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Abstract. Detection of drug-drug interaction (DDI) is crucial for identi-
fication of adverse drug effects. In this paper, we present a range of new
composite kernels that are evaluated in the DDIExtraction2011 chal-
lenge. These kernels are computed using different combinations of tree
and feature based kernels. The best result that we obtained is an F1

score of 0.6370 which is higher than the already published result on this
same corpus.
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1 Introduction

The DDIExtraction2011 challenge3 provides a platform to identify the state of
the art for drug-drug interaction (DDI) extraction from biomedical articles. We
have participated in this challenge applying a range of new composite kernels.
These kernels combine different combinations of mildly extended dependency tree
(MEDT) kernel [2], phrase structure tree (PST) kernel [7], local context (LC)
kernel [4], global context (GC) kernel [4] and shallow linguistic (SL) kernel [4].

The best result we have obtained is an F1 score of 0.6370 by combining
MEDT, PST and GC kernels on the unified format of the data. From the pre-
processing of data to the extraction of DDIs using kernel compositions, our
objective is to exploit the maximum information that could be learned from
different representations of the data.

In the remaining of this paper, we discuss how we have addressed the DDI
extraction task. In Section 2, we briefly discuss the dataset. Then in Section 3,
the pre-processing steps are described. Following that, in Section 4, we mention
the individual kernels which are the building blocks for our kernel compositions.
Section 5 defines the proposed composite kernels. Evaluation results are dis-
cussed in Section 6. Finally, in Section 7 we summarize our work and present
ideas for future work.

3 http://labda.inf.uc3m.es/DDIExtraction2011/
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2 Dataset

The DDIExtraction2011 challenge task requires the automatic identification of
DDIs from biomedical articles. Only the intra-sentential DDIs (i.e. DDIs within
single sentence boundaries) are considered. The challenge corpus [9] is divided
into training and evaluation datasets. Initially released training data consists of
435 abstracts and 4,267 sentences, and is annotated with 2,402 DDIs. During
the evaluation phase, a dataset containing 144 abstracts and 1,539 sentences is
provided to the participants as the evaluation data. Both the datasets contain
drug annotations, but only the training dataset has DDI annotations.

These datasets are made available in two formats: the so-called unified format
and theMMTx format. The unified format contains only the tokenized sentences,
while the MMTx format contains the tokenized sentences along with POS tag
for each token.

We have used the unified format data. We have found out that, in both
training and evaluation datasets, there are some missing special symbols, perhaps
due to encoding problems. The position of these symbols can be identified by
the presence of the question mark “?” symbol. For example:

<sentence id=”DrugDDI.d554.s14” origId=”s14” text=”Ergotamine
or dihydroergotamine?acute ergot toxicity characterized by severe periph-
eral vasospasm and dysesthesia.”>

We have tried to randomly check whether the unified format and MMTx
format datasets contain the same sentences. We have found that one of the
randomly chosen sentences 4 does not include a “>” character which exists as a
token of the corresponding sentence inside the corresponding MTMx file. This
suggests that there might be missing characters inside some sentences due to
conversion errors of the html/xml special characters.

3 Data pre-processing

Our system is trained and evaluated on the unified format. We use the Stanford
parser5 [6] for tokenization, POS-tagging and parsing of the sentences.

Some of the characteristics of the data sets have required pre-processing
steps to correctly handle the texts. Having “?” in the middle of a sentence
causes parsing errors since the syntactic parser often misleadingly considers it as
a sentence ending sign. So, we replaced all “?” with “@”. Additionally, to reduce
tokenization errors, if a drug name does not contain an empty space character
immediately before and after its boundaries, we insert space characters in those
positions inside the corresponding sentence.

The SPECIALIST lexicon tool is used to normalize tokens to avoid spelling
variations and also to provide lemmas. The dependency relations produced by
the parser are used to create dependency parse trees for corresponding sentences.

4 DrugDDI.d151.s11 of the file Flumazenil ddi.xml.
5 http://nlp.stanford.edu/software/lex-parser.shtml
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4 Individual kernel approaches that we exploit

The approach adopted for our participation to the challenge is to exploit systems
(or methodologies) that already obtained state-of-the-art results in the protein-
protein interaction (PPI) extraction task and also in other RE tasks in domains
such as newspaper articles. One of these systems [4] uses feature based kernels
and is shown to be very effective for PPI extraction. We also consider tree kernel
based approaches since they are the state of the art for various RE tasks espe-
cially from newspaper texts. All of the systems (or methodologies) are based on
the support vector machine (SVM) algorithm for supervised machine learning.

4.1 Feature based kernels

Giuliano et al. [4] proposed a so called Shallow Linguistic (SL) kernel which is
so far one of the best performing kernels used for biomedical RE. The SL kernel
is defined as follows:

KSL (R1, R2) = KLC (R1, R2) + KGC (R1, R2)

where KSL, KGC and KLC correspond to SL, global context (GC) and local
context (LC) kernels respectively. The GC kernel exploits contextual information
of the words occurring before, between and after the pair of entities (to be
investigated for RE) in the corresponding sentence; while the LC kernel exploits
contextual information surrounding individual entities.

The jSRE system6 provides an implementation of these kernels. It should be
noted that, by default, jSRE uses the ratio of negative and positive examples as
the value of the cost-ratio-factor7 parameter during SVM training.

Segura-Bedmar et al. [9] used the jSRE system for DDI extraction on the
same corpus (in the MMTx format) that has been used during the DDIExtrac-
tion2011 challenge. They experimented with various parameter settings, and re-
ported an F1 score of 0.6001. We used the same parameter settings (n-gram=3,
window-size=3) with which they obtained their best result.

