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Welcome 

We are pleased to welcome to the DDIExtraction 2011 workshop (First Challenge Task 
on Drug-Drug Interaction Extraction) being held in Huelva, Spain on September 7 and 
co-located with the 27th Conference of the Spanish Society for Natural Language 
Processing, SEPLN 2011. On behalf of the organizing committee, we would like to 
thank you for your participation and hope you enjoy the workshop. 

The detection of DDI is an important research area in patient safety since these 
interactions can become very dangerous and increase health care costs. Although 
there are different databases supporting health care professionals in the detection of 
DDI, these databases are rarely complete, since their update periods can reach three 
years. Drug interactions are frequently reported in journals of clinical pharmacology 
and technical reports, making medical literature the most effective source for the 
detection of DDI. Thus, the management of DDI is a critical issue due to the 
overwhelming amount of information available on them.  

Information Extraction (IE) can be of great benefit in the pharmaceutical industry 
allowing identification and extraction of relevant information on DDI and providing an 
interesting way of reducing the time spent by health care professionals on reviewing 
the literature. Moreover, the development of tools for automatically extracting DDI is 
essential for improving and updating the drug knowledge databases. Most 
investigation has focused on biological relationships (genetic and protein interactions 
(PPI)) due mainly to the availability of annotated corpora in the biological domain, 
facilitating the evaluation of approaches. Few approaches have focused on the 
extraction of DDIs. 

The DDIExtraction (Extraction of drug-drug interactions) task focuses on the extraction 
of drug-drug interactions from biomedical texts and aims to promote the development 
of text mining and information extraction systems applied to the pharmacological 
domain in order to reduce time spent by the health care professionals reviewing the 
literature for potential drug-drug interactions. Our main goal is to have a benchmark 
for the comparison of advanced techniques, rather than competitive aspects.  

We would like to thank all the participating teams for submitting their runs and 
panelists for presenting their work. We also acknowledge all the members of the 
program committee for providing their support in reviewing contributions. Finally, we 
would like to thank to Universidad de Huelva, especially the organizers of the SEPLN 
2011 conference and all the people that help us to make this workshop possible.  

The DDIExtraction 2011 Workshop was partially supported by MA2VICMR consortium 
(S2009/TIC-1542) and MULTIMEDICA research project (TIN2010-20644-C03-01). 

The DDIExtraction 2011 organizing committee 
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The 1st DDIExtraction-2011 challenge task:

Extraction of Drug-Drug Interactions from

biomedical texts

Isabel Segura-Bedmar, Paloma Mart́ınez, and Daniel Sánchez-Cisneros

Universidad Carlos III de Madrid, Computer Science Department,
Avd. Universiad, 30, 28911 Leganés, Madrid, Spain

{isegura,pmf,dscisner}@springer.com

http://labda.inf.uc3m.es/

Abstract. We present an evaluation task designed to provide a frame-
work for comparing different approaches to extracting drug-drug interac-
tions from biomedical texts. We define the task, describe the training/test
data, list the participating systems and discuss their results. There were
10 teams who submitted a total of 40 runs.

Keywords: Biomedical Text Mining, Drug-Drug Interaction Extraction

1 Task Description and Related Work

A drug-drug interaction (DDI) occurs when one drug influences the level or ac-
tivity of another drug. Since negative DDIs can be very dangerous, DDI detection
is the subject of an important field of research that is crucial for both patient
safety and health care cost control. Although health care professionals are sup-
ported in DDI detection by different databases, those being used currently are
rarely complete, since their update periods can be as long as three years [12].
Drug interactions are frequently reported in journals of clinical pharmacology
and technical reports, making medical literature the most effective source for the
detection of DDIs. The management of DDIs is a critical issue, therefore, due to
the overwhelming amount of information available [8].

Information extraction (IE) can be of great benefit for both the pharma-
ceutical industry by facilitating the identification and extraction of relevant in-
formation on DDIs, as well as health care professionals by reducing the time
spent reviewing the relevant literature. Moreover, the development of tools for
automatically extracting DDIs is essential for improving and updating the drug
knowledge databases.

Different systems have been developed for the extraction of biomedical rela-
tions, particularly PPIs, from texts. Nevertheless, few approaches have been pro-
posed to the problem of extracting DDIs in biomedical texts. We developed two
different approaches for DDI extraction. Since no benchmark corpus was avail-
able to evaluate our approaches to DDI extraction, we created the DrugDDI
corpus annotated with 3,160 DDIs. Our first approach is a hybrid linguistic
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approach [13] that combines shallow parsing and syntactic simplification with
pattern matching. This system yielded a precision of 48.69%, a recall of 25.70%
and an F-measure of 33.64%. Our second approach [14] is based on a supervised
machine learning technique, more specifically, the shallow linguistic kernel pro-
posed in Giuliano et al. (2006) [7]. It achieved a precision of 51.03%, a recall of
72.82% and an F-measure of 60.01%.

In order to stimulate research in this direction, we have organized the chal-
lenge task DDIExtraction2011. Likewise the BioCreAtIvE (Critical Assessment
of Information Extraction systems in Biology) challenge evaluation has devoted
to provide a common frameworks for evaluation of text mining driving progress
in text mining techniques applied to the biological domain, our purpose is to
create a benchmark dataset and evaluation task that will enable researchers to
compare their algorithms applied to the extraction of drug-drug interactions.

2 The DrugDDI corpus

While Natural Language Processing(NLP) techniques are relatively domain-
portable, corpora are not. For this reason, we created the first annotated corpus,
the DrugDDI corpus, studying the phenomenon of interactions among drugs.
We hope that the corpus serves to encourage the NLP community to conduct
further research in the field of pharmacology.

As source of unstructured textual information on drugs and their interactions,
we used the DrugBank database[17]. This database is a rich resource combining
chemical and pharmaceutical information of approximately 4,900 pharmacolog-
ical substances. For each drug, DrugBank contains more than 100 data fields
including drug synonyms, brand names, chemical formula and structure, drug
categories, ATC and AHFS codes (i.e., codes of standard drug families), mech-
anism of action, indication, dosage forms, toxicity, etc. Of particular interest to
this study, DrugBank offers the field ’Interactions’ (it is no longer available) that
contained a link to a document describing DDIs in unstructured texts. DrugBank
provides a file with the names of approved drugs1, approximately 1,450. We ran-
domly chose 1,000 drug names and used the RobotMaker2, a screen-scrapper
application, to download the interaction documents for these drugs. We only
retrieved a total of 930 documents since some drugs did not have any linked
document. Due to the cost-intensive and time consuming nature of the annota-
tion process, we decided to reduce the number of documents to be annotated
and only considered 579 documents. We believe that these texts are a reliable
and representative source of data for expressing DDI since the language used
is mostly devoted to descriptions of DDIs. Additionally, the highly specialized
pharmacological language is very similar to that found in the Medline pharma-
cology abstracts.

These documents were then analyzed by the UMLS MetaMap Transfer
(MMTx) [2] tool performing sentence splitting, tokenization, POS-tagging, shal-

1 http://www.drugbank.ca/downloads
2 http://openkapow.com/
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low syntactic parsing (see Figure 1) and linking of phrases with UMLS Metathe-
saurus concepts. Drugs are automatically identified by MMTx since the tool al-
lows for the recognition and annotation of biomedical entities occurring in texts
according to the UMLS semantic types. An experienced pharmacist reviewed the
UMLS Semantic Network as well as the semantic annotation provided by MMTx
and recommended us the inclusion of the following UMLS semantic types as
possible types of interacting drugs: Clinical Drug (clnd), Pharmacological Sub-
stance (phsu), Antibiotic (antb), Biologically Active Substance (bacs), Chemical
Viewed Structurally (chvs) and Amino Acid, Peptide, or Protein (aapp).

The principal value of the DrugDDI corpus undoubtedly comes from its DDIs
annotations. To obtain these annotations, all documents were marked-up by a
researcher with pharmaceutical background. DDIs were annotated at the sen-
tence level and, thus, any interactions spanning over several sentences were not
annotated here. Only sentences with two or more drugs were considered and the
annotation was made sentence by sentence. Figure 1 shows an example of an
annotated sentence that contains three interactions. Each interaction is repre-
sented as a DDI node in which the names of the interacting drugs are registered
in its NAME DRUG 1 and NAME DRUG 2 attributes. The identifiers of the
phrases containing these interacting drugs are also annotated, providing an eas-
ily access to the related concepts provided by MMTx. As mentioned, Figure 1
shows three DDIs: the first DDI represents an interaction between Aspirin and
probenecid, the second one an interaction between aspirin and sulfinpyrazone,
and the last one a DDI between aspirin and phenylbutazone.

Fig. 1. Example of DDI annotations.

The DrugDDI corpus is also provided in the unified format for PPI corpora
proposed in Pyysalo et al. [11] (see Figure 2). This shared format could attract
attention of groups studying PPI extraction because they could easily adapt their
systems to the problem of DDI extraction. The unified XML format does not
contain any linguistic information provided by MMTx. The unified format only
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Fig. 2. The unified XML format.

Table 1. Basic statistics on the DrugDDI corpus.

Number Avg. per document

Documents 579
Sentences 5,806 10.03
Phrases 66,021 114.02
Tokens 127,653 220.47
Sentences with at least one DDI 2,044 3.53
Sentences with no DDI 3,762 6.50
DDIs 3,160 5.46 (0.54 per sentence)

provides the sentences, their drugs and their interactions. Each entity (drug)
includes reference (origId) to its id phrase in the MMTX format corpus text
in which the corresponding drug appears. For each sentence from the DrugDDI
corpus represented in the unified XML format, its DDI candidate pairs should be
generated from the different drugs appearing therein. Each DDI candidate pair is
represented as a pair node in which the ids of the interacting drugs are registered
in its e1 and e2 attributes. If the pair is a DDI, the interaction attribute must
be set to true, and false value otherwise.

Table 1 shows basic statistics of the DrugDDI corpus. In general, the size of
biomedical corpora is quite small and usually does not exceed 1,000 sentences.
The average number of sentences per MedLine abstract was estimated at 7.2±
1.9 [18]. Our corpus contains 5,806 sentences with 10.3 sentences per document
on average. MMTx identified a total of 66,021 phrases of which 12.5% (8,260)
are drugs. The average number of drug mentions per document was 24.9, and
the average number of drug mentions per sentence was 2.4. The corpus contains
a total of 3,775 sentences with two or more drug mentions, although only 2,044
sentences contain at least one interaction. With the assistance of a pharmacist,
a total of 3,160 DDIs were with an average of 5.46 DDIs per document and 0.54
per sentence.

DDI extraction can be formulated as a supervised learning problem, more
particularly, as a drug pair classification task. Therefore, a crucial step is to
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generate suitable datasets to train and test a classifier from the DrugDDI corpus.
The simplest way to generate examples to train a classifier for a specific relation
R is to enumerate all possible ordered pairs of sentence entities. We proceeded in
a similar way. Given a sentence S with at least two drugs, we defined D as the set
of drugs in S and N as the number of drugs. The set of examples generated for
S, therefore, was defined as follows: {(Di, Dj) : Di, DjεD, 1 <= i, j <= N, i �=
j, i < j}. If the interaction existed between the two DDI candidate drugs, then
the example was labeled 1. Otherwise, it was labeled 0. Although some DDIs
may be asymmetrical, the roles of the interacting drugs were not included in the
corpus annotation and are not specifically addressed in this task. As a result,
we enumerate candidate pairs here without taking their order into account, such
that (Di, Dj) and (Dj , Di) are considered as a single candidate pair. Since the
order of the drugs in the sentence was not taken into account, each example
is the copy of the original sentence S where the candidates were assigned the
tag, ’DRUG’, and remaining drugs were assigned the tag, ’OTHER’. The set of
possible candidate pairs was the set of 2−combinations from the whole set of
drugs appearing in S. Thus, the number of examples was CN,2 =

(
N

2

)
.

Table 2 shows the total number of relation examples or instances generated
from the DrugDDI corpus. Among the 30,757 candidate drug pairs, only 3,160
(10.27%) were marked as positive interactions (i.e., DDIs) while 27,597 (89.73%)
were marked as negative interactions (i.e., non-DDIs).

Table 2. Distribution of positive and negative examples in training and testing
datasets.

Set Documents Examples Positives Negatives

Train 437 (75.5%) 25,209 2,421 (9.6%) 22,788 (90.4%)
Final Test 142 (24.5%) 5,548 739 (13.3%) 4,809 (86.7%)
Total 579 30,757 3,160 (10.27%) 27,597 (89.73%)

Once we generated the set of relation instances from the DrugDDI corpus, the
set was then split in order to build the datasets for the training and evaluation
of the different DDI extraction systems. In order to build the training dataset
used for development tests, 75% of the DrugDDI corpus files (435 files) were
randomly selected for the training dataset and the remaining 25% (144 files)
is used in the final evaluation to determine which model was superior. Table 3
shows the distribution of the documents, sentences, drugs and DDIs in each set.
Approximately 90% of the instances in the training dataset were negative exam-
ples (i.e., non-DDIs). The distribution between positive and negative examples
in the final test dataset was also quite similar (see Table 2).

3 The participants

The task of extracting drug-drug interactions from biomedical texts has attracted
the participation of 10 teams who submitted 40 runs. Table 4 lists the teams,

0

-���������������	�
 ����������
������(



Table 3. Training and testing datasets.

Set Documents Sentences Drugs DDIs

Training 435 4,267 11,260 2,402
Final Test 144 1,539 3,689 758
Total 579 5,806 14,949 3,160

their affiliations, the number of runs submitted and the description of their
systems.

The runs’ performance information in terms of precision, recall, F-measure
and accuracy, appears in Table 5.

Table 4. Short description of the teams.

Team Institution Runs Description

WBI Humboldt-Universitat
Berlin

5 combination of several kernels and a
case-based reasoning (CBR) system
using a voting approach

FBK-HLT Fondazione Bruno Kessler -
HLT

5 composite kernels using the MEDT,
PST and SL kernels

LIMSI-FBK LIMSI - Fondazione Bruno
Kessler

1 a feature-based method using
SVM and a composite kernel-based
method.

UTurku University of Turku 4 machine learning classifiers such
as SVM and RLS; DrugBank and
MetaMap

LIMSI-CNRS LIMSI-CNRS 5 a feature-based method using lib-
SVM and SVMPerf

bnb nlel Universidad Politécnica de
Valencia

1 a feature-based method using Ran-
dom Forests

laberinto-uhu Universidad de Huelva 5 a feature-based method using clas-
sical classifiers such as SVM, Nave
Bayes, Decision Trees, Adaboost

DrIF University of Pavia (Depart-
ment Mario Stefanelli)

4 two machine learning-based (CFFs
and SVMs) and one hybrid ap-
proach which combines CRFs and
a rule-based technique.

ENCU East China Normal Univer-
sity

5 a feature-based method using SVM.

IUPUITMGroup Indiana University-Purdue
University Indianapolis

5 all paths graph (APG) kernel
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Table 5. Precision, recall, F-measure and accuracy over each run’s performance.

