodology for the
Conceptual Modeling of ETL Processes. In Proc.
of DSE’03, Velden, Austria, June 17, 2003.

[SBHD98] C. Sapia, M. Blaschka, G. Höfling, B. Dinter:
Extending the E/R Model for the Multidimensional
Paradigm. In ER Workshops 1998, pp. 105-116.
Lect. Notes in Comp. Science 1552 Springer 1999

[TrBC99] N. Tryfona, F. Busborg, J.G.B. Christiansen.
starER: A Conceptual Model for Data Warehouse
Design. In DOLAP, pp. 3-8, Missouri, USA, 1999.

[TrPG00] J.C. Trujillo, M. Palomar, J. Gómez: Applying
Object-Oriented Conceptual Modeling Techniques
to the Design of Multidimensional Databases and
OLAP Applications. Proc. of WAIM-00, pp. 83-
94, Shanghai, China, June 2000.

[Vass00] P. Vassiliadis. Gulliver in the land of data
warehousing: practical experiences and
observations of a researcher. In Proc. of DMDW,
pp. 12.1 –12.16, Stockholm, Sweden, 2000.

[VaSS02] P. Vassiliadis, A. Simitsis, S. Skiadopoulos.
Modeling ETL activities as graphs. In Proc. of
DMDW'2002, pp. 52-61, Toronto, Canada, 2002.
[Long Vers.: http://www.dbnet.ece.ntua.gr/~asimi]

[VaSS02a] P. Vassiliadis, A. Simitsis, S. Skiadopoulos.
Conceptual Modeling for ETL processes. In Proc.
of DOLAP, McLean, USA, November 8, 2002.
[Long Vers.: http://www.dbnet.ece.ntua.gr/~asimi]

[VSGT03] Vassiliadis, P., Simitsis, A., Georgantas, P., and
Terrovitis, M., A Framework for the Design of
ETL Scenarios. In the Proceedings of the 15th
CAiSE, Velden, Austria, June 16, 2003.

[VVS+01] P. Vassiliadis et al. Arktos: Towards the modeling,
design, control and execution of ETL processes.
Information Systems, 26(8), pp. 537-561,
December 2001, Elsevier Science Ltd.

