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Abstract

This is an attempt at a brief initial overview of the state of the art in the young field of
first-order automated reasoning in large theories (ARLT). It is necessarily biased by the au-
thor’s imperfect knowledge, and hopefully will serve as material provoking further corrections
and completions.

1 Why Large Theories?

Why should we want to (automatically) reason in large theories and develop them instead of
small theories? Here are several answers:

• Mathematicians work in large theories. They know a lot of concepts, facts, examples and
counter-examples, proofs, heuristics, and theory-development methods.

• Other scientists (and humans in general) work with large theories. Consider physics,
chemistry, biology, law, politics, large software libraries, Wikipedia, etc. Our current
knowledge about the world is large.

• In the last years, more and more knowledge is becoming available formally by all kinds of
human efforts (interactive theorem proving, common-sense reasoning, knowledge bases for
various sciences, Semantic Web, etc.). This is an opportunity for automated reasoning to
help with the sciences and tasks mentioned above.

• Existing resolution/superposition automated reasoning systems often derive large numbers
of facts, even from small initial number of premises. Managing such large numbers can
profit from specialized large-theory techniques.

Automated reasoning in large theories is today often about increasing the comfort of users
of automated reasoning methods: It is typically possible to manually select premises from which
some conjecture should follow. Often this is even a significant part of one’s formal reasoning
wisdom. But ultimately, manual is the opposite of automated.

1.1 Large Formal Theories Are Not Our Enemy

However, automated selection of relevant facts is only the very first step that recently made
existing ATP methods usable and useful in large theories. This premise-selection view treats
large theories to a large extent only as an ATP person’s enemy: We need to select the few right
facts from the large pile of less relevant facts before we get down to the “real science” of “doing
ATP”.

This is in the author’s opinion a very limited view of the large-theory field. The bigger reason
for making large complex theories and knowledge bases available to the automated reasoning
world is that they can contain a large amount of domain-specific problem-solving knowledge,
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and likely (in less explicit form), also a large amount of general problem-solving knowledge that
the automated reasoning field should reveal and integrate into its pool of methods.

For this, however, another limited view needs to be overcome: Large theories (and theories
in general) are not just random collections of usable facts. Mathematical theories in particular
have been developed by smart people over centuries, and quite likely such theories are the best,
deeply computer-understandable corpus of abstract human thinking that we currently have. It
seems negligent to ignore the internal theory structure, and the problem-solving and theory-
engineering knowledge developed by mathematicians so far. Especially when we know that
first-order ATP is an undecidable problem, and that the current ATP methods are on average
far behind what trained mathematicians can do.

Thus, large complex formal theories and knowledge bases are not an enemy, but an opportu-
nity. Not just an opportunity to reason with the knowledge of many already established facts,
but also an opportunity to analyze and learn how smart people reason and prove difficult theo-
rems, develop their conceptual space, and how they find surprising connections and solutions. In
short, large formal theories are a great new playground for developing general AI. But because
general AI (and theorem-proving oriented AI in particular) has been in the second half of the
20th century labeled as unproductive, general AI research in this field should go hand-in-hand
with practical applications and usability testing. So far, this has fortunately often been the case
in this young field.

2 Corpora

Several large formal knowledge bases have become recently available to experiments with first-
order automated reasoning tools. To name the major ones (in alphabetic order):

• The CYC (OpenCyc, ResearchCyc) common-sense knowledge base [16]

• The Isabelle/HOL mathematical library [10]

• The Mizar/MML mathematical library [25]

• The SUMO (and related ontologies) common-sense knowledge base [13]

It is likely that more will follow (or already are available). For example, the HOL Light/Fly-
speck [4, 5] large mathematical library should benefit from similar first-order translation tech-
niques as the Isabelle/HOL library. More common-sense knowledge bases like YAGO [21]
might be produced by semi-automated methods, and bridges to all kinds of specialized sci-
entific databases are being build, spearheaded by systems like Biodeducta [19]. The LogAnswer
project [3] has already started to reason over the first-order export of the full texts of German
Wikipedia.

The corpora differ in their purpose/origin, size, complexity, consistency, completeness, and
the extent to which they cover various large-theory aspects. The common-sense ontologies
contain a lot of classification/hierarchical knowledge, resulting typically in simple Horn clauses,
and also a lot of concept definitions with relatively few facts proved about them. Storing and
maintaining proofs has so far been a secondary aspect. Their primary emphasis was not (so
far) on building up libraries of more and more advanced proved theorems about the world, but
rather on covering as many concepts as possible by suitable definitions.

On the other hand, the mathematical theories have a much larger number of nontrivial
mathematical theorems in them, and their formal content typically follows some established
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informal theory developments based on well-known and fixed mathematical foundations. There
is more concept/fact re-use in mathematics, and nontrivial proofs of many facts exist and (at
least in theory) can be made available in common formats and for large-theory techniques based
on inspection of previous proofs and theory developments.

3 Automated Methods for Reasoning in Large Theories

The existing large-theory reasoning methods can be divided into several groups, using various
criteria. One criterion is the method used for knowledge selection. The methods developed
so far include syntactic heuristics, heuristics using semantic information, methods that look at
previous solutions, and combinations thereof. Systems and methods that make use mainly of
syntactic criteria for premise selection include:

• The SInE (SUMO Inference Engine) algorithm by Kryštof Hoder [6], and its E implemen-
tation by Stephan Schulz.1 The basic idea is to use global frequencies of symbols to define
their global generality, and build a relation linking each symbol S with all formulas F in
which S is has the lowest global generality among the symbols of F . In common-sense
ontologies, such formulas typically define the symbols linked to them, which is the reason
for calling this relation a D-relation. Premise selection for a conjecture is then done by
recursively following the D-relation, starting with the conjecture’s symbols. Various pa-
rameters can be used, e.g., limiting the recursion depth significantly helps for the Mizar
library [26], and preliminary experiments show that also for the Isabelle/HOL library.