Team run TP FP FN TN P R F Acc

WBI 5 543 354 212 5917 0.6054 0.7192 0.6574 0.9194
WBI 4 529 332 226 5939 0.6144 0.7007 0.6547 0.9206
WBI 2 568 465 187 5806 0.5499 0.7523 0.6353 0.9072
WBI 1 575 585 180 5686 0.4957 0.7616 0.6005 0.8911
WBI 3 319 362 436 5909 0.4684 0.4225 0.4443 0.8864
LIMSI-FBK 1 532 376 223 5895 0.5859 0.7046 0.6398 0.9147
FBK-HLT 4 529 377 226 5894 0.5839 0.7007 0.6370 0.9142
FBK-HLT 1 513 344 242 5927 0.5986 0.6795 0.6365 0.9166
FBK-HLT 2 560 458 195 5813 0.5501 0.7417 0.6317 0.9071
FBK-HLT 3 534 423 221 5848 0.5580 0.7073 0.6238 0.9083
FBK-HLT 5 544 674 211 5597 0.4466 0.7205 0.5514 0.8740
Uturku 3 520 376 235 5895 0.5804 0.6887 0.6299 0.9130
Uturku 4 370 179 385 6092 0.6740 0.4901 0.5675 0.9197
Uturku 2 368 197 387 6074 0.6513 0.4874 0.5576 0.9169
Uturku 1 350 172 405 6099 0.6705 0.4636 0.5482 0.9179
LIMSI-CNRS 1 490 398 265 5873 0.5518 0.6490 0.5965 0.9056
LIMSI-CNRS 2 491 402 264 5869 0.5498 0.6503 0.5959 0.9052
LIMSI-CNRS 4 462 380 293 5891 0.5487 0.6119 0.5786 0.9042
LIMSI-CNRS 5 373 264 382 6007 0.5856 0.4940 0.5359 0.9081
LIMSI-CNRS 3 388 470 367 5801 0.4522 0.5139 0.4811 0.8809
BNBNLEL 1 420 266 335 6005 0.6122 0.5563 0.5829 0.9145
laberinto-uhu 1 335 335 420 5936 0.5000 0.4437 0.4702 0.8925
laberinto-uhu 2 324 371 431 5900 0.4662 0.4291 0.4469 0.8859
laberinto-uhu 3 368 551 387 5720 0.4004 0.4874 0.4397 0.8665
laberinto-uhu 4 238 153 517 6118 0.6087 0.3152 0.4154 0.9046
laberinto-uhu 5 193 107 562 6164 0.6433 0.2556 0.3659 0.9048
DrIF 1 369 545 386 5725 0.4037 0.4887 0.4422 0.8675
DrIF 4 369 545 386 5726 0.4037 0.4887 0.4422 0.8675
DrIF 3 317 456 438 5815 0.4101 0.4199 0.4149 0.8728
DrIF 2 196 110 559 6161 0.6405 0.2596 0.3695 0.9048
ENCU 5 351 836 404 5435 0.2957 0.4649 0.3615 0.8235
ENCU 3 324 830 431 5441 0.2808 0.4291 0.3394 0.8205
ENCU 1 580 3456 175 2815 0.1437 0.7682 0.2421 0.4832
ENCU 2 713 4781 42 1490 0.1298 0.9444 0.2282 0.3135
ENCU 4 206 424 549 5847 0.3270 0.2728 0.2975 0.8615
IUPUITMGroup 4 193 1457 562 4814 0.1170 0.2556 0.1605 0.7126
IUPUITMGroup 1 237 2005 518 4266 0.1057 0.3139 0.1582 0.6409
IUPUITMGroup 2 127 943 628 5328 0.1187 0.1682 0.1392 0.7764
IUPUITMGroup 3 125 937 630 5334 0.1177 0.1656 0.1376 0.7770
IUPUITMGroup 5 110 770 645 5501 0.1250 0.1457 0.1346 0.7986

4 Discussion

The best performance is achieved by the team WBI [15]. Its system combines
several kernels (APG [1], SL [7], kBSPS [16]) and a case-based reasoning (CBR)
(called MOARA [10]) using a voting approach. In particular, the combination
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of the kernels APG, SL and the MOARA system yields the best F-measure
(0.6574).

The team FBK-HLT [5] proposes new composite kernels using well-known
kernels such as MEDT [6], PST [9] and SL [7]. Similarly, the team LIMSI-FBK [4]
combines the same kernels (MEDT, PST and SL) and a feature-based method
using SVM. This system achieves an F-measure of 0.6398.

The team Uturku [3] proposes a feature-based method using the classifiers
SVM and RLS. Features used by the classifiers include syntactic information
(tokens, dependency types, POS tags, text, stems, etc) and semantic knowledge
from DrugBank and MetaMap. This system achieves an F-measure of 0.6299.

In general, approaches based on kernels methods achieved better results than
the classical feature-based methods. Most systems have used primarily syntactic
information, however semantic information has been poorly used.

5 Conclusion

This paper describes a new semantic evaluation task, Extraction of drug-drug
interactions from biomedical texts. We have accomplished our goal of providing
a framework and a benchmark data set to allow for comparisons of methods
for this task. The results that the participating systems have reported show
successful approaches to this difficult task, and the advantages of kernel-based
methods over classical machine learning classifiers.

The success of the task shows that the framework and the data are useful
resources. By making this collection freely accessible, we encourage further re-
search into this domain. Moreover, next SemEval-3 (6th International Workshop
on Semantic Evaluations3) to be held in summer 2013 has scheduled the ”Ex-
traction of drug-drug interactions from biomedical Texts” task 4. In order to
accomplish this new task, the current corpus is being extended to collect new
data test.
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Abstract. We describe our approach for the extraction of drug-drug in-
teractions from literature. The proposed method builds majority voting
ensembles of contrasting machine learning methods, which exploit differ-
ent linguistic feature spaces. We evaluated our approach in the context
of the DDI Extraction 2011 challenge, where using document-wise cross-
validation, the best single classifier achieved an F1 of 57.3% and the best
ensemble achieved 60.6%. On the held out test set, our best run achieved
an F1 of 65.7%.

Keywords: Text mining; Relation extraction; Machine learning; En-
semble learning

1 Introduction

Most biomedical knowledge appears first as research results in scientific pub-
lications before it is distilled into structured knowledge bases. For researchers
and database curators there is an urgent need to cope with the fast increase of
biomedical literature [6]. Biomedical text mining currently achieves good results
for named entity recognition (NER), e.g. gene/protein-names and recognition
of single nucleotide polymorphisms [3, 11]. A recent trend is the extraction of
simple or complex relations between entities [7].

In this work, we describe our approach for the extraction of drug-drug in-
teractions (DDI) from text that was also the core task of the DDI Extraction
2011 challenge1. DDIs describe the interference of one drug with another drug
and usually lead to an enhanced, reduced, neutralized, or even toxic drug effect.
For example: “Aspirin administered in combination with Warfarin can lead to
bleeding and has to be avoided.” DDI effects are thus crucial to decide when
(not) to administer specific drugs to patients.

1 http://labda.inf.uc3m.es/DDIExtraction2011/
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1.1 Problem definition

The DDI challenge1 consisted of one task, namely the identification of interac-
tions between two drugs. This interaction is binary and undirected, as target and
agent roles are not labeled. In the challenge setting, recognition of drug names
was readily available.

2 Methods

Binary relation extraction is often tackled as a pair-wise classification problem
between all entities mentioned within one sentence. Thus a sentence with n
entities contains at most

(
n
2

)
interacting pairs.

Corpus annotations have been made available in two different formats. (1) con-
tained only the documents with respective drug annotations in a format previ-
ously used for protein-protein interactions (PPIs) [13]. (2) additionally contained
linguistic information such as part-of-speech tags and shallow parses. Further
phrases were annotated with corresponding UMLS concepts. This information
has been automatically derived using MetaMap and incorporated by the orga-
nizers. We exclusively used (1) and extended it with linguistic information as
described in the following subsection.

2.1 Preprocessing

Sentences have been parsed using Charniak–Lease parser [8] with a self-trained
re-ranking model augmented for biomedical texts [10]. Resulting constituent
parse trees have been converted into dependency graphs using the Stanford con-
verter [4]. In the last step we created an augmented XML following the recom-
mendations of [2]. This XML encompasses tokens with respective part-of-speech
tags, constituent parse tree, and dependency parse tree information. Properties
of the training and test corpora are shown in Table 1. Please note that the num-
ber of positive and negative instances in the test set has been made available
after the end of the challenge. A more detailed description of the DDI corpus
can be found in [14].

Corpus Sentences
Pairs

Positive Negative Total

Training 4,267 2,402 21,425 23,827
Test 1,539 755 6,271 7,026

Table 1: Basic statistics of the DDI corpus training and test sets.
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2.2 Kernel based approaches

Tikk et al. [17] systematically analyzed 9 different machine learning approaches
for the extraction of undirected binary protein-protein interactions. In their anal-
ysis, three kernel have been identified of being superior to the remaining six
approaches, namely all-paths graph (APG) [2], k -band shortest path spectrum
(kBSPS) [17], and the shallow linguistic (SL) [5] kernel. The SL kernel uses only
shallow linguistic features, i.e. word, stem, part-of-speech tag and morphologic
properties of the surrounding words. kBSPS builds a classifier on the shortest
dependency path connecting the two entities. It further allows for variable mis-
matches and also incorporates all nodes within distance k from the shortest
path. APG builds a classifier using surface features and a weighting scheme for
dependency parse tree features. For a more detailed description of the kernel
we refer to the original publications. The advantage of these three methods has
been replicated and validated in a follow up experiment during the i2b2 rela-
tion extraction challenge [15]. In the current work we also focus on these three
methods.

Experiments have been done using an open-source relation extraction frame-
work.2 Entities were blinded by replacing the entity name with a generic string
to ensure the generality of the approach. Without entity blinding a classifier
uses drug names as features, which clearly affects its generalization abilities on
unseen entity pairs.

2.3 Case-based reasoning

In addition to kernel classifiers, we also used a customized version of Moara, an
improvement of the system that participated in the BioNLP’09 Event Extrac-
tion Challenge [12]. It uses case-based reasoning (CBR) for classifying the drug
pairs. CBR [1] is a machine learning approach that represents data with a set of
features. In the training step, first the cases from the training data are learned
and then saved in a knowledge base. During the testing step, the same represen-
tation of cases is used for the input data, the documents are converted to cases
and the system searches the base for cases most similar to the case-problem.

Each drug pair corresponds to one case. This case is represented by the local
context, i.e., the tokens between a drug pair. We have limited the size of the
context to 20 tokens (pairs separated by more tokens are treated as false). The
features may be related to the context as a whole or to each of the tokens that
is part of the context. Features may be set as mandatory or optional, here no
feature was defined as mandatory. As features we considered part-of-speech tag,
role and lemma.

The part-of-speech tag is the one obtained during the pre-processing of the
corpus. The role of the token is set to DRUG in case that the token is annotated
as drug that takes part in the interaction. No role is set to drugs which are part
of the context and are not part of the interaction pair, as well as the remaining

2 http://informatik.hu-berlin.de/forschung/gebiete/wbi/ppi-benchmark
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tokens. The lemma feature is only assigned for the non-role tokens using the
Dragon toolkit [18], otherwise the feature is not set. See Table 2 for an example.

Context
Features

Lemma POS Role

Buprenorphine drug NN DRUG
is be VBZ –
metabolized metabolized VBN –
to to TO –
norbuprenorphine norbuprenorphine NN –
by by IN –
cytochrome drug NN DRUG

Table 2: Example of features for the two interacting drugs described in the
sentence “Buprenorphine is metabolized to norbuprenorphine by cytochrome.”
The lemma drug is the result of entity blinding.

During the searching step, Moara uses a filtering strategy in which it looks
for a case with exactly the same values for the features, i.e., it tries to find
cases with exactly the same values for the mandatory features and matching
as many optional features as possible. For the case retrieved in this step, a
similarity between those and the original case is calculated by comparing the
values of the corresponding features using a global alignment. This methodology
was proposed as part of the CBR algorithm for biomedical term classification
in the MaSTerClass system [16]. By default, for any feature, the insertion and
deletion costs are 1 (one) and the substitution cost is 0 (zero) for equal features
with equal values, and 1 (one) otherwise. However, we have also defined specific
costs for the part-of-speech tag feature which were based on the ones used in the
MaSTerClass system. We decided to select those cases whose global alignment
score is below a certain threshold, automatically defined as proposed in [16]. The
final solution, i.e., whether the predicted category is “positive” or “negative”, is
given by a voting scheme among the similar cases. When no similar case if found
for a determined pair, or if the pair was not analyzed at all due to its length
(larger than 20), the “negative” category is assigned by default.

2.4 Ensemble learning

Previous extraction challenges showed that combinations of classifiers may achieve
better results than any single classifier itself [7, 9]. Thus we experimented with
different combinations of classifiers by using a majority voting scheme.
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3 Results

3.1 Cross validation

In order to compare the different approaches, we performed document-wise
10-fold cross validation on the training set (see Table 3). It has been shown
that such a setting provides more realistic performance estimates than instance-
wise cross validation [2]. All approaches have been tested using the same splits
to ensure comparability. For APG, kBSPS, and SL; we followed the parameter
optimization strategy described in [17].

Method Performance

Type Name P R F1

Kernel
APG 53.4 63.1 57.3
kBSPS 35.9 53.5 42.7
SL 45.4 71.6 55.3

Case-based reasoning Moara 43.3 40.7 41.6

Ensemble
APG/Moara/SL 59.0 63.0 60.6

APG/kBSPS/SL 53.2 65.2 58.3

Table 3: Document-wise cross-validation results on the training set for selected
methods.

3.2 Test dataset

For the test set we submitted results for APG, SL, Moara, and the two majority
voting ensembles. Results for kBSPS have been excluded, as only 5 submissions
were permitted and kBSPS and Moara achieve similar results in F1. The official
results achieved on the test set are shown Table 4.

Run Method P R F1

WBI-2 APG 55.0 75.2 63.4
WBI-1 SL 49.6 76.2 60.1
WBI-3 Moara 46.8 42.3 44.4

WBI-5 APG/Moara/SL 60.5 71.9 65.7

WBI-4 APG/kBSPS/SL 61.4 70.1 65.5

Table 4: Relation extraction results on the test set.

�0

7����	�
�������	�
�������������
������	�
���	
��
��&'��6���
	
�



� Philippe Thomas, Mariana Neves, Illés Solt, Domonkos Tikk, and Ulf Leser

4 Discussion

4.1 Cross-validation

The document-wise cross-validation results show that SL and APG outperform
the remaining methods. kBSPS and Moara are on a par with each other but F1 is
about 15 percentage points (pp) inferior to SL or APG. Even though the results
of kBSPS and Moara are inferior, as ensemble members they are capable of
improving F1 on the training corpus. The combination APG/Moara/SL performs
about 2.3 pp better in F1 than the APG/kBSPS/SL ensemble and yields an
overall improvement of 3.3 pp in comparison to the best single classifier (APG).
Single method results are in line with previously published results using these
kernel for other domains [15, 17]. Again the SL kernel, which uses only shallow
linguistic information, achieves considerably good results. This indicates that
shallow information is often sufficient for relation extraction.

We estimated the effect of entity blinding by temporarily disabling it. This
experiment has been performed for SL exclusively and yielded an increase of
1.7 pp in F1. This effect was accompanied by an increase of 3.6 pp in precision and
a decrease of 3 pp in recall. We did not disable entity blinding for the submitted
runs, as such classifiers would be biased towards known DDIs and less capable
of finding novel DDIs, the ultimate goal of DDI extraction.

4.2 Test dataset

For the challenge all four classifier have been retrained using the whole training
corpus using the parameter setting yielding the highest F1in the training phase.
Our best run achieved 65.7% in F1.

Between training and test results we observe a perfect correlation for F1

(Kendall’s tau (τ) of 1.0). Thus the evaluation corpus affirms the general ranking
of methods determined on the training corpus. The effect of ensemble learning
is less pronounced on the test set but with 2.3 pp still notable.

4.3 Error analysis

To have an impression about the errors generated by these classifiers, we manu-
ally analyzed drug mention pairs that were not correctly classified by any method
(APG, kBSPS, Moara, and SL). Performing cross-validation, the DDI training
corpus contained 442 (1.85%) such pairs, examples are given in Figure 1.

We identified a few situations that may have caused difficulties: issues with
the annotated corpus and linguistic constructs not or incorrectly handled by
our methods. Annotation inconsistencies we encountered include dubious drug
entity annotations (B1, B6 in Figure 1), and ground truth annotations that were
either likely incorrect (B3) or could not be verified without the context (A4,
B4). As for linguistic constructs, our methods lack co-reference resolution (A1,
B5) and negation detection (A6, B7), and they also fail to recognize complex
formulations (A5, B2). As a special case, conditional constructs belong to both
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A1 Probenecid interferes with renal tubular secretion of ciprofloxacin and produces an increase in the level of
ciprofloxacin in serum.

A2 Drugs which may enhance the neuromuscular blocking action of TRACRIUM include: enflurane;

A3 While not systematically studied, certain drugs may induce the metabolism of bupropion (e.g., carba-
mazepine, phenobarbital, phenytoin).

A4 Auranofin should not be used together with penicillamine (Depen, Cuprimine), another arthritis medication.

A5 These drugs in combination with very high doses of quinolones have been shown to provoke convulsions

A6 Diclofenac interferes minimally or not at all with the protein binding of salicylic acid (20% decrease in
binding), tolbutamide, prednisolone (10% decrease in binding), or warfarin.

(a) False negatives

B1 Dofetilide is eliminated in the kidney by cationic secretion.

B2 Use of sulfapyridine with these medicines may increase the chance of side effects of these medicines.

B3 Haloperidol blocks dopamine receptors, thus inhibiting the central stimulant effects of amphetamines.

B4 This interaction should be given consideration in patients taking NSAIDs concomitantly with ACE inhibitors.

B5 No dose adjustment of bosentan is necessary, but increased effects of bosentan should be considered.

B6 Epirubicin is extensively metabolized by the liver.

B7 Gabapentin is not appreciably metabolized nor does it interfere with the metabolism of commonly coad-
ministered antiepileptic drugs.

(b) False positives

Fig. 1: Examples of drug mention pairs not classified correctly by any of our
methods. The two entities of the pair are typeset in bold, others in italic.

groups, they are nor consistently annotated nor consistently classified by our
methods (A2, A3, B2). Furthermore, we found several examples that are not
affected by any of the above situations.

5 Conclusion

In this paper we presented our approach for the DDI Extraction 2011 challenge.
Primarily, we investigated the re-usability of methods previously proven efficient
for relation extraction in other biomedical sub-domains, notably protein-protein
interaction (PPI) extraction. In comparison to PPI extraction corpora, the train-
ing corpus is substantially larger and also exhibits a higher class imbalance to-
wards negative instances. Furthermore, we experimented with basic ensembles
to increase overall performance and conducted a manual error analysis to pin-
point weaknesses in the applied methods. Our best result consisted of a majority
voting ensemble of three methodically different classifiers.
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Abstract. Detection of drug-drug interaction (DDI) is an important
task for both patient safety and efficient health care management. In
this paper, we explore the combination of two different machine-learning
approaches to extract DDI: (i) a feature-based method using a SVM
classifier with a set of features extracted from texts, and (ii) a kernel-
based method combining 3 different kernels. Experiments conducted on
the DDIExtraction2011 challenge corpus (unified format) show that our
method is effective in extracting DDIs with 0.6398 F1.

Keywords: Drug-Drug Interaction, machine learning, feature-based method,
kernel-based method, tree kernel, shallow linguistic kernel.

1 Introduction

The drug-drug interaction (DDI) is a condition when one drug influences the
level or activity of another. Detection of DDI is crucial for both patient safety
and efficient health care management.

The objective of the DDIExtraction2011 challenge4 was to identify the state
of the art for automatically extracting DDI from biomedical articles. We partic-
ipated in this challenge with a system combining two different machine learning
methods to extract DDI: a feature-based method and a kernel-based one. The
first approach uses a SVM classifier with a set of lexical, morphosyntactic and
semantic features (e.g. trigger words, negation) extracted from texts. The second
method uses a kernel which is a composition of a mildly extended dependency

tree (MEDT) kernel [3], a phrase structure tree (PST) kernel [9], and a shallow

linguistic (SL) kernel [5]. We obtained 0.6398 F-measure on the unified format
of the challenge corpus.

In the rest of the paper, we first discuss related works (Section 2). In Section
3, we briefly discuss the dataset. Then in Section 4, we describe the feature-
based system. Following that, in Section 5, the kernel-based system is presented.
Evaluation results are discussed in Section 6. Finally, we summarize our work
and discuss some future directions (Section 7).

4 http://labda.inf.uc3m.es/DDIExtraction2011/
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2 Related Work

Several approaches have been applied to biological relation extraction (e.g. protein-
protein interaction). Song et al. [13] propose a protein-protein interaction (PPI)
extraction technique called PPISpotter by combining an active learning tech-
nique with semi-supervised SVMs to extract protein-protein interaction. Chen
et al. [2] propose a PPI Pair Extractor (PPIEor), a SVM for binary classification
which uses a linear kernel and a rich set of features based on linguistic analysis,
contextual words, interaction words, interaction patterns and specific domain
information. Li et al. [8] use an ensemble kernel to extract the PPI information.
This ensemble kernel is composed with feature-based kernel and structure-based
kernel using the parse tree of a sentences containing at least two protein names.

Much less approaches have focused on the extraction of DDIs compared to
biological relation extraction. Recently, Segura-Bedmar et al. [11] presented a
hybrid linguistic approach to DDI extraction that combines shallow parsing
and syntactic simplification with pattern matching. The lexical patterns achieve
67.30% precision and 14.07% recall. With the inclusion of appositions and coor-
dinate structures they obtained 25.70% recall and 48.69% precision. In another
study, Segura-Bedmar et al. [12] used shallow linguistic (SL) kernel [5] and re-
ported as much as an F1 score of 0.6001.

3 Dataset

The DDIExtraction2011 challenge task required the automatic identification of
DDIs from biomedical articles. Only the intra-sentential DDIs (i.e. DDIs within
single sentence boundaries) are considered. The challenge corpus [12] is divided
into training and evaluation dataset. Initially released training data consist of
435 abstracts and 4,267 sentences, and were annotated with 2,402 DDIs. During
the evaluation phase, a dataset containing 144 abstracts and 1,539 sentences
was provided to the participants as the evaluation data. Both datasets contain
drug annotations, but only the training dataset has DDI annotations.

These datasets are made available in two formats: the so-called unified format
and theMMTx format. The unified format contains only the tokenized sentences,
while the MMTx format contains the tokenized sentences along with POS tag
for each token.

We used the unified format data. In both training and evaluation datasets,
there are some missing special symbols, perhaps due to encoding problems. The
position of these symbols can be identified by the presence of the question mark
“?” symbol. For example:

<sentence id=”DrugDDI.d554.s14” origId=”s14” text=”Ergotamine

or dihydroergotamine?acute ergot toxicity characterized by severe periph-

eral vasospasm and dysesthesia.”>
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4 Feature-based Machine Learning Method

In this approach, the problem is modeled as a supervised binary classification
task. We used a SVM classifier to decide whether a candidate DDI pair is an
authentic DDI or not. We used the LibSVM tool [1] to test different SVM tech-
niques (nu-SVC, linear kernel, etc.) and the script grid.py, provided by LibSVM,
to find the best C and gamma parameters. We obtained the best results by using
a C-SVC SVM with the Radial Basis kernel function with the following SVM
parameters: c=1.0, g=0.0078125 and the set of features described in sections 4.1
and 4.2.

4.1 Features for DDI Extraction

We choose the following feature set to describe each candidate DDI pair (D1,D2):

– Word Features. Include Words of D1, words of D2, words between D1 and
D2 and their number, 3 words before D1, 3 words after D2 and lemmas of
all these words.

– Morphosyntactic Features. Include Part-of-speech (POS) tags of each
drug words (D1 and D2), POS of the previous 3 and next 3 words. We use
TreeTagger 5 to obtain lemmas and POS tags.

– Other Features. Include, among others, verbs between D1 and D2 and
their number, first verb before D1 and first verb after D2.

4.2 Advanced features

In order to improve the performance of our system, we also incorporated some
more advanced features related to this task. We used lists of interacting drugs,
constructed by extracting drug couples that are related by an interaction in the
training corpus. We defined a feature to represent the fact that candidate drug
couples are declared in this list.

However, such lists are not sufficient to identify an interaction between new
drug pairs. We also worked on detecting keywords expressing such relations in
the training sentences. The following examples of positive (1,2) and negative
(3) sentences show some of the keywords or trigger words that may indicate an
interaction relationship.

1. The oral bioavailability of enoxacin is reduced by 60% with coadministra-
tion of ranitidine.

2. Etonogestrel may interact with the following medications: acetaminophen

(Tylenol) ...

3. There have been no formal studies of the interaction of Levulan Kerastick

for Topical Solution with any other drugs ...

To exploit these pieces of semantic information, we defined the following
features:
5 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
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– Trigger words. This category of features indicates whether a specific trigger
word occurs in the sentence (e.g. induce, inhibit). The trigger words were
collected manually from the training corpus.

– Negation. This category of features indicates if a negation is detected (e.g.
not, no) at a limited distance of characters before, between and after the two
considered drugs.

5 Kernel-based Machine Learning Method

In this approach, the DDI extraction task was addressed using a system that ex-
ploits kernel-based method. Initially, the data had been pre-processed to obtain
relevant information of the tokens of the sentences.

5.1 Data pre-processing

We used the Stanford parser6 [7] for tokenization, POS-tagging and parsing of
the sentences. Having “?” in the middle of a sentence causes parsing errors
since the syntactic parser often misleadingly considers it as a sentence ending
sign. So, we replace all “?” with “@”. To reduce tokenization errors, if a drug
name does not contain an empty space character immediately before and after
its boundaries, we inserted blank space characters in those positions inside the
corresponding sentence. The SPECIALIST lexicon tool7 was used to normalize
tokens to avoid spelling variations and also to provide lemmas. The dependency
relations produced by the parser were used to create dependency parse trees for
corresponding sentences.

5.2 System description

Our system uses a composite kernel KSMP which combines multiple tree and
feature based kernels. It is defined as follows:

KSMP (R1, R2) = KSL(R1, R2) + w1*KMEDT (R1, R2) + w2*KPST (R1, R2)

where KSL, KMEDT and KPST represent respectively shallow linguistic (SL)
[5], mildly extended dependency tree (MEDT) [3] and PST [9] kernels, and wi

represents multiplicative constant(s). The values for all of the wi used during
our experiments are equal to 1.8 The composite kernel is valid according to the
kernel closure properties.

A dependency tree (DT) kernel, pioneered by Culotta et al. [4], is typically
applied to the minimal or smallest common subtree of a dependency parse tree

6 http://nlp.stanford.edu/software/lex-parser.shtml
7 http://lexsrv3.nlm.nih.gov/SPECIALIST/index.html
8 Due to time constraints, we have not been able to perform extensive parameter
tuning. We are confident that tuning of the multiplicative constant(s) (i.e. wi) might
produce even better performance.
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that includes a target pair of entities. Such subtree reduces unnecessary informa-
tion by placing word(s) closer to its dependent(s) inside the tree and emphasizes
local features of the corresponding relation. However, sometimes a minimal sub-
tree might not contain important cue words or predicates. The MEDT kernel
addresses this issue using some linguistically motivated expansions. We used
the best settings for the MEDT kernel reported by Chowdhury et al. [3] for
protein-protein interaction extraction.

The PST kernel is basically the path-enclosed tree (PET) proposed by Mos-
chitti [9]. This tree kernel is based on the smallest common subtree of a phrase
structure parse tree, which includes the two entities involved in a relation.

The SL kernel is perhaps the best feature based kernel used so far for biomed-
ical RE tasks (e.g. PPI and DDI extraction). It is a combination of global context
(GC) and local context (LC) kernels. The GC kernel exploits contextual informa-
tion of the words occurring before, between and after the pair of entities (to be
investigated for RE) in the corresponding sentence; while the LC kernel exploits
contextual information surrounding individual entities.

The jSRE system9 is the implementation of these kernels using the support
vector machine (SVM) algorithm. It should be noted that, by default, the jSRE
system uses the ratio of negative and positive examples as the value of the cost-
ratio-factor10 parameter during SVM training.

Segura-Bedmar et al. [12] used the jSRE system for DDI extraction on the
same corpus (in the MMTx format) that has been used during the DDIExtrac-
tion2011 challenge. They experimented with various parameter settings, and
reported as much as an F1 score of 0.6001. We used the same parameter settings
(n-gram=3, window-size=3) with which they obtained their best result.

To compute the feature vectors of SL kernel, we used the jSRE system. The
tree kernels and composite kernel were computed using the SVM-LIGHT-TK
toolkit11 [10, 6]. Finally, the ratio of negative and positive examples has been
used as the value of the cost-ratio-factor parameter.

6 Results

We split the original training data into two parts by documents. One part con-
tains around 63% of documents (i.e. 276 docs) that have around 67% of the
“true” DDI pairs (i.e. 1603). The remaining documents belong to the other
part. Both of the systems used these splits.

The first part is used for tuning the systems, while the second part is used
as a test corpus for performance evaluation. The results on this test corpus
are shown in Table 1. As we can see, the union (on the positive DDIs) of the
outputs of each approach is higher than the individual output of the systems.
We also calculated results for the intersection (only common positive DDIs) of

9 http://hlt.fbk.eu/en/technology/jSRE
10 This parameter value is the one by which training errors on positive examples would

outweight errors on negative examples.
11 http://disi.unitn.it/moschitti/Tree-Kernel.htm
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the outputs which decreased the outcome. It is also important to note that the
feature-based method (FBM) provides higher precision while the kernel-based
method (KBM) obtains higher recall.

FBM KBM Union Intersection

Precision 0.5910 0.4342 0.4218 0.6346

Recall 0.3640 0.5277 0.6083 0.2821

F1 Score 0.4505 0.4764 0.4982 0.3906

Table 1. Experimental results when trained on 63% of the original training documents
and tested on the remaining.

Table 2 shows the evaluation results for the proposed approaches on the final
challenge’s evaluation corpus. The union of outputs of the systems has produced
an F1 score of 0.6398 which is better than the individual results. The behaviour
of precision and recall obtained by the two approaches is the same as observed
on the initial corpus (better precision for the feature-based approach and better
recall for the kernel-based approach), however, the F1 score of the kernel-based
approach is quite close (F1 score of 0.6365 ) to that of the union.

FBM KBM Union

True Positive 319 513 532

False Positive 133 344 376

False Negative 436 242 223

True Negative 6138 5927 5895

Precision 0.7058 0.5986 0.5859

Recall 0.4225 0.6795 0.7046

F1 Score 0.5286 0.6365 0.6398

Table 2. Evaluation results provided by the challenge organisers.

7 Conclusion

In this paper, we have proposed the combination of two different machine learn-
ing techniques, a feature-based method and a kernel-based one, to extract DDIs.
The feature-based method uses a set of features extracted from texts, including
lexical, morphosyntactic and semantic features. The kernel-based method does
not use features explicitly, but rather use a kernel composition of MEDT, PST
and SL kernels. We have combined these two machine learning techniques and
presented a simple union system in the DDIExtraction2011 challenge which ob-
tained encouraging results. We plan to test and add more features in our first
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method (e.g. UMLS semantic types), and to test the kernel-based method by
assigning different weights to the individual kernels of the composite kernel. We
also plan to perform further tests with other type of approaches like rule-based
methods using manually constructed patterns. Another interesting future work
can be to test other algorithms for the combination of different approaches (e.g.
ensemble algorithms).
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Abstract. Detection of drug-drug interaction (DDI) is crucial for identi-
fication of adverse drug effects. In this paper, we present a range of new
composite kernels that are evaluated in the DDIExtraction2011 chal-
lenge. These kernels are computed using different combinations of tree
and feature based kernels. The best result that we obtained is an F1

score of 0.6370 which is higher than the already published result on this
same corpus.

Keywords: drugs, kernels, dependency tree, phrase structure tree, local
context, global context.

1 Introduction

The DDIExtraction2011 challenge3 provides a platform to identify the state of
the art for drug-drug interaction (DDI) extraction from biomedical articles. We
have participated in this challenge applying a range of new composite kernels.
These kernels combine different combinations of mildly extended dependency tree

(MEDT) kernel [2], phrase structure tree (PST) kernel [7], local context (LC)

kernel [4], global context (GC) kernel [4] and shallow linguistic (SL) kernel [4].

The best result we have obtained is an F1 score of 0.6370 by combining
MEDT, PST and GC kernels on the unified format of the data. From the pre-
processing of data to the extraction of DDIs using kernel compositions, our
objective is to exploit the maximum information that could be learned from
different representations of the data.

In the remaining of this paper, we discuss how we have addressed the DDI
extraction task. In Section 2, we briefly discuss the dataset. Then in Section 3,
the pre-processing steps are described. Following that, in Section 4, we mention
the individual kernels which are the building blocks for our kernel compositions.
Section 5 defines the proposed composite kernels. Evaluation results are dis-
cussed in Section 6. Finally, in Section 7 we summarize our work and present
ideas for future work.

3 http://labda.inf.uc3m.es/DDIExtraction2011/
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2 Dataset

The DDIExtraction2011 challenge task requires the automatic identification of
DDIs from biomedical articles. Only the intra-sentential DDIs (i.e. DDIs within
single sentence boundaries) are considered. The challenge corpus [9] is divided
into training and evaluation datasets. Initially released training data consists of
435 abstracts and 4,267 sentences, and is annotated with 2,402 DDIs. During
the evaluation phase, a dataset containing 144 abstracts and 1,539 sentences is
provided to the participants as the evaluation data. Both the datasets contain
drug annotations, but only the training dataset has DDI annotations.

These datasets are made available in two formats: the so-called unified format
and theMMTx format. The unified format contains only the tokenized sentences,
while the MMTx format contains the tokenized sentences along with POS tag
for each token.

We have used the unified format data. We have found out that, in both
training and evaluation datasets, there are some missing special symbols, perhaps
due to encoding problems. The position of these symbols can be identified by
the presence of the question mark “?” symbol. For example:

<sentence id=”DrugDDI.d554.s14” origId=”s14” text=”Ergotamine

or dihydroergotamine?acute ergot toxicity characterized by severe periph-

eral vasospasm and dysesthesia.”>

We have tried to randomly check whether the unified format and MMTx
format datasets contain the same sentences. We have found that one of the
randomly chosen sentences 4 does not include a “>” character which exists as a
token of the corresponding sentence inside the corresponding MTMx file. This
suggests that there might be missing characters inside some sentences due to
conversion errors of the html/xml special characters.

3 Data pre-processing

Our system is trained and evaluated on the unified format. We use the Stanford
parser5 [6] for tokenization, POS-tagging and parsing of the sentences.

Some of the characteristics of the data sets have required pre-processing
steps to correctly handle the texts. Having “?” in the middle of a sentence
causes parsing errors since the syntactic parser often misleadingly considers it as
a sentence ending sign. So, we replaced all “?” with “@”. Additionally, to reduce
tokenization errors, if a drug name does not contain an empty space character
immediately before and after its boundaries, we insert space characters in those
positions inside the corresponding sentence.

The SPECIALIST lexicon tool is used to normalize tokens to avoid spelling
variations and also to provide lemmas. The dependency relations produced by
the parser are used to create dependency parse trees for corresponding sentences.

4 DrugDDI.d151.s11 of the file Flumazenil ddi.xml.
5 http://nlp.stanford.edu/software/lex-parser.shtml
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4 Individual kernel approaches that we exploit

The approach adopted for our participation to the challenge is to exploit systems
(or methodologies) that already obtained state-of-the-art results in the protein-
protein interaction (PPI) extraction task and also in other RE tasks in domains
such as newspaper articles. One of these systems [4] uses feature based kernels
and is shown to be very effective for PPI extraction. We also consider tree kernel
based approaches since they are the state of the art for various RE tasks espe-
cially from newspaper texts. All of the systems (or methodologies) are based on
the support vector machine (SVM) algorithm for supervised machine learning.

4.1 Feature based kernels

Giuliano et al. [4] proposed a so called Shallow Linguistic (SL) kernel which is
so far one of the best performing kernels used for biomedical RE. The SL kernel
is defined as follows:

KSL (R1, R2) = KLC (R1, R2) + KGC (R1, R2)

where KSL, KGC and KLC correspond to SL, global context (GC) and local
context (LC) kernels respectively. The GC kernel exploits contextual information
of the words occurring before, between and after the pair of entities (to be
investigated for RE) in the corresponding sentence; while the LC kernel exploits
contextual information surrounding individual entities.

The jSRE system6 provides an implementation of these kernels. It should be
noted that, by default, jSRE uses the ratio of negative and positive examples as
the value of the cost-ratio-factor7 parameter during SVM training.

Segura-Bedmar et al. [9] used the jSRE system for DDI extraction on the
same corpus (in the MMTx format) that has been used during the DDIExtrac-
tion2011 challenge. They experimented with various parameter settings, and re-
ported an F1 score of 0.6001. We used the same parameter settings (n-gram=3,
window-size=3) with which they obtained their best result.

4.2 Tree kernels

One of the tree kernels that we have used is called mildly extended dependency
tree (MEDT) kernel, proposed by Chowdhury et al. [2]. A dependency tree (DT)
kernel, pioneered by Culotta et al. [3], is typically applied to the minimal or
smallest common subtree of a dependency parse tree that includes a target pair
of entities. Such subtree reduces unnecessary information by placing word(s)
closer to its dependent(s) inside the tree and emphasizes local features of the

6 http://hlt.fbk.eu/en/technology/jSRE
7 This parameter value is the one by which training errors on positive examples would
outweight errors on negative examples.
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corresponding relation. However, sometimes a minimal subtree might not contain
important cue words or predicates.

The MEDT kernel addresses this issue using some linguistically motivated
extensions. The best settings for the MEDT kernel, that we used in our experi-
ments for DDI extraction, observed by the authors on the AIMed protein-protein
interaction dataset [1] is by expanding the minimal subtree with the following
rule, and then by using unlexicalized partial trees (uPTs) [10] for similarity
matching.

If the root of the minimal subtree is the head word of one of the inter-

acting entities, then add the parent node (in the original DT tree) of the

root node as the new root of the subtree.

Apart from that, we have also used a phrase structure tree (PST) kernel
which is basically the path-enclosed tree (PET) proposed by Moschitti [7]. This
tree kernel is based on the smallest common subtree of a phrase structure parse
tree, which includes the two entities involved in a relation.

5 Proposed kernel compositions

We propose the following composite kernels for DDI extraction:

– KMP (R1, R2) = w1 * KMEDT (R1, R2) + w2 * KPST (R1, R2)

– KLMP (R1, R2) = KLC (R1, R2) + w3 * KMP

– KGMP (R1, R2) = KGC (R1, R2) + w3 * KMP

– KSMP (R1, R2) = KSL (R1, R2) + w3 * KMP

where KSL, KMEDT , KPST , KLC and KGC represent SL, MEDT, PST, LC
and GC kernels respectively, and wi represents multiplicative constant(s). The
values for all of the wi used during our experiments are equal to 1. All the
composite kernels are valid according to the closure properties of kernels.

The motivation behind using these new composite kernels is to combine vary-
ing representations (i.e. tree structures and flat structures) of different types of
information (i.e. dependencies, syntactic information, and shallow linguistic fea-
tures), and to see whether they can complement each other to learn a more
robust model.

To compute the feature vectors of KSL, KLC and KGC , we used the jSRE
system. The tree kernels and composite kernels are computed using the SVM-
LIGHT-TK toolkit8 [8, 5]. Finally, the ratio of negative and positive examples
has been used as the value of the cost-ratio-factor parameter.

8 http://disi.unitn.it/moschitti/Tree-Kernel.htm
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6 Evaluation Results

We have tuned all the composite kernels on the training data using 10-fold
cross validation9. The results of these experiments are shown in Table 1. The
experiments show that the best result is gained using the KGMP . Both the
KGMP and KSMP perform much better than the other kernels.

KMP KSL KLMP KGMP KSMP

Precision 0.4836 0.5109 0.5150 0.5522 0.5616

Recall 0.6249 0.6607 0.6507 0.6520 0.6336

F1 Score 0.5452 0.5762 0.5750 0.5980 0.5954

Table 1. Results of 10-fold cross validation on the training data.

Table 2 shows the official evaluation results of our proposed kernels in the
challenge. The results show a trend similar to the one of the cross-validation,
with the composite tree kernel KMP obtaining an F1 score much lower than
that of the other kernels. The combination of the tree and feature based kernels
produces better results as the KSMP got a better F1 score than that of the
KSL or KMP alone. But this combination also caused a drop in true and false
positives. This suggests that such a combination produces a conservative model
that requires more similarities in the features and structures of the candidate
relations to be identified as DDIs than that of the kernels they are composed of.

As expected, the highest result is obtained by the KGMP kernel. Implic-
itly, the tree kernels already exploit local contextual features as part of the tree
structures. For example, the lemma of a (relevant) token is considered as a node
inside the MEDT structure, while the order of the neighbouring tokens of an
entity (along with their POS tags) are inherited inside the PST structure. So,
excluding the LC kernel in the composite kernel might have been allowed to
avoid data overfitting. Furthermore, entity blinding (i.e. generalizing the named
entities instead of using their original names) is not considered for the basic
feature set construction of LC kernel (please refer to the original paper of Giu-
liano et al. [4]). This might have caused systematic bias and resulted in lower
performance.

7 Conclusion

In this paper, we have applied new composite kernels that exploit different types
of tree structures and features. These include dependency trees and phrase struc-
ture trees as well as local and global contexts of the relevant entities. The kernels

9 To obtain the overall performance we sum up the true positives, false positives, and
false negatives of all the 10 folds, and then measure precision, recall and F1 score
from these figures.
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KMP KSL KLMP KGMP KSMP

True Positive 544 560 534 529 513

False Positive 674 458 423 377 344

False Negative 211 195 221 226 242

True Negative 5597 5813 5848 5894 5927

Precision 0.4466 0.5501 0.558 0.5839 0.5986

Recall 0.7205 0.7417 0.7073 0.7007 0.6795

F1 Score 0.5514 0.6317 0.6238 0.6370 0.6365

Table 2. Evaluation results on the test data provided by the challenge organisers.

have been evaluated on the DDIExtraction2011 challenge, and have achieved en-
couraging results.

Due to time constraints, we have not been able to perform extensive param-
eter tuning. We are confident that tuning of the multiplicative constant(s) (i.e.
wi) might produce even better performance. We also predict these kernels would
be able to learn more accurate training models using a bigger training data, and
would produce results better than that of the individual kernels which are their
building blocks.
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Abstract. We introduce a system developed to extract drug-drug in-
teractions (DDI) for drug mention pairs found in biomedical texts. This
system was developed for the DDI Extraction First Challenge Task 2011
and is based on our publicly available Turku Event Extraction System,
which we adapt for the domain of drug-drug interactions. This system
relies heavily on deep syntactic parsing to build a representation of the
relations between drug mentions. In developing the DDI extraction sys-
tem, we evaluate the suitability of both text-based and database derived
features for DDI detection. For machine learning, we test both support
vector machine (SVM) and regularized least-squares (RLS) classifiers,
with detailed experiments for determining the optimal parameters and
training approach. Our system achieves a performance of 62.99% F-score
on the DDI Extraction 2011 task.

1 Introduction

Biomedical Natural Language Processing (BioNLP) is the application of natural
language processing methods to analyse textual data on biology and medicine,
often research articles. Information extraction techniques can be used to mine
large text datasets for relevant information, such as relations between specific
types of entities.

In drug-drug interactions (DDI) one administered drug has an impact on
the level or activity of another drug. Knowing all potential interactions is very
important for physicians prescribing varying combinations of drugs for their
patients. In addition to existing databases, drug-drug information could be ex-
tracted from textual sources, such as research articles. The DDI Extraction 2011
Shared Task3 is a competitive evaluation of text mining methods for extraction
of drug-drug interactions, using a corpus annotated for the task [13]. In the DDI
corpus drug-drug interactions are represented as pairwise interactions between
two drug mentions in the same sentence.

The DDI Extraction task organizers have also developed a shallow linguistic
kernel method for DDI extraction, demonstrating the suitability of the dataset

3 http://labda.inf.uc3m.es/DDIExtraction2011/

,0

�������	
����������������
�������
����������
������	�
�������	�
�����������	�
������ ����,0!/��
#���$��% �	
�%� ��&'������(



� Jari Björne, Antti Airola, Tapio Pahikkala and Tapio Salakoski

for machine learning based information extraction [13]. They have also extended
this work into an online service for retrieving drug-drug interactions from the
Medline 2010 database [12].

We apply for the DDI Shared Task our open source Turku Event Extraction
System, which was the best performing system in the popular BioNLP 2009
Shared Task on Event Extraction, and which we have recently upgraded for the
BioNLP 2011 Shared Task, demonstrating again competitive performance [1].
Event extraction is the retrieval of complex, detailed relation structures, but
these structures are ultimately comprised of pairwise relations between text-
bound entities. The Turku Event Extraction System has modules for extraction
of full complex events, as well as for direct pairwise relations, which we use for
DDI extraction.

The DDI corpus is provided in two formats, in a MetaMap (MTMX) [2] XML
format, and a unified Protein-Protein Interaction XML format [10]. The Turku
Event Extraction System uses the latter format as its native data representation,
making it a suitable system for adapting to the current task.

In this work we test several feature representations applicable for DDI ex-
traction. We test two different classification methods, and demonstrate the im-
portance of thorough parameter optimization for obtaining optimal performance
on the DDI Shared Task.

2 Methods

2.1 System Overview

The Turku Event Extraction System abstracts event and relation extraction
by using an extendable graph format. The system extracts information in two
main steps: detection of trigger words (nodes) denoting entities in the text,
and detection of their relationships (edges). Additional processing steps can e.g.
refine the resulting graph structure or convert it to other formats. In the DDI
Extraction 2011 task all entities, the drug mentions, are given for both training
and test data. Thus, we only use the edge detector part of the Turku Event
Extraction System. Each undirected drug entity pair in a sentence is a drug-
drug interaction candidate, marked as a positive or negative example by the
annotation. In the graph format, the drug entities are the nodes, and all of their
pairs, connected through the dependency parse, are the edge examples to be
classified (See Figure 1).

We adapt the Turku Event Extraction System to the DDI task by extending
it with a new example builder module, which converts the DDI corpus into
machine learning classification examples, taking into account information specific
for drug-drug interactions.

2.2 Data Preparation

The DDI corpus provided for the shared task was divided into a training corpus
of 4267 sentences for system development, and a test corpus of 1539 sentences

,1

?��	)@A�
��;
��	;	�����-� 	����	������-� 	�%�������	



DDI Extraction from Biomedical Texts with SVM and RLS classifiers�

��
������	�


��
��


��
����


��
�	���

��
�	

��
����	������


��
�����

��
�����

���
�	���������	��

��
	�

��
��	������

�
�

 ��!����  ��"�	�  �� ����#	�$
 ��!  ��! �	�%$

 ����%���� !�	��$
 !���%

&&�
���' ���'

Fig. 1. A potential drug-drug interaction (DDI) can exist for each pair of drug entities
in the sentence. This example sentence from the DrugDDI corpus training set has one
positive interaction. The automatically generated syntactic deep dependency parse is
shown above the sentence. Our system classifies drug entity pairs based on features
built primarily from the shortest path of dependencies, shown with the dotted line.

that was only made available without labels for running the final results (labels
are available now that the task has ended). To develop a machine learning based
system, one needs to optimize the parameters of the learned model, by testing
experimentally a number of values on data not used for learning. We therefore
divided the training corpus into a 3297 sentence learning set and a 970 sentence
parameter optimization set in roughly a ratio of 3:1.

The training corpus was provided in a set of 436 files, each containing sen-
tences relevant to a specific drug. We put all sentences from the same file into
either the learning or the optimization set, to prevent the classifier relying too
much on specific drug names. The number of negative pairs varied from 1 to 87
and positive pairs from 0 to 29 per file. To maintain a balanced class distribution,
and to ensure a representative sample of interactions in both the learning and
optimization sets, we divided the files by first sorting by positive interactions,
then distributing the files every 3 to learning set and 1 to optimization set. This
division distributed the positive interactions almost exactly 3:1 (1156 vs. 374)
between the learning and optimization sets. The positive/negative class ratio for
the learning set was 54% (1156/2138) vs. 63% (374/596) for the optimization set,
a difference we considered acceptable for optimizing the class ratio dependent
F-score.

2.3 Parsing

Before we could build the machine learning examples, all sentences needed to be
processed with deep syntactic parsing, using the tool chain implemented for the
Turku Event Extraction System in previous work [1]. This tool chain performs
parsing in two steps: the Charniak-Johnson parser [3] first generates a PENN
parse tree, which is converted to a dependency parse with the Stanford parser
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Fig. 2. Skipping the conj and dependencies when determining the shortest path (dotted
line) allows more tokens relevant for the potential interaction to be included in the path.

tools [7]. A dependency parse represents syntax in a form useful for semantic
information extraction [8]. With the Charniak-Johnson parser, we used David
McClosky’s domain-adapted biomodel trained on the biomedical GENIA corpus
and unlabeled PubMed articles [6].

2.4 Feature Representations

We use a component derived from the event argument detector of the Turku
Event Extraction System. This module is designed to detect relations between
two known entities in text, which in this task are the drug-drug pairs. We use
the module in the undirected mode, since the drug-drug interactions do not
have a defined direction in the current task. Our basic feature representation
is the one produced by this system, comprised of e.g. token and dependency n-
grams built from the shortest path of dependencies (See Figure 1), path terminal
token attributes and sentence word count features. The token and dependency
types, POS tags and text, also stemmed with the Porter stemmer [9], are used
in different combinations to build variations of these features.

As a modification of the Turku Event Extraction System event argument de-
tector we remove conj and type dependencies from the calculation of the shortest
path. The event argument edges that the system was developed to detect usu-
ally link a protein name to a defined interaction trigger word (such as the verb
defining the interaction). In the case of DDIs, such words are not part of the
annotation, but can still be important for classification. Dependencies of type
conj and can lead to a shortest path that directly connects a drug entity pair,
without travelling through other words important for the interaction (See Fig-
ure 2). Skipping conj and dependencies increased the F-score on the optimization
set by 0.42 percentage points.

We further improve extraction performance by using external datasets con-
taining information about the drug-drug pairs in the text. DrugBank [16], the
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database on which the DrugDDI corpus is based, contains manually curated in-
formation on known drug-drug interaction pairs. We mark as a feature for each
candidate pair whether it is present in DrugBank, and whether it is there as a
known interacting pair.

We also use the data from the MetaMap (MTMX) [2] version of the DDI
corpus. For both entities in a candidate pair, we add as MetaMap features their
CUI numbers, predicted long and short names, prediction probabilities and se-
mantic types. We also mark whether an annotated drug name has not been given
a known name by MetaMap, and whether both entities have received the same
name. We normalize the prediction probabilities into the range [0,1] and sort
them as the minimum and maximum MetaMap probability for the candidate
pair. For the semantic types, we build a feature for each type of both entities,
as well as each combination of the entities’ types.

2.5 Classification

We tested two similar classifier training methods, the (soft margin) support
vector machine (SVM) [15] and the regularized least-squares (RLS) [11]. Both of
the methods are regularized kernel methods, and are known to be closely related
both theoretically and in terms of expected classification performance [4, 11].

Given a set of m training examples {(xi, yi)}mi=1
, where xi are n-dimensional

feature vectors and y1 are class labels, both methods under consideration can be
formulated as the following regularized risk minimization problem [4]:

w∗ = argmin
w∈Rn

{
m∑

i=1

l
(
xT

i w, yi
)
+ λwTw

}

, (1)

where the first term measures with a loss function l how well w fits the training
data, the second term is the quadratic regularizer that measures the learner com-
plexity, and λ > 0 is a regularization parameter controlling the trade-off between
the two terms. In standard SVM formulations, the regularization parameter is
often replaced with its inverse C = 1

λ . The hinge loss, defined as

l(f, y) = max (1− fy, 0) , (2)

leads to the SVM and the squared loss, defined as

l(f, y) = (f − y)2, (3)

to the RLS classifiers [11], when inserted into equation (1).
Natural language based feature representations are typically characterized by

high dimensionality, where the number of possible features may correspond to
the size of some vocabulary, or to some power of such number. Further, the data
is typically sparse, meaning that most of the features are zero valued. Linear
models are typically sufficiently expressive in such high dimensions. Further,
efficient algorithms that can make use of the sparsity of the data, so that their
computational and memory costs scale linearly with respect to the number of
non-zero features in the training set, are known for both SVM [5] and RLS [11].
For these reasons, we chose to train the models using the linear kernel.
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3 Results

In the experiments the optimization set was used for learner parameter selection.
The final models were trained on all training data, using the learner parameters
that resulted in best performance on the optimization set. For both SVM and
RLS, the regularization parameter value was chosen using grid search on an
exponential grid. The RLS experiments were run using our RLScore open source
software4, whereas the SVM experiments were implemented with the Joachims

SVMmulticlass program5 [14].
Both RLS and SVM models produce real-valued predictions. Typically, one

assigns a data point to the positive class if the prediction is larger than zero, and
to the negative if it is smaller than zero. Since the learning methods are based
on optimizing an approximation of classification error rate, the learned models
may not be optimal in terms of F-score performance. For this reason, we tested
re-calibrating the learned RLS model. We set the threshold at which negative
class predictions change to positive to the point on the precision-recall curve
that lead to the highest F-score on the development set. The threshold was set
to a negative value, indicating that the re-calibration trades precision in order
to gain recall. Due to time constraints the same approach was tested with SVMs
only after the final DDI Extraction 2011 task results had been submitted.

The RLS results of 62.99% F-score are clearly higher than any of the submit-
ted SVM results. This is mostly due to the re-calibration of the RLS model, which
leads to higher recall with some loss of precision, but overall better F-score. A
corresponding experiment with an SVM, performed after the competition, con-
firms that this threshold optimization is largely independent of the classifier used
(See Table 3), although the RLS still has a slightly higher performance. With
755 positives and 6271 negatives in the test set, the all-positive F-score for the
test set is 19.41%, a baseline above which all of our results clearly are.

Adding features based on information from external databases clearly im-
proves performance. Using known DrugBank interaction pairs increases perfor-
mance by 0.94 percentage points and adding the MetaMap annotation a further
0.99 percentage points, a total improvement of 1.93 percentage points over result
number 1 which uses only information extracted from the corpus text.

4 Discussion and Conclusions

The results demonstrate that combining rich feature representations with state-
of-the art classifiers such as RLS or SVM provides a straightforward approach to
automatically constructing drug-drug interaction extraction systems. The high
impact of the threshold optimization on both RLS and SVM results outlines the
importance of finding the optimal trade-off between precision and recall. The
RLS slightly outperforms SVM in our experiments, resulting in our final DDI

4 available at www.tucs.fi/rlscore
5 http://svmlight.joachims.org/svm multiclass.html
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Table 1. DDI Extraction 2011 results. This table shows the extraction performance
for the four results (1-4) submitted for the shared task, as well as a post-competition
experiment (pce). The features are the baseline features, built only from the DDI
corpus, features built from known DrugBank interaction pairs, and features based
on the provided MetaMap annotation. For classification, either an SVM or an RLS
classifier was used, potentially with an optimal threshold for parameter selection.

Result Features Classifier Threshold Precision Recall F-score

1 corpus SVM - 67.05 46.36 54.82
2 corpus+DrugBank SVM - 65.13 48.74 55.76
pce corpus+DrugBank SVM + 62.53 62.12 62.33
3 corpus+DrugBank RLS + 58.04 68.87 62.99
4 corpus+DrugBank+MetaMap SVM - 67.40 49.01 56.75

Extraction 2001 task F-score of 62.99%. Using also MetaMap features with the
RLS classifier setup might further improve performance.

Our results indicate that using additional sources of information, such as
the DrugBank and the MetaMap can lead to gains in predictive performance.
In the DDI Extraction 2011 task using any external databases was encouraged
to maximise performance, but when applying such methods to practical text
mining applications care must be exercised. In particular, using lists of known
interactions can increase performance on well known test data, but could also
cause a classifier to rely too much on this information, making it more difficult to
detect the new, unknown interactions. Fortunately, while external databases in-
crease performance, their contribution is a rather small part of the whole system
performance, and as such can be left out in situations that demand it.

At the time of writing this paper, the other teams’ results in the DDI Shared
Task are not available, so we can’t draw many conclusions from our performance.
The F-score of 62.99% is clearly above the all-positive baseline of 19.41%, in-
dicating that the basic machine learning model is suitable for this task. The
performance is somewhat similar to Turku Event Extraction System results for
comparable relation extraction tasks in the BioNLP’11 Shared Task, such as
the Bacteria Gene Interactions (BI) task F-score of 77% and the Bacteria Gene
Renaming (REN) task text-only features F-score of 67.85% [1].

For the DDI corpus, to the best of our knowledge, the only available point
of comparison is the task authors’ F-score of 60.01% using a shallow linguistic
kernel [13]. For the DDI Extraction 2011 task the corpus has been somewhat
updated and the training and test set division seems slightly different. Even if
these results are not directly comparable, we can presume our result to be in
roughly the same performance range.

We have extended the Turku Event Extraction System for the task of DDI
extraction, and have developed optimized feature and machine learning models
for achieving good performance. We hope our work can contribute to further
developments in the field of DDI extraction, and will publish our software for
download from bionlp.utu.fi under an open source license.
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Abstract. This paper describes the systems developed for the DDI Ex-
traction challenge. The systems use machine learning methods and are
based on SVM by using LIBSVM and SVMPerf tools. Classical features
and corpus-specific features are used, and they are selected according to
their F-score. The best system obtained an F-measure of 0.5965.

Keywords: relation extraction, machine-learning methods, feature se-
lection, drug-drug interaction, LIBSVM, SVMPerf

1 Introduction

In this paper 4, we present our participation to DDI Extraction challenge. The
task was to detect if two drugs in the same sentence are in interaction or not. For
example in (1) there is an interaction between HUMORSOL and succinylcholine,
and between HUMORSOL and anticholinesterase agents, but not between suc-

cinylcholine and anticholinesterase agents.

(1) Possible drug interactions of
�

�

�

�HUMORSOL with
�

�

�

	
succinylcholine or with other

�

�

�

	
anticholinesterase agents .

The high number of features relevant to recognize the presence of an in-
teraction between drugs in sentence, conducts us to propose systems based on
machine-learning methods. We chose classifiers based on SVM because they are
used in state-of-art systems for relation extraction. We tested two classifiers:
LIBSVM [Chang and Lin2001] and SVMPerf [Joachims2005]. We thought that
SVMPerf could improve the classification of the not well represented class, i.e.
the interaction class (only 10% of drugs pairs are in interaction), because it gives
more tolerance of false positives for the under-represented class. We also worked
on feature selection in order to keep the most relevant features. In a first section,

4 This work has been partially supported by OSEO under the Quaero program.
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we briefly describe the corpus and the knowledge it enables us to compute based
on recurrent relations between same drugs. Then we describe our solution that
makes use of LIBSVM and the studies we have done concerning first feature
selection to improve the classification made by LIBSVM and second the use of
another classifier SVMPerf. We then show the results obtained by our systems.

2 Corpus

2.1 Description

For the challenge we disposed of two corpora composed of biomedical texts col-
lected from the DrugBank database and annotated with drugs [Segura-Bedmar et al.2011].
The development corpus was annotated with drug-drug interactions, and the
evaluation corpus was annotated with drugs. We chose to use the corpora in the
Unified format. The development corpus is composed of 435 files, which con-
tain 23,827 candidate pairs of drugs including 2,402 drug-drug interactions. The
evaluation corpus contains 144 files and 7,026 candidate pairs containing 755
interactions. We split the development corpus into training (1,606 interactions)
and test (796 interactions) sub-corpora for the development of our models.

2.2 Knowledge Extracted from the Corpus

For each pair of entities in the development corpus, we searched if this pair is
often found in interaction or never in interaction in the corpus. The results of
this study are shown in table 1. Between brackets, we indicate the number of
pairs that appear at least twice. For example, there are 91 pairs of drugs that
always interact and appear more than twice in the corpus.

Table 1. Number of pairs in the development corpus

training corpus

# entities couple 14,096

# never interact 12,163 (2,706)

# always interact 1,047 (91)

# interact and not 886

These results are kept in a knowledge base that will be combined with the
results of the machine-learning method (see 5.1). We can see that the most
relevant information coming from this kind of knowledge concerns the absence
of interaction.

3 Classification with LIBSVM

We first applied LIBSVM with the features described in [Minard et al.2011] for
the i2b2 2010 task about relation extraction. We wanted to verify their relevance
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for this task. The system we developed use classical features ([Zhou et al.2005],
[Roberts et al.2008]). We added to them some features related to the writing
style of the corpus and some domain knowledge. For each pair of drugs all the
features are extracted. If there are four drugs in the same sentence, we consid-
ered six pairs of drugs. In this section, we describe the sets of features and the
classifier.

3.1 Features

We first defined a lot of features, and then with the training and test corpus
we did several tests and we kept only the most relevant combination of features
for this task. In this section we described the features kept for the detection of
interaction.

3.1.1 Coordination
To reduce the complexity of sentences we processed sentences before feature

extraction to delete entities (tagged as drug) in coordination with one of the
two candidate drugs. We added three features: the number of deleted entities,
the coordination words that are the triggers of the deletion (or, and, a comma),
and a feature which indicates that the sentence was reduced. This reduction is
applied on 33% pairs of drugs in the training corpus.

3.1.2 Surface Features
The surface features take into account the position of the two drugs in the

sentence.

– Distance (i.e. number of words 5) between the two drugs: in the development
corpus 88% of drugs in interaction are separated by 1 to 20 words. The value
of this feature is a number, and not one or zero like other features.

– Presence of other concepts between the two entities: for 82% of the entity
pairs in relation in the development corpus there are no other drugs between
them.

3.1.3 Lexical Features
The lexical features are composed by the words of the contexts of the two

entities, including verbs and prepositions which often express interaction.

– The words and stems 6 which constitute the entities. The stems are used
to group inflectional and derivational variations altogether.

– The stems of the three words at the left and right contexts of candidate
entities. After several tests we chose a window of three words; with bigger
or smaller windows, precision lightly increases but recall decreases.

5 The words include also the punctuation signs.
6 We use the PERL module lingua::stem to obtain the stem of the word:
http://snowhare.com/utilities/modules/lingua-stem/.
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– The stems of the words between candidate concepts, to consider all the
words between concepts; the most important information for the classifica-
tion is located here.

– The stems of the verbs in the three words at the left and right of candidate
concepts and between them. The verb is often the trigger of the relation: for
example in (2) the interaction is expressed by interact.

(2)
�

�

�

	
Beta-adrenergic blocking agents may also interact with

�

�

�

	
sympathomimetics .

– The prepositions between candidate concepts, for example with in (3).

(3)
�

�

�

	
d-amphetamine with

�

�

�

	
desipramine or protriptyline and possibly other tri-

cyclics cause striking and sustained increases in the concentration of d-amphetamine
in the brain;

3.1.4 Morpho-Syntactic Features
This features take into account syntactic information for expressing relations.

– Morpho-syntactic tags of the three words at the left and right of candidate
entities: the tags come from the TreeTagger [Schmid1994].

– Presence of a preposition between the two entities, regardless of which
preposition it is.

– Presence of a punctuation sign between candidate entities, if it is the
only “word”.

– Path length in the constituency tree between the two entities: the con-
stituency trees are produced by the Charniak/McClosky parser [McClosky2010].

– Lowest common ancestor of the two entities in the constituency tree.

Figure 1 represents the constituency tree for example (2). The length of the
path between Beta-adrenergic blocking agents and sympathomimetics is 9 and
the common ancestor is S.

Fig. 1. Example of a constituency tree

3.1.5 Semantic Features
In order to generalize information given by some terms, we also give to the

classifier their semantic types.
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– Semantic type (from the UMLS) of the two entities. In the example (2)
the entity sympathomimetics has the semantic type pharmacologic substance.

– VerbNet classes 7 (an expansion of Levin’s classes) of the verbs in the
three words at the left and right of candidate concepts and between them.
For example increase is member of the same class as enhance, improve, etc.

– Relation between the two drugs in the UMLS: in the development
corpus 57 kinds of relation are found. There is a relation in the UMLS for
5% of drugs pairs in the development corpus. For example, in the UMLS
there is a relation tradename of between Procainamide and Pronestyl (4),
so the two entities cannot be in interaction.
(4) -

�

�

�

�Procainamide (e.g.,
�

�

�

	
Pronestyl ) or

3.1.6 Corpus-Specific Features
These kinds of features are specific to the DDI corpus.

– A feature indicates if one of the two drugs is the most frequent drug
in the file. Each file is about one particular drug, so most of the interaction
described in the file is between it and another drug.
A lot of sentences begin with a drug and a semi-colon, like sentence (5). A
feature encodes if one of the two drugs is the same as the first drug
in the sentence.
(5)

�

�

�

	
Valproate :

�

�

�

	
Tiagabine causes a slight decrease (about 10%) in steady-state

�

�

�

	
valproate concentrations.

– A feature is set if one of the two entities is refered to by the term
“drug”: in the training corpus 520 entities are “drug”. In this case the
expression of the relation can be different (6).
(6) Interactions between

�

�

�

�Betaseron and other
�

�

�

	
drugs have not been fully eval-

uated.

3.2 Classifier

We used the LIBSVM tool with a RBF kernel. c and gamma parameters were
chosen by the tool grid.py with the train corpus for test: c was set at 2 and
gamma at 0.0078125. For each class we determined a weight on the parameter c
to force the system to classify in the class of interaction. We did tests to choose
the value of the weight: for the class of non-interaction the weight is 2 and for
the interaction class the weight is 9.

4 Studies from LIBSVM results

This first system obtained 0.56 F-measure on the test corpus. We then made
studies on two axes. As the number of features is great, we studied how to
reduce it in order to improve the classification. We also studied the application
of another classifier which could give more tolerance to false positive to improve
the performance of prediction with unbalanced data.

7 http://verbs.colorado.edu/∼mpalmer/projects/verbnet.html
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4.1 Feature Selection

We did a selection of features thanks to the F-score of each feature computed
as in [Chen and Lin2006] on the training corpus, prior to the training of the
classifier. Given a data set X with m classes, Xk the set of instances in class k,
and |Xk| = lk, k = 1, ...,m. Assume x̄k

j and x̄j are the average of the j th feature

in Xk and X, respectively. The Fisher score of the jth feature of this data set
is defined as:

F̂ (j) =
SB(j)

SW (j)
,

where

SB(j) =
m∑

k=1

lk(x̄
k
j − x̄j)

2, SW (j) =
m∑

k=1

∑

x∈Xk

(xj − x̄k
j )

2

We used the tool fselect.py, provided with the LIBSVM library. We defined
different thresholds under which we deleted the features. We classified the fea-
tures in four classes: the semantic class, the morpho-syntactic class, the lexical
class and a class with the other features (syntactic, surface, corpus-specific and
coordination features). We did tests with different combinations of thresholds for
each features class. The best combination of thresholds is described in table 2.
This improvement lead to an F-measure of 0.59 on the test corpus. On the full
training corpus, we have 368 fewer features after selection, i.e. a total of 9741
features.

Table 2. Best combination of thresholds for feature selection

Semantic class 0.001

Morpho-syntactic class 0.000001

Lexical class 0

Other 0.000004

4.2 SVMPerf

We also tested the SVMPerf tool with a linear kernel. This tool is faster than
LIBSVM and optimizes different measures of performance like F1-score or ROC-
Area in binary classification. This last measure (ROCArea) allows to choose
between different training models. The model is optimal if ROCArea=1, which
is the probability to affect the right class to each instance. After training, we
changed the value of the threshold b from 1.5 to 1.2. This value was the optimal
threshold between the different values that we tested; it increases the perfor-
mance of prediction with more tolerance of false positives. The c parameter was
set at 20 after test of several values with the training corpus.

5 Experimentations and Results

In this section we describe the particularity of each developed system, and finally
we give the results obtained at DDI Extraction 2011.
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5.1 Experimentations

1. LIMSI-CNRS 4: LIBSVM (baseline)
This system is the baseline described in 3.

2. LIMSI-CNRS 2: LIBSVM + feature selection
This system uses lIBSVM with feature selection.

3. LIMSI-CNRS 3: LIBSVM + feature selection (bis)
This system is the same as the previous one, but the c and gamma parameters
differ. The parameters are calculated on the development corpus. The c
parameter was set at 2048 and the gamma parameter at 0.0001220703125.

4. LIMSI-CNRS 1: LIBSVM + feature selection + knowledge
This system is based on LIBSVM. After the classification we combined the
prediction of the classifier and the knowledge (cf. section 2.2) in case that
their decisions differ. The combination is done as follows: for the class of
non-interaction, if the couple exists in the knowledge base and the decision
value provided by the classifier is lower than 0.1, the resulting class is the
class of the knowledge base. For the interaction class, we keep the class of
the knowledge base when the classifier decision value is lower than -0.5.

5. LIMSI-CNRS 5: LIBSVM + SVMPerf (+ feature selection)
We combine the performance of SVMPerf and LIBSVM by comparing the
decision values from each tool. If the two decision values are lower than 0.5,
we use the LIBSVM prediction, otherwise we use the prediction with the
highest decision value.

5.2 Results and Discussion

The results of the different runs are presented in table 3. The best F-measure
is 0.5965 and was obtained by the system which used LIBSVM and combined
the prediction of the classfier with the knowledge about pairs of drugs in the
training corpus. This F-measure is not significantly different with the F-measure
obtained by the system which used LIBSVM without using the knowledge about
pairs of drugs in the corpus. So the use of information about the presence or not
of the pairs of drugs in the training corpus is not useful for the identification of
drugs interaction because the intersection of drugs pairs in the development and
evaluation corpus is small (cf. Table 4). There are only 15 pairs that are always
in interaction in the development corpus and the evaluation corpus. The best
improvement is given by feature selection: without feature selection the system
obtained an F-measure of 0.57 and with feature selection of 0.59. However, we
can notice that the combination of the two classifiers improve precision.

6 Conclusion

For the DDI Extraction challenge, we developed several methods based on SVM.
We showed that a selection of features according to their F-measure improve
interaction detection. Reducing the number of features leads to a 0.02 increase
of the F-measure. We also showed that SVMPerf is not as efficient as libSVM
for this task on this kind of unbalanced data.
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Table 3. Results

Precision Recall F-measure

LIBSVM (baseline) 0.5487 0.6119 0.5786

LIBSVM + feature selection 0.5498 0.6503 0.5959

LIBSVM + feature selection (bis) 0.4522 0.5139 0.4811

LIBSVM + feature selection + knowledge 0.5518 0.6490 0.5965

LIBSVM (+ feature selection) and SVMPerf 0.5856 0.4940 0.5359

Table 4. Intersection between the pairs in the development and the evaluation corpus

development corpus

# never
interact

# always
interact

# not in development
corpus

total

ev
a
lu
a
ti
o
n

co
rp
u
s # never interact 1,323 100 2,929 4,352

# always interact 25 15 329 369
# not in evaluation corpus 10,772 1,008
total 12,120 1,123
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Abstract. A Drug-Drug Interaction (DDI) occurs when the effects of
a drug are modified by the presence of other drugs. DDIExtraction2011
proposes a first challenge task, Drug-Drug Interaction Extraction, to
compare different techniques for DDI extraction and to set a benchmark
that will enable future systems to be tested. The goal of the competition
is for every pair of drugs in a sentence, decide whether an interaction
is being described or not. We built a system based on machine learning
based on bag of words and pattern extraction. Bag of words and other
drug-level and character-level have been proven to have a high discrim-
inative power for detecting DDI, while pattern extraction provided a
moderated improvement indicating a good line for further research.

1 Introduction

A Drug-Drug Interaction (DDI) occurs when the effects of a drug are modified
by the presence of other drugs. The consequences of a DDI may be very harmful
for the patient’s health, therefore it is very important that health-care profes-
sionals keep their databases up-to-date with respect to new DDI reported in the
literature.

DDIExtraction2011 proposes a first challenge task, DDI Extraction, to com-
pare different techniques for DDI extraction and to set a benchmark that will
enable future systems to be tested. The goal of the competition is for every pair
of drugs in a sentence, decide whether an interaction is being described or not.
The corpus used was the DrugDDI corpus [1]. Two formats of the corpus were
provided, MMTx format and Unified format. Our system uses Unified format,
which only contains labels for drugs. Table 1 shows the corpus statistics4.

The paper is structured as follows: Section 2 overviews related work. Section 3
describes the system used as well as its features. In section 4 we discuss the
evaluation and results and in Section 5 we draw some conclusions.
4 These statistics cover only documents and sentences that contain, at least, one drug
pair.
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Table 1. DrugDDI corpus statistics.

Training Test Total

Documents 399 134 533
Sentences 2812 965 3777
Pairs of drugs 23827 7026 30853
Interactions 2397 755 3152

2 Related Work

Even though the problem of DDI extraction is relatively new, some authors
have already presented approximations to solve it. In [2], the author presents
two approximations to face the problem: a hybrid approach, combining shallow
parsing and matching of patterns described by a pharmacist; and an approxi-
mation based on kernel methods that obtained better results that the hybrid
approach, reaching 55% precision and 84% recall.

In [3] the authors propose a first approximation for DDI detection based
on automatically determining the patterns that identify DDI from a training
set. The patterns extracted were Maximal Frequent Sequences (MFS), based on
[4]. In this work, the identified MFS were used to determine whether a sentence
contains or not a description of a DDI, without identifying the pair of interacting
drugs. MFS have been useful in different tasks such as text summarization [5],
measuring text similarities [6] and authorship attribution [7]. MFS will also be
part of our approximation, and will be defined further on.

Protein-Protein Interaction (PPI) extraction is an area of research very sim-
ilar to DDI extraction that has received a bigger attention from the scientific
comunity. The BioCreative III Workshop hosted two tasks of PPI document clas-
sification and interaction extraction [8]. Some of the features present in a wide
range of participants were bag-of-words, bigrams, co-occurrences and character
ngrams. This kind of features will have a key role in our system. In [9] the authors
use patterns as one of their main features to extract PPI. In [10], the authors
use a hybrid approach with clustering and machine learning classification using
Support Vector Machines (SVM).

3 Our System

We built a system based on machine learning5, therefore we had to define a
feature set to estimate the model. Each sample is one possible interaction, this
is, each unique combination of two drugs appearing in a sentence of the corpus.
Given the small size of the corpus and the difficulty of properly estimating the
model, it was necessary to represent the features in a reduced space.

The first step was to preprocess the corpus. For doing so, each sentence was
tokenized6 with standard English tokenization rules (e.g. split by spaces, removal

5 We used RapidMiner for every classification and clustering model. Available at http:
//rapid-i.com/.

6 The tokenization was performed with Apache Lucene. Available at http://lucene.
apache.org.
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of apostrophes, conversion to lower case, removal of punctuation marks) with the
following particularities:

– Each group of tokens that represent a drug were replaced by #drug#.

– Numbers were replaced by num .

– Stop words were not removed.

– Stemming was applied7.

– Percentage symbols were preserved as independent tokens.

In the following subsections, we will describe the different features used in
the system.

3.1 Bag of Words

From the set of all words appearing in the preprocessed corpus, we discarded
those with a frequency lower than 3 and stop words. With the resulting set of
words, we generated a dataset where each sample was a possible interaction in
the corpus and each feature was the presence or not of each word between the
two drugs of the potential interaction. Using this dataset, every word was ranked
using information gain ratio with respect to the label 8. Then, every word with
an information gain ratio lower than 0.0001 was discarded. The presence of each
of the remaining words was a feature in the final dataset. Finally, 1,010 words
were kept.

Samples of words with a high gain ratio are: exceed, add, solubl, amphetamin,
below, lowest, second, defici, occurr, stimul and acceler.

3.2 Word Categories

In biomedical literature complex sentences are used very frequently. MFS and
bag of words are not able to capture relations that are far apart inside a sen-
tence. To somehow reflect the structure of the sentence, we defined some word
categories. This way, we can have some information about dependent and in-
dependent clauses, coordinate and subordinate structures, etc. Some of these
categories were also included in [2]. We added two categories that include abso-
lute terms and quantifiers, as well as a category for negations. Table 2 enumerates
the words included in each category.

For each word category we defined two features. One indicating how many
times the words in the category appeared in the sentence, and the other indi-
cating how many times they appeared between the two drugs of the potential
interaction.

7 The stemming algorithm used was Snowball for English. Available at http://

snowball.tartarus.org.
8 Information Gain Ratio was calculated using Weka. Available at http://www.cs.

waikato.ac.nz/ml/weka/.
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Table 2. Word Categories.

Category Words included

Subordinate after, although, as, because, before, if, since, though, unless, until, what-
ever, when, whenever, whether, while.

Independent markers however, moreover, furthermore, consequently, nevertheless, therefore.
Appositions like, including, e.g., i.e.
Coordinators for, and, nor, but, or, yet, so.
Absolute never, always.
Quantifiers higher, lower.
Negations no, not.

3.3 Maximal Frequent Sequences

Similar to bag of words, we used sequences of words as features. For this, we used
Maximal Frequent Sequences (MFS).9 Following [4], a sequence is defined as an
ordered list of elements, in this case, words. A sequence is maximal if it is not
a subsequence of any other, this is, if it does not appear in any other sequence
in the same order. Given a collection of sentences, a sequence is β-frequent if it
appears in at least β sentences, where β is the defined frequency threshold. MFS

are all the sequences that are β-frequent and maximal.
We extracted all the MFS from the training corpus, with a β of 10 minimum

length of 2. Given the size of the corpus, sometimes very long MFS have no capa-
bility to generalize knowledge because they sometimes represent full sentences,
instead of patterns that should be frequent in a kind of sentence. To avoid this,
we restricted the MFS to a maximum length of 7 words. With this, we obtained
1.010 patterns. In order to reduce the feature space we calculated clusters of
MFS.

Clusters were calculated with the Kernel K-Means algorithm [11], using ra-
dial kernel, with respect to the relative frequency of each MFS in the following
contexts: a) sentences, b) sentences containing an interaction, c) MFS appearing
between two drugs, c) MFS appearing before the first drug of an interaction
and d) MFS appearing after the last drug of an interaction. Clustering helped
to avoid pattern redundancy. This was necessary because some patterns could
be considered equivalent since they only differed in one or a few words not rele-
vant in the context of DDI. We obtained 274 clusters. Each of this clusters is a
feature of the final dataset which is set to 1 if, at least, one of the MFS of the
cluster matches with the potential interaction. The matching algorithm is shown
in Algorithm 1.

3.4 Token and Char Level Features

At the token and char level, several features were defined. We must recall that,
during preprocessing, every token or group of tokens labeled as drugs where
replaced by the token #drug#. Table 3 describes this subset of features. Each
one of these features appears twice in the final dataset, once computed on the

9 We used a proprietary library by bitsnbrains, http://bitsnbrains.net.
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Algorithm 1: MFS matching algorithm.

Input: mfs, sentence, drug1index, drug2index
Output: match
startThreshold ← 0
endThreshold ← 0
if ”#drug#” ∈ mfs then

startThreshold ← First index of ”#drug#” in mfs
endThreshold ← length(mfs)− last index of ”#drug#” in mfs

startIndex ← drug1index− startThreshold
if startIndex < 0 then

startIndex ← 0
endIndex ← drug2index+ endThreshold
if endIndex > length(sentence) then

endIndex ← length(sentence)
textBetweenDrugs ← Substring of sentence from index startIndex to
endIndex
if mfs is subsequence of textBetweenDrugs then

match ← 1
else

match ← 0

whole sentence and once computed only in the text between the two drugs of
the potential interaction.

Table 3. Token and char level features.

Feature Description

Tokens Number of tokens.
Token #drug# Number of times the #drug# token appears.
Chars Number of chars.
Commas Number of commas.
Semicolons Number of semicolons.
Colons Number of colons.
Percentages Number of times the character % appears.

3.5 Drug Level Features

With the features defined so far, we have not taken into account the two drugs
of the potential interaction. We believe this is important in order to have more
information when deciding wether if they interact or not.

For each document, we calculated the main drug as the drug after which the
document was named, this is, the name of the article of the DrugBank database
where the text was extracted from. In the case of scientific articles, the main
drug would be calculated as the drug or drug names appearing in the title of the
article, if any. Also for each document, we calculated the most frequent drug as
the token labeled as drug that appeared more times in the document.
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We noticed that, sometimes, drugs are referred to using their trade names. To
ensure good treatment of drugs in the drug level features, we replaced each trade
name with the original drug name10. Table 4 describes the drug level features.

Table 4. Drug level features for candidate interactions (CI)

Feature Description

Main drug True if one of of the two drugs in the CI is the document name.
Most frequent drug True if one of the two drugs in the CI is the most frequent drug

in the document.
Cross reference True if, at least, one of the two drugs in the CI is drug,medication

or medicine.
Alcohol True if, at least, one of the two drugs in the CI is alcohol or

ethanol.
Is same drug True if both drugs in the CI are the same.

3.6 Classification Model

During preliminary research, we explored the performance of a wide range of
classification models, notably Support Vector Machines, Decision Trees and mul-
tiple ensemble classifiers such as Bagging, MetaCost and Random Forests [12].
Our best choice was Random Forest with 100 iterations and 100 attributes per
iteration.

4 Evaluation

We evaluated our model with standard performance measures for binary classi-
fication: Precision (P), Recall (R) and F-Measure (F). For each label, our model
outputs a confidence value. In order to decide the label, we define a confidence
threshold above which the decision will be positive and below which it will be
negative. A quick way to visualize every possible set up of the system is the
PR curve, where P and R are ploted for different confidence thresholds. Analo-
gously, we can plot F-Measure and confidence thresholds to visualize the opti-
mum threshold with respect F-Measure. AUC-PR is defined as the area under
the PR curve. AUC-PR is a very stable measure to compare binary classification
models.

We are evaluating the performance of our system for the test set, with and
without MFS. Figure 1 shows PR and F curves for both settings. The PR curves
are convex, which makes the decision of an optimum threshold much easier and
less risky. Table 5 shows Precision, Recall, F-Measure, AUC-PR, precision at
recall 0.8 and recall at precision 0.8 for test with MFS.

10 Trade names were extracted from the KEGG DRUG database, from the Kyoto
Encyclopedia of Genes and Genomes. Available at http://www.genome.jp/kegg/

drug/
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MFS improve moderately the performance of the system, increasing about
0.02 in AUC-PR. We expected more influence of MFS. Patterns were extracted
using all sentences, even the ones that did not include any drug interaction. We
believe that this could have reduced the performance.
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Fig. 1. PR and F curves for test with and without MFS.

Table 5. Performance measures for test with and without MFS.

P R F AUC-PR P@R 0.8 R@P 0.8

Test 0.6122 0.5563 0.5829 0.6341 0.4309 0.3205
Test w/o MFS 0.6069 0.5563 0.5805 0.6142 0.4113 0.2808

5 Conclusions

We presented a system for DDI extraction based on bag-of-words and Maximal
Frequent Sequences, as used for the DDIExtraction2011 competition. Our sub-
mission obtained a F-Measure of 0.5829 and a AUC-PR of 0.6341 for the test
corpus. Our system can be set up to reach recall of 0.3205 with a precision of
0.8, or precision of 0.4309 and a recall 0.8. The use of MFS increased AUC-PR
by 0.02.

One of the main problems we have encountered is the complexity of the
language structures used in biomedical literature. Most of the sentence contained
appositions, coordinators, etc. Therefore it was very difficult to reflect those
structures using MFS. The reduced size of the corpus is also a serious limitation
for our approach.

Our system should be improved by complementing it with other state-of-
the-art techniques used in the PPI field that have not been explored yet during
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our participation, such as character n-grams and co-occurrences. It could also
be improved by extracting MFS with reduced restrictions and improving the
clustering step.
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Abstract. Drug-Drug Interaction (DDI) extraction from the pharmacological 
literature is an emergent challenge in the text mining area. In this paper we 
describe a DDI extraction system based on a machine learning approach. We 
propose distinct solutions to deal with the high dimensionality of the problem 
and the unbalanced representation of classes in the dataset. On the test dataset, 
our best run reaches an F-measure of 0.4702.  

Keywords: Drug-drug interaction, machine learning, unbalanced classification, 
feature selection. 

1 Introduction 

One of the most relevant problems in patient safety is the adverse reaction caused by 
drugs interactions. In [3], it is claimed that 1.5 million adverse drug events and tens of 
thousands of hospital admissions take place each year. A Drug-Drug Interaction 
(DDI) occurs when the effect of a particular drug is altered when it is taken with 
another drug. The most updated source to know DDI is the pharmacological 
specialized literature. However, the automatic extraction of DDI information from 
this huge document repository is not a trivial problem. In this scenario, text mining 
techniques are very suitable to deal with this kind of problems. 

Different approaches are used in DDI extraction. In [9], the authors propose a 
hybrid method based on linguistic and pattern rules to detect DDI in the literature. 
Linguistic rules grasp syntactic structures or semantic meanings that could discover 
relations from unstructured texts. Pattern-based rules encode the various forms of 
expressing a given relationship. As far as we know, there are not many works 
applying machine learning approaches to this task due to the inexistence of available 
corpora. In [10] a SVM classifier was used to extract DDI into the DrugDDI corpus. 
However, in the similar problem of protein-protein interaction (PPI) has been widely 
used obtaining promising effectiveness, as in [7]. The main advantages of this 
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approach are that they can be easily extended to new set of data and the development 
effort is considerably lower than manual encoding of rules and patterns. 

In this paper we present a machine learning approach to extract DDI using the 
DrugDDI corpus [10]. Natural Language Processing (NLP) techniques are used to 
analyze documents and extracting features which represent them. The unbalanced 
proportion between positive and negative classes in the corpus suggest us the 
application of sampling techniques. We have experimented with several machine 
learning algorithms (SVM, Naïve Bayes, Decision Trees, Adaboost) in combination 
with feature selection techniques in order to reduce the dimensionality of the problem. 

 
The paper is organized as follows. The system architecture is presented in section 

2. In Section 3 we describe the set of features that represents each pair of drugs which 
appears in the documents. Also we present the feature selection methods used to 
reduce the initial set of attributes. Next, Section 4 describes the techniques that we 
have used to deal with this unbalanced classification problem. In Section 5 we 
evaluate the results obtained with the training corpus. The results on the test corpus 
are presented in Section 6. Finally, the conclusions are in Section 7. 

Fig. 1. System Architecture Diagram. 
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2 System Architecture 

Two different document formats has been provided by the organizers, the Unified 
format and the MMTx format. We have used this last one to develop and testing our 
system.   

The words around the drugs in a sentence have been selected as attributes of the 
database because they could provide clues about the existence of interaction between 
two drugs. We have experimented using the words as they appear in the documents 
and, in other cases, with the lemmas provided by the Stanford University morphologic 
parser1. 

For each drug pair in a sentence a set of features was extracted. The main features 
were focused on keywords, distances between drugs and drug semantic types. In the 
next section, a more detailed description of each attribute is done. 

In order to carry out the experimentation, the DB of Features was split in two 
datasets for training and testing. We have used 2/3 of the original DB for training the 
classifier. The remaining 1/3 was used to test the system during the development 
phase. 

Before training the classifier we have experimented with two preprocessing 
techniques. Because this problem is an unbalanced classification task we have carried 
out sampling techniques. Also, to reduce the dimensionality of the dataset a feature 
selection technique was performed. To obtain the model, we have experimented with 
several machine learning algorithms (SVM, Naïve Bayes, Decision Trees, Adaboost). 

With each obtained model an evaluation was completed using the test dataset. The 
results obtained in this evaluation are shown in Section 5. 

3 Feature Extraction and Selection 

The most important part in this kind of classifying problem is to choose the set of 
features that represents as well as possible each pair of drugs. It means that we need to 
find those features that provide important information for differentiating pairs of 
drugs with interaction of pairs without interactions. 

In this section we describe the features we have chosen to build the dataset.  

3.1 Features 

Firstly, we have extracted the drug ID, which indicates the sentence and the phrase of 
the dataset to which the drug belongs to. 

Secondly, a feature subset composed by keywords was chosen. Each attribute is 
represented by a binary value that means the presence or absence of this keyword. 
Three windows of tokens have been considered to locate the keywords: between the 
first and the second drug, before the first drug and after the second drug. In the last 
two cases, only three tokens were taken into account. 

                                                           
1 http://nlp.stanford.edu/index.shtml 
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In this work, a keyword is a word that could provide relevant information about 
whether a pair of drugs interacts or not. In order to build the list of keywords we 
extracted all the words between each pair of drugs, before the first drug or after the 
second drug, according the case. This set of words was filtered by a short list of stop-
words. The POS tag of each word has been taken into account to make the selection. 
In this sense, we thought that verbs have an important semantic content, so we 
decided to include all of them into the final list. With respect to the nouns, we did a 
manual selection choosing those nouns that could be related semantically with drug 
interactions. Finally, in the case of prepositions, adverbs and conjunctions, we 
selected those that could be related with negation or frequency. 

We have experimented using the keywords as they appear in the documents and, in 
other cases, with the lemmas provided by the Stanford University morphologic 
analyzer. In this case, the number of keywords was reduced because distinct verb 
tenses or plurals of a word were reduced to their lemmas, obtaining a total of 459 
attributes. 

Next, we added to the feature set the distance, in number of words and phrases, 
between the drugs. Also we included two features that represent the semantic type of 
each drug (represented by integer numbers). 

Finally, the feature set is completed with the class, a binary value, where 1 means 
drug interaction and 0 if the pair does not interact. 

As we can see in Table 1, we have extracted a total of 600 features from the 
original dataset to build the develop dataset. 

Table 1.  Feature set without lemmatization of the keywords. 

Feature Type Number of features 
Drugs ID Integer 2 
Keywords before first drug Binary 153 
Keywords between drugs Binary 243 
Keywords after second drug Binary 197 
Number of words between drugs Integer 1 
Number of phrases between drugs Integer 1 
Drug semantic types Integer 2 
Class Binary 1 
Total  600 

3.2   Feature selection 

Due to the high dimensionality of the training dataset, we have experimented with 
chi-squared feature selection method [8]. This method returns a ranking of the 
features in decreasing order by the value of the chi-squared statistic with respect to 
the class. We selected the attributes which the statistic had a value greater than 0. The 
resulting dataset, in the case of keywords without lemmatization, had 496 attributes. 
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4 Unbalanced Classification   

As shown in Table 2, there are 23827 drug pairs in the develop dataset and only 2409 
are real drug interactions. Therefore, the positive class is nearly the 10% (9.89%) of 
the total number of instances. It is a classification task with unbalanced classes. To 
deal with this problem we have used the SMOTE algorithm [2] in order to balance the 
classes. 

Several classification algorithms have been selected in order to obtain the best 
effectiveness results with respect to the F-measure of the positive class. We have used 
the Weka [4] implementation of the following algorithms: RandomForest [1], Naïve 
Bayes [5], SMO [6] and MultiBoosting [11]. 

In some cases, to build the classification model, we have applied a cost sensitive 
matrix in order to penalize false positives. 

5 Experimentation on Training Corpus 

The develop corpus contains a collection of pharmacological texts labeled with drug 
interactions. This collection consists of 4267 sentences extracted from a total of 435 
documents, which describe the interactions between drugs (Drug Drug Interactions or 
DDI). From these documents we have extracted 23827 drug pairs as possible cases of 
interaction. In total, there are 2409 instances corresponding to drug interactions and 
21418 instances where there is no interaction between drugs. 

Table 2 summarizes the training corpus statistics. 

Table 2.  Training corpus statistics. 

Total different documents (files) 435 
Number of documents containing, at least, one drug 412 
Number of documents containing, at least, one drug pair 399 
Total number of sentences 4267 
Total number of drugs 11260 
Total number of drug pairs 23827 
Number of drug interactions 2409 
Total entities that participate in a pair 10374 
Average drug per document (documents and sentences with pairs) 25.88 
Average drug per sentence (sentences with pairs) 4.67 

 
In the experiment phase, we divided the dataset into two new datasets for training 

and testing, respectively. The training dataset consists of 2/3 of the total instances 
(15885). The test dataset consists of the remaining instances (7942). 

The distribution of the instances for training and test datasets was done at random, 
keeping the percentage of instances with drug interaction and no interaction (10% and 
90%, respectively). 

Table 3 shows the effectiveness results for precision, recall and F-measure on the 
positive class of the 10 best evaluations. Each row of the table indicates a different 
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combination of classification algorithm, cost sensitive training, feature selection, 
sampling and keyword lemmatization.  

As can be seen, the best results are obtained with the RandomForest algorithm. 
Moreover, the cost sensitive training, feature selection, sampling and lemmatization 
of the keywords contribute to achieve the best F-measures. 

Table 3.  Evaluation on training corpus. The second column is the classification algorithm. For 
RandomForest algorithm, the I parameter means the number of trees used to train the model. 
The CST column indicates whether the model has been built using a cost sensitive training. 

Different cost sensitive matrixes have been used in the experimentation phase. The FS column 
shows when feature selection has been carried out. The Sampling column has the same meaning 

with the application of SMOTE algorithm. Finally, KW Lem. column shows a lemmatization 
process has been performed.  

RUN Classification algorithm CST FS Sampling KW Lem. Precision Recall F-Measure 
1 RandomForest (I = 50) X X X  0.573 0.617 0.595 
2 RandomForest (I = 50) X X X X 0.578 0.610 0.594 
3 RandomForest (I = 10) X X X X 0.500 0.654 0.567 
4 RandomForest (I = 10) X  X X 0.492 0.644 0.558 
5 RandomForest (I = 10) X X X  0.565 0.548 0.556 
6 RandomForest (I = 10) X X X  0.469 0.677 0.554 
7 RandomForest (I = 50) X   X 0.645 0.472 0.545 
8 MultiBoosting  X X  0.674 0.443 0.535 
9 RandomForest (I = 10) X  X  0.544 0.520 0.532 

10 RandomForest (I = 10) X    0.587 0.471 0.523 

6 Results on Test Corpus   

In order to send runs with different characteristics, we didn't send the five runs with 
higher value of F-measure. According to Table 3, runs 1, 2, 4, 7 and 8 were 
submitted. We chose this strategy because we did not know the characteristics of the 
test corpus. 

In Table 4, we present the results obtained for the five submitted runs. The 
approaches that obtain the best results on the training dataset coincide with the 
obtained on the test dataset. Although there are not significant differences between 
precisions on training and test datasets, a greater decrement in the recall measure do 
that the F-measure falls a 10% approximately. We think that this decrement in the 
effectiveness measures is due to a possible overfitting of the classification models. 

7 Conclusions   

In this paper we have presented a DDI extraction system based on a machine learning 
approach. We have proposed distinct solutions to deal with the high dimensionality of 
the problem and the unbalanced representation of classes in the dataset. The results 
obtained on both datasets are promising and we think that this could be a good 
starting point for future improvements.  
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Table 4.  Evaluation on test corpus. The second column is the classification algorithm. For 
RandomForest algorithm, the I parameter means the number of trees used to train the model. 
The CST column indicates whether the model has been built using a cost sensitive training. 

Different cost sensitive matrixes have been used in the experimentation phase. The FS column 
shows when feature selection has been carried out. The Sampling column has the same meaning 

with the application of SMOTE algorithm. Finally, KW Lem. column shows a lemmatization 
process has been performed.  

RUN Classification algorithm CST FS Sampling KW Lem. Precision Recall F-Measure 
l RandomForest (I = 50) X X X  0.5000 0.4437 0.4702 
2 RandomForest (I = 50) X X X X 0.4662 0.4291 0.4669 
3 RandomForest (I = 10) X  X X 0.4004 0.4874 0.4397 
4 RandomForest (I = 50) X   X 0.6087 0.3152 0.4154 
5 MultiBoosting  X X  0.6433 0.2556 0.3659 
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Abstract. Information about medications is critical in improving the
patients’ safety and quality of care. Most adverse drug events are pre-
dictable from the known pharmacology of the drugs and many represent
known interactions and are, therefore, likely to be preventable. However,
most of this information is locked in free-text and, as such, cannot be
actively accessed and elaborated by computerized applications. In this
work, we propose three different approaches to the problem of automatic
recognition of drug-drug interactions that we have developed within the
“First Challenge Task: Drug-Drug Interaction Extraction” competition.
Our approaches learn to discriminate between semantically interesting
and uninteresting content in a structured prediction framework as well
as a rule-based one. The systems are trained using the DrugDDI cor-
pus provided by the challenge organizers. An empirical analysis of the
three approaches on this dataset shows that the inclusion of rule-based
methods is indeed advantageous.

Keywords: Drug-Drug Interactions, Information Extraction, Conditional
Random Fields, Support Vector Machines, Adverse Drug Events

1 Background

The use of medications has a central role in health care provision, yet on occa-
sion it may endanger patients’ safety and account for increased health care costs,
as result of adverse drug events (ADEs). Many of these injuries are inevitable,
but at least a quarter may be secondary to medication errors [7] that can be
avoidable. That is the case of ADEs due to drug-drug interactions (DDIs), since
many of them are due to disregarded known interactions and are therefore likely
to be preventable. Over the 6.5% of drug-related hospital admissions are a con-
sequence of DDIs.
DDIs are a common problem during drug treatment. Widely, a drug interac-
tion represents the situation in which a substance affects the activity of an ac-
tive ingredient, resulting in various effects such as alterations in absorption,
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2 Extracting Drug-Drug Interaction

metabolism, excretion, and pharmacodynamics (i.e. the drug effects are de-
creased or increased, or the drug produces a new effect that neither produces on
its own). Safe medication use requires that prescribers receive clear information
on the medication itself including information about any potential interactions.
This information is constantly changing, and while most of the necessary up-
dated knowledge is available somewhere, it is not always readily accessible. In
particular, most of this information is locked in free-text, then cannot be ac-
tively used by health information systems. Reliable access to this comprehensive
information, by Natural Language Processing (NLP) systems, can represent a
useful tool for preventing medication errors and, more specifically, DDIs. Over
the last two decades there has been an increase of interest in applying NLP, in
particular information extraction (IE) techniques, to biomedical text. Excellent
efforts have been documented in the medication domain literature on IE from
textual clinical documents [4,5,9,11,12,14,15,18], and its subsequent application
in summarization, case finding, decision-support, or statistical analysis tasks.
In this context, we accepted the challenge presented within the “First Challenge
Task: Drug-Drug Interaction Extraction” competition and developed a system
for the automatic extraction of DDIs from a corpus [13] of documents, collected
from the DrugBank database [8], describing, for each drug, the relating DDIs.

2 Methods

On the following section we present the proposed system and its components.

2.1 System Outline

We exploit three different approaches, which rely upon different methods for
the extraction of such information. The first approach (henceforth referred as
hybrid approach) is twofold: it combines a supervised learning technique based on
Conditional Random Fields (CRFs) [16] with a rule-based method. We modeled
the problem as follows: in a first step we employed the CRFs classifier in order
to assign the correct semantic category to each word, or segment of sentence, of
the text. We considered the following three semantic categories:

1. DrugNotInteracting: describes a drug entity, which is not involved in an
interaction;

2. DrugInteracting: describes a drug entity, which is involved in an interaction;
3. None: indicates elements that are not relevant for this task.

Once every potential interacting entity has been identified by the CRFs classifier,
we defined a set of rules for the construction of the actual pairs of interacting
entities, and match them with the sentences.
The second (henceforth referred as pair-centered CRFs approach) and third
(henceforth referred as pair-centered SVMs approach) approaches are very sim-
ilar: they are both based on supervised learning methods, CRFs and Support
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Extracting Drug-Drug Interaction 3

Vector Machines (SVMs) [2,17], respectively. In this case we focused on the sin-
gle pair of drug entities: for any given pair in a sentence, such techniques predict
the presence or absence of interaction relation, relying on a set of hundreds of
engineered features, which take into account the properties of the text, by learn-
ing the correspondence between semantic categories and features. We considered
only two semantic categories:

1. Interaction: describes a pair of drug entities which interact;
2. NotInteraction: describes a pair of drug entities which don’t interact;

All these three methodologies have been developed through different steps. We
began with a pre-processing pass over the corpus in order to prepare the dataset
for the use by the extraction module. Then, we defined a set of binary features
that express some descriptive characteristics of the data, and we converted the
data in a set of corresponding features. Finally, we processed the data through
the three methodologies described above.

2.2 Supervised Learning Methods: CRFs and SVMs

Supervised learning approaches have been widely applied to the domain of IE
from free text. A typical application of supervised learning works to classify a
novel instance x as belonging to a particular category y. Given a predefined set of
categories, such methods use a set of training examples to take decision in front
of new examples. They automatically tune their own parameters to maximize
their performance on the training set and then generalize from the new samples.
We processed the data through the two linear classifiers, CRFs and SVMs: both
algorithms iterate the tokens in the sentence, and label proper tokens with se-
mantic categories. These classifiers discriminate between semantically interesting
and uninteresting content through the automatic adaptation of a large number
of interdependent descriptive characteristics (features) taking into account the
properties of the input text. Each token is represented by a set of features, then
the classifiers learn a correspondence between semantic categories and features,
and assign real-valued weight to such features.

2.3 Pre-processing

The first step of our DDIs detection system has been a pre-processing over the
data provided within the challenge contest.
We designed two different pre-processing strategies, one for the hybrid approach,
the other one for the pair-centered CRFs and the pair-centered SVMs approach.
The first pre-processing strategy analyzes sentence-by-sentence the training cor-
pus, using a quite classical NLP system developed using Gate [3], an open source
framework for language processing. This system includes:

– Tokenizer: splits the atomic parts of the sentence (tokens) according to a
specific language (English in our case);
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4 Extracting Drug-Drug Interaction

– Part of Speech (POS) Tagger [6]: assigns to the tokens their grammatical
class (e.g. noun, verb, adjective . . . );

– Morphological Analyzer: assigns the lexical roots to the tokens;
– UMLS concept finder: a module we developed, in order to discover concepts

referable to the Unified Medical Language System (UMLS) [10] within the
text.

The pre-processing system returns as output a line for each token; such line
contains the token itself together with additional information necessary for the
features generation task. In particular:

– the semantic category of the token itself;
– the “entity tag” that is the entity’s code (e.g. DrugDDI.d385.s4.e0) when

the token is an entity and null otherwise;
– the “main drug tag” that is true if the token matches the standard name of

the referential drug1 and false otherwise;
– the “brand name tag” that is true if the token matches one of the brand

names of the referential drug and false otherwise. Brand names come from
the DrugBank;

– the “POS tag” that is the grammatical class provided by the POS Tagger
(entities are automatically tagged as proper nouns - NNP);

– the “root tag” which is the root of the token provided by the Morphological
Analyzer (the entity itself for the entities);

– the “semantic group tag” that, when the token belongs to a UMLS concept, is
the semantic group of the concept itself (e.g. “DISO” for concepts belonging
to the “Disorders” group); it is “ENT” when the token is an entity and null
otherwise.

As an example, given the input sentence:

<sentence id="DrugDDI.d368.s0" origId="s0" text="Itraconazole
decreases busulfan clearance by up to 25%, and may produce AUCs >
1500 muMolmin in some patients.">

<entity id="DrugDDI.d368.s0.e0" origId="s0.p0" charOffset="0-12"
type="drug" text="Itraconazole" />

<entity id="DrugDDI.d368.s0.e1" origId="s0.p2" charOffset="23-31"
type="drug" text="busulfan" />

<pair id="DrugDDI.d368.s0.p0" e1="DrugDDI.d368.s0.e0"
e2="DrugDDI.d368.s0.e1" interaction="true" />
</sentence>

the first pre-processing strategy will generate the following lines:

itraconazole-DrugInteracting-DrugDDI.d368.s0.e0-false-false-NNP-
itraconazole-ENT

decreases-None-null-false-false-NNS-decrease-CONC
busulfan-DrugInteracting-DrugDDI.d368.s0.e1-true-false-NNP-busulfan-

1 We indicate by “referential drug” the drug described in the specific document under
examination.
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Extracting Drug-Drug Interaction 5

ENT
clearance-None-null-false-false-NN-clearance-PHEN
...

and so on.
The second pre-processing strategy evaluates separately all the pairs within a sentence;
it uses the same NLP system described for the first strategy, but it formats the output
in a different way. For each pair, the output consists of a header line, containing the
codes of the involved entities and the semantic category of the pair. The header line is
followed by a line for each token standing between the two entities involved in the pair;
for each line the elements describing the token are exactly the same as those described
for the first strategy (token, interaction tag, entity tag, etc.).
Given the input sentence from the previous example, the second pre-processing strategy
will generate the following lines:

DrugDDI.d368.s0.e0 DrugDDI.d368.s0.e1-Interaction
decreases-None-null-false-false-NNS-decrease-CONC

2.4 Feature Definition and Data Conversion

The feature construction process aims at capturing the salient characteristics of each
token in order to help the system to predict its semantic label. Feature definition
is a critical stage regarding the success of feature-based statistical models such as
CRFs and SVMs. A careful inspection of the corpus has resulted in the identification
of a set of informative binary features that capture salient aspects of the data with
respect to the tagging task. Subsequently, the stream of tokens has been converted to
features. In particular, in the pair-centered CRFs and pair-centered SVMs approaches
we considered only the tokens between the two entities which form each pair. This
means that features for drug entities pair E1-E2 contain predicates about the n tokens
between E1 and E2.
In the following we report on the set of features used in our experiments.

Orthographical Features As a good starting point, this class of features consists of
the simplest and most obvious feature set: word identity feature, that is the vocabulary
derived from the training data.

Part Of Speech (POS) Features We supposed lexical information might be
quite useful for identifying named entities. Thus, we included features that indicate
the lexical function of each token.

Punctuation Features Also notable are punctuation features, which contain some
special punctuation in sentences. After browsing our corpus we found that colon might
prove helpful. Given a medication in fact, colon is usually preceded by the interacting
substance and followed by the explanation of the specific interaction effects.

Semantic Features In order to have these models benefit from domain specific
knowledge we added semantic features which use external semantic resources. This
class of features includes:
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6 Extracting Drug-Drug Interaction

1. root feature: takes account of the root associated to each word;
2. UMLS feature: relies on the UMLS Metathesaurus and for each word returns the

corresponding semantic group;
3. brand name feature: it recognizes the corresponding brand names occurring in the

text. DrugBank database drug entries are provided with the field “Brand Names”,
which contains a complete list of brand names from different manufacturers. We
create a binary feature, which, every time a text token coincides with one of such
names, is active, indicating that the token corresponds to a brand name of the
specific referential drug;

4. standard drug name feature: identifies the standard name of the source drug. For
each token this feature tests if it matches such standard name;

5. drug entity feature: allows the models to recognize the drug entities annotated by
the MetaMap tool: it is active for the tokens which have been annotated as drug
entity by the MetaMap tool.

Context Features Finally, we extended all the classes of feature we described above
to a token window of [-k,k]. The descriptive characteristics of tokens preceding or fol-
lowing a target token may be useful for modeling the local context. It is clear that the
more context words analyzed, the better and more precise the results could become.
However, widening the context window quickly leads to an explosion of the computa-
tional and statistical complexity. For our experiments, we estimated a suitable window
size of [-3,3].

2.5 Rule-based Method
As we have already stated, while both pair-centered CRFs and pair-centered SVMs
approaches focus on entities pairs and predict directly the presence or absence of inter-
action, the first one considers a token at a time, then the semantic category prediction
is on a token-by-token basis. Therefore, a further processing pass was necessary in order
to build up the interaction pairs, starting from each single entity. For this purpose, we
employed a rule-based method which relies upon a set of rules, manually-constructed
from the training data analysis. In particular, the rules that we built to find out the
interacting pairs are the following:

– if a sentence contains less than two tokens labeled as DrugInteracting, then no
interacting pair is generated;

– an interacting pair must contain two tokens labeled as DrugInteracting;
– one and only one of the token involved in the interacting pair, must be the refer-

ential drug or one of its brand names.

3 Experiments
We used the Unified format of the DrugDDI corpus [1] provided by the competition
organizers.
For the linear SVMs, we found the regularization parameter λ = 1 to work well. SVMs
results have been produced using 10 passes through the entire training set. For the
variance of the Gaussian regularizer of the CRFs we used the value 0.1.
We submitted a total of three runs: the first run includes the predictions generated
by the hybrid approach; the second run includes the predictions generated by the
pair-centered CRFs approach; the third run includes the predictions generated by the
pair-centered SVMs approach.
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Extracting Drug-Drug Interaction 7

4 Results and Discussion

The evaluation process was performed by the challenge organizers.
The overall results of the three approaches can be found in Table 1. In general, the
hybrid approach outperforms the other two. This performance gain can be attributed
to the additional contribute of rule-based method, that played an important role in
building the interacting pairs. In particular it makes the system benefit from additional
knowledge that facilitates the pairs disambiguation process. It specifies, for example,
that a pair has to include the referential drug or one of its brand names together with
another drug entity different from them.
There is room for improvement, especially for the pair-centered CRFs and pair-centered
SVMs approaches. In such approaches we mainly relied on tokens occurring between
the two entities which form each pair, however tokens preceding and following the pairs
could also be taken into account.

Table 1. Overall experimental results of the different runs

Approach Hybrid Pair-centered Pair-centered
CRFs SVMs

True Positive 369 196 317
False Positive 545 110 456
False Negative 386 559 438
True Negative 5726 6161 5815
Precision (%) 40.37 64.05 41.01
Recall (%) 48.87 25.96 41.99
F1 Score (%) 44.22 36.95 41.49

5 Conclusion and Future Work

In this paper we presented three different approaches for the extraction of DDIs that we
have developed within the “First Challenge Task: Drug-Drug Interaction Extraction”
competition. We employed three different methodologies: two machine learning-based
(CRFs and SVMs) and one which combines a machine learning-based (CRFs) with
a rule-based technique. The latter achieved better results with an overall F1 score
of about 44%. This figure doesn’t seem encouraging: the comparison with the other
systems that face the same problem with the same corpus within this competition
probably will allow to understand this result and realize the weakness of our approaches.
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AN EXPERIMENTAL EXPLORATION OF

DRUG-DRUG INTERACTION EXTRACTION

FROM BIOMEDICAL TEXTS

Man Lan, Jiang Zhao, Kezun Zhang, Honglei Shi, and Jingli Cai

East China Normal University, Shanghai, P.R.China

Abstract. The First Challenge of Drug-Drug Interaction Extraction
(DDIExtraction 2011) involves doing a binary DDI detection to deter-
mine whether a drug pair in a given sentence (with annotated drug
names) has interaction information. This may be the first attempt at
extraction of drug interaction information in wide community. In this
paper we compare and evaluate the effectiveness of different strategies of
example generation from texts and different feature types for drug rela-
tion extraction. The comparative results show that (1) drug interaction
classification at drug entity pair level performs better than that at sen-
tence level; (2) simple NLP output does not improve performance and
more advanced way of incorporating NLP output need to be explored.

1 Introduction

In pharmacology domain, one drug may influence the level or activity of another
drug if there is a drug-drug interaction (DDI) between them. Typically, the
detection of DDIs between drug pair is an important research area for health
care professionals to find dangerous drug interactions and possible side effects,
which helps to decrease health care costs.

Like other entity (e.g., gene or protein) relation extraction tasks (i.e., BioCre-
AtIvE) from biomedical literature, information extraction (IE) techniques can
provide an interesting way of reducing the time spent by health care profes-
sionals on reviewing the literature. Recently, DDIExtraction Challenge 2011 has
played a key role in comparing various IE techniques applied to the pharmacolog-
ical domain by providing a common benchmark for evaluating these techniques.
Specifically, they create the first annotated Drug DDI corpus that studies the
phenomena of interactions among drugs. Meanwhile, the organizers have devoted
to several comparative experimental assessments of different exploration strate-
gies on this corpus, e.g., Segura-Bedmar et al. (2010a), (2010b), (2011a) and
(2011b). For example, they manually created linguistic rules (i.e. pattern) using
shallow parsing and syntactic and lexical information with the aid of domain
expert in Segura-Bedmar et al. (2010a) and (2011b). Moreover, they adopted
shallow linguistic kernel-based supervised machine learning (SVM) method to
build relation classifier for DDI extraction. Their experimental results showed
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that the sequence kernel-based method performs significantly better than the
construction of linguistic rules.

The basic idea of our system is to make use of feature-based supervised
machine learning approach for DDI extraction. Our work consists of two explo-
rations, i.e., comparison of different strategies of example generation from texts
and comparison of different feature types. The purpose of this work is twofold:
(1) compares the performance of different strategies of example generation, dif-
ferent feature types for drug interaction extraction; (2) provides an overview of
our practical and effective process for this challenge.

The rest of the paper is structured as follows. Section 2 describes the overview
of DDIExtraction Challenge 2011. Section 3 presents the methods adopted in our
participation. Section 4 describes the system configurations and results on the
test data. Finally, Section 5 summarizes the concluding remarks and suggests
the future work.

2 Overview of DDIExtraction Challenge 2011

In recent years, most biomedical relation extraction study and corpora have fo-
cused on describing genetic or protein entity interactions, e.g., BioInfer (2007),
BioCreative II (2008) and II.5 (2009), or AIMed (2005), rather than drug-drug in-
teraction. The First Challenge of Drug-Drug Interaction Extraction (i.e., DDIEx-
traction Challenge 2011) provides a new standard benchmark and creates the
first annotated corpus for drug interaction extraction to a wider community. The
DDI corpus is created by Segura-Bedmar et al.(2011a). The Drug DDI corpus
consists of 579 documents describing DDI, which are randomly selected from
the DrugBank database (2008). In DDIExtraction Challenge 2011, this corpus
is split into 435 training documents (4267 sentences) and 144 test documents
(1539 sentences) for evaluation. Table 1 lists the detailed various statistical in-
formation of training and test data set. From this table, we can see that the data
distribution in training data set is quite close to that in test data set.

This corpus is provided in two different formats: (1) the unified XML for-
mat as the PPI Extraction format proposed in Pyysalo et al. (2008) and (2)
a Metamap format based on the information provided by the UMLS MetaMap
Transfer (MMTx) tool (2001). In MMTx format, the documents were analyzed
by the MMTx tool that performs sentence splitting, tokenization, POS-tagging,
shallow syntactic parsing, and linking of phrases with Unified Medical Language
System (UMLS) Metathesaurus concepts. Besides, the MMTx format documents
annotate a variety of biomedical entities occurring in texts according to the
UMLS semantic types. An experienced pharmacist recommended the inclusion
of the following UMLS semantic types as possible types of interacting drugs:
(1) Clinical Drug (clnd), (2) Pharmacological Substance (phsu), (3) Antibiotic
(antb), (4) Biologically Active Substance (bacs), (5) Chemical Viewed Struc-
turally (chvs) and (6) Amino Acid, Peptide, or Protein (aapp).

Clearly, the MMTx format contains not only shallow NLP information but
also domain-specific annotations. Therefore it is expected to provide more useful
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Table 1. Statistical information of training and test data set.

Category Training set Test set

#-Documents 435 144

#-Sentences 4267 1539

#-Drug entities 11260 3689

#-Drug pairs 23827 7026

#-DDIs 2402 755

#-Documents containing, at least, one drug pair 399 134

#-Sentences with, at least, one drug pair 2812 965

#-Sentences with, at least, one DDI 1530 503

#-Total entities that participate in a pair 10374 3398

Avg drug per doc (considering only docs with drug pairs) 26.02 25.36

Avg drug per sentence (considering only sentences with drug pairs) 3.69 3.52

Avg DDI per doc (considering only docs with drug pairs) 6.02 5.63

Avg DDI per sentence (considering only sentences with drug pairs) 0.85 0.80

information than unified XML format for DDI extraction. Consequently, partic-
ipants are required to indicate the document format their methods involved.
Another thing need to note is that this challenge only considers the interactions
between drugs within the same sentence.

Participants are allowed to submit a maximum of 5 runs. For each drug pair
within one sentence, the participated algorithm is expected to generate label “0”
for non-authentic DDI and label “1” for predicted DDI. For performance evalu-
ation, this challenge adopted the most widely-used text classification evaluation
measures, i.e., precision (P), recall (R) and their combination F1 score.

3 Methods

In our work we cast drug relation extraction as a classification problem, in which
each example is generated from texts and formed as a feature vector for classifi-
cation. Specifically, we generate examples from all sentences containing at least
two drug entities. That is, the sentences which have none or only one drug should
be removed first before they come into the pipeline of text processing.

Here we need to take into account the following special considerations. One is
the issue of example generation from texts. Another is the issue of feature types
extracted from texts. Next we will discuss these two special considerations.

3.1 Example Generation

The training and test examples from texts can be generated at different levels,
e.g., sentence level or drug pair level.

At sentence level, each example corresponds to one sentence. That is, each
sentence is represented as a feature vector, no matter how many DDIs this
sentence has. Typically, a sentence having n drugs (n ≥ 2) generates C2

n drug
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pairs but not all drug pairs are DDIs. Thus, in order to assign the DDI label to
each sentence, we have the following two assumptions and they serve as baselines
in our work.

Assumption 1: In training step, if there is at least one DDI annotated in
the sentence, we assign the DDI label of this sentence 1. That is, this sentence
is assumed to be a DDI sentence. In test step, if one sentence is predicted by
classifier to be a DDI sentence, then all drug pairs within this sentence are
predicted to be DDIs as well.

Assumption 2: In training step, if the number of DDIs is equal to or larger
than the number of non-DDIs in the sentence, we label this sentence as DDI
sentence. That is, for a sentence having n drugs, if it has at least C2

n/2 DDIs, it
is regarded as DDI sentence. In test step, if one sentence is predicted by classifier
to be a DDI sentence, all drug pairs within this sentence are predicted to be DDIs
as well.

Clearly, the built-in flaw of the above two assumptions is that they consider
all drug-pairs in one sentence have one common taxonomy label. This is not true
in real world case. We use the two assumptions as baseline systems in our work.

At drug pair level, each example corresponds to each drug pair in a sentence.
That is, the number of examples generated for each sentence is given by the
combinations of distinct drug entities (n) selected two at a time, i.e. C2

n. For ex-
ample, if one sentence contains three drug entities, the total number of examples
generated from this sentence is C2

3
= 3. In training step, for each example, we

use its annotated DDI label as the label of this example. If a DDI relation holds
between a drug pair, the example is labeled 1; otherwise 0. In test step, for each
drug pair, the classification system predicts its DDI label based on the classifier
constructed on training examples.

3.2 Features Extraction

No matter which level examples are generated from texts, the examples are
represented as feature vectors for classifier construction and prediction. Here we
describe the feature sets adopted by above two example generation approaches.

As for sentence level feature representation, we adopt a feature set consist-
ing of all words in texts. Specifically, we remove stop words (504 stop words),
punctuation, special characters and numbers from sentences.

As for drug pair level feature representation, instead of using all words in
texts, we explore different feature types, i.e., lexical, morpho-syntactic, semantic
and heuristic features (from annotated biomedical information), with the pur-
pose of capturing information between drug pairs. The features consist of the
following 6 types. The first two feature types are generated from unified XML
text format. The following four feature types are obtained from MMTx text
format.

F1: Token between