4.2 Tree kernels

One of the tree kernels that we have used is called mildly extended dependency
tree (MEDT) kernel, proposed by Chowdhury et al. [2]. A dependency tree (DT)
kernel, pioneered by Culotta et al. [3], is typically applied to the minimal or
smallest common subtree of a dependency parse tree that includes a target pair
of entities. Such subtree reduces unnecessary information by placing word(s)
closer to its dependent(s) inside the tree and emphasizes local features of the

6 http://hlt.fbk.eu/en/technology/jSRE
7 This parameter value is the one by which training errors on positive examples would
outweight errors on negative examples.
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corresponding relation. However, sometimes a minimal subtree might not contain
important cue words or predicates.

The MEDT kernel addresses this issue using some linguistically motivated
extensions. The best settings for the MEDT kernel, that we used in our experi-
ments for DDI extraction, observed by the authors on the AIMed protein-protein
interaction dataset [1] is by expanding the minimal subtree with the following
rule, and then by using unlexicalized partial trees (uPTs) [10] for similarity
matching.

If the root of the minimal subtree is the head word of one of the inter-
acting entities, then add the parent node (in the original DT tree) of the
root node as the new root of the subtree.

Apart from that, we have also used a phrase structure tree (PST) kernel
which is basically the path-enclosed tree (PET) proposed by Moschitti [7]. This
tree kernel is based on the smallest common subtree of a phrase structure parse
tree, which includes the two entities involved in a relation.

5 Proposed kernel compositions

We propose the following composite kernels for DDI extraction:

– KMP (R1, R2) = w1 * KMEDT (R1, R2) + w2 * KPST (R1, R2)

– KLMP (R1, R2) = KLC (R1, R2) + w3 * KMP

– KGMP (R1, R2) = KGC (R1, R2) + w3 * KMP

– KSMP (R1, R2) = KSL (R1, R2) + w3 * KMP

where KSL, KMEDT , KPST , KLC and KGC represent SL, MEDT, PST, LC
and GC kernels respectively, and wi represents multiplicative constant(s). The
values for all of the wi used during our experiments are equal to 1. All the
composite kernels are valid according to the closure properties of kernels.

The motivation behind using these new composite kernels is to combine vary-
ing representations (i.e. tree structures and flat structures) of different types of
information (i.e. dependencies, syntactic information, and shallow linguistic fea-
tures), and to see whether they can complement each other to learn a more
robust model.

To compute the feature vectors of KSL, KLC and KGC , we used the jSRE
system. The tree kernels and composite kernels are computed using the SVM-
LIGHT-TK toolkit8 [8, 5]. Finally, the ratio of negative and positive examples
has been used as the value of the cost-ratio-factor parameter.

8 http://disi.unitn.it/moschitti/Tree-Kernel.htm
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6 Evaluation Results

We have tuned all the composite kernels on the training data using 10-fold
cross validation9. The results of these experiments are shown in Table 1. The
experiments show that the best result is gained using the KGMP . Both the
KGMP and KSMP perform much better than the other kernels.

KMP KSL KLMP KGMP KSMP

Precision 0.4836 0.5109 0.5150 0.5522 0.5616

Recall 0.6249 0.6607 0.6507 0.6520 0.6336

F1 Score 0.5452 0.5762 0.5750 0.5980 0.5954

Table 1. Results of 10-fold cross validation on the training data.

Table 2 shows the official evaluation results of our proposed kernels in the
challenge. The results show a trend similar to the one of the cross-validation,
with the composite tree kernel KMP obtaining an F1 score much lower than
that of the other kernels. The combination of the tree and feature based kernels
produces better results as the KSMP got a better F1 score than that of the
KSL or KMP alone. But this combination also caused a drop in true and false
positives. This suggests that such a combination produces a conservative model
that requires more similarities in the features and structures of the candidate
relations to be identified as DDIs than that of the kernels they are composed of.

As expected, the highest result is obtained by the KGMP kernel. Implic-
itly, the tree kernels already exploit local contextual features as part of the tree
structures. For example, the lemma of a (relevant) token is considered as a node
inside the MEDT structure, while the order of the neighbouring tokens of an
entity (along with their POS tags) are inherited inside the PST structure. So,
excluding the LC kernel in the composite kernel might have been allowed to
avoid data overfitting. Furthermore, entity blinding (i.e. generalizing the named
entities instead of using their original names) is not considered for the basic
feature set construction of LC kernel (please refer to the original paper of Giu-
liano et al. [4]). This might have caused systematic bias and resulted in lower
performance.

7 Conclusion

In this paper, we have applied new composite kernels that exploit different types
of tree structures and features. These include dependency trees and phrase struc-
ture trees as well as local and global contexts of the relevant entities. The kernels

9 To obtain the overall performance we sum up the true positives, false positives, and
false negatives of all the 10 folds, and then measure precision, recall and F1 score
from these figures.
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KMP KSL KLMP KGMP KSMP

True Positive 544 560 534 529 513

False Positive 674 458 423 377 344

False Negative 211 195 221 226 242

True Negative 5597 5813 5848 5894 5927

Precision 0.4466 0.5501 0.558 0.5839 0.5986

Recall 0.7205 0.7417 0.7073 0.7007 0.6795

F1 Score 0.5514 0.6317 0.6238 0.6370 0.6365

Table 2. Evaluation results on the test data provided by the challenge organisers.

have been evaluated on the DDIExtraction2011 challenge, and have achieved en-
couraging results.

Due to time constraints, we have not been able to perform extensive param-
eter tuning. We are confident that tuning of the multiplicative constant(s) (i.e.
wi) might produce even better performance. We also predict these kernels would
be able to learn more accurate training models using a bigger training data, and
would produce results better than that of the individual kernels which are their
building blocks.
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