• The default premise selection heuristic used by the Isabelle/Sledgehammer export [11]
seems to be quite similar to SInE, however it works internally in Isabelle, and uses addi-
tional mechanisms like blacklisting. D-relation is not used there, the formulas are linked
to all symbols they contain.

• The Conjecture Symbol Weight clause selection heuristics in E prover [18] give lower weights
to symbols contained in the conjecture, thus preferring during the inference steps the
clauses that have common symbols with the conjecture. This is remotely similar to gen-
eral goal-oriented ATP techniques, as for example the Set of Support (SoS) strategy in
resolution/superposition provers,2. Note that also the majority of tableau calculi are in
practice goal-oriented, and the leanCoP [12] prover in particular performs surprisingly well
on the MPTP Challenge large-theory benchmark.

A method which is purely signature-based, however the word semantics appears in it, is latent
semantics. Latent semantics is a machine learning method that has been successfully used for
example in the Netflix Challenge, and in web search. Its principle is to automatically derive
“semantic” equivalence classes of words (like car, vehicle, automobile ) from their co-occurrences
in documents, and to use such equivalence classes (also called synsets in the WordNet ontology)
instead of the original words for searching and related tasks. This technique has been so far
used in:

• Paul Cairns’ Alcor system [1] for searching and advice over the Mizar library.

• Yuri Puzis’ initial relevance ordering of premises used in the SRASS ATP metasystem [22].

1http://www.mpi-inf.mpg.de/departments/rg1/conferences/deduction10/slides/stephan-schulz.pdf
2In particular, SPASS [30] has been used successfully on the Isabelle data.
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Semantics (in the original logical sense) has been used for a relatively long time in various ways
for guiding the ATP inference processes. An older system that is worth mentioning with respect
to the current efforts is John Slaney’s SCOTT system [20] constraining Otter inferences by
validity in models. A similar idea has been recently revived by Jǐŕı Vyskočil at the Prague ATP
seminar: His observation was that mathematicians have very fast conjecture-rejection methods
based on a (relatively small) pool of (often imprecise) models in their heads, similar to some
fast heuristic software testing methods. This motivated Petr Pudlák’s semantic axiom selection
system for large theories [15], implemented later also by Geoff Sutcliffe in SRASS. The basic
idea is to use finite model finders like MACE [9] and Paradox [2] to find counter-models of
the conjecture, and gradually select axioms that exclude such counter-models. The models can
differentiate between a formula and its negation, which is typically beyond the heuristic symbolic
means. This idea has been also used later in the MaLARea system [27], however in the context of
many problems solved simultaneously and many models kept in the pool, and using the models
found also as classification features for machine learning.

MaLARea is also an example of a system that uses learning from previous proofs for guiding
premise-selection for new conjectures. The idea of this approach is to define suitable features
characterizing conjectures (symbolic, semantic, structural, etc.), and to use machine learning
methods on available proofs to learn the function that associates the conjecture features with
the relevant premises. A sophisticated learning approach has been suggested and implemented in
E prover by Stephan Schulz for his PhD work [17], which unfortunately preceded the appearance
of large theories by several years.3 In this approach, proofs are abstracted into proof traces,
consisting of clause patterns in which symbol names are abstracted into higher-order variables.
Such proof traces from many proofs are collected into a common knowledge base, which is
loaded when a new problem is solved, and used for guiding clause selection. This is probably
quite similar to the hints technique in Prover9 [8], which however seems to be used more in a
single-problem proof-shortening scenario.

Note that such techniques already move the large-theory techniques towards smart general-
purpose ATP techniques for proof guidance. A recent attempt in this direction is the MaLeCoP
system [28]. There, the clause relevance is learned from all closed tableau branches, and the
tableau extension steps are guided by a trained machine learner that takes as input features
a suitable encoding of the literals on the current tableau branch. In some sense this tries to
transfer the promising premise selection techniques deeper into the core of ATP systems. Unlike
the above mentioned technique used in E prover, the advising is however left to external systems,
which communicate with the prover over a sufficiently fast link.

4 More Systems and Metasystems

Not all systems do premise selection, however they may be still worth of mentioning.
One way how to reason with full large theories is to significantly limit the reasoning power.

At the extreme, such methods become the many search methods available for the corpora men-
tioned above. A somewhat more involved memorization/reasoning technique is subsumption
implemented in various ATP systems. A type-aware extension of subsumption is implemented
for the Mizar library in the MoMM system [24]. Extending such limited systems further in a
controlled and restricted way might be quite rewarding.

3The author and Stephan Schulz have shortly tried to revive this old E code and test it on the MPTP Challenge
benchmark in 2007, however without any significant results. So this advanced code is still waiting to be properly
revived and tested.
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Another interesting large-theory techniques is lemmatization and concept creation. An ex-
ample lemmatization system has been implemented by Petr Pudlák in his PhD thesis [14]: The
system uses lemmas found in successful proofs to enrich the whole theory, find new proofs, and
shorten existing ones. Concept creation is a long-time AI research, going back to Lenat’s sem-
inal work on AM [7]. Recently, concept creation has been tried to shorten long, automatically
produced proofs in [29]. Refactoring of proofs into human-digestible form seems to be a very
interesting task that we are facing more and more as the automated methods are getting more
and more usable. As computers are getting better in solving hard and large problems, we should
also make them better in explaining their solutions to us.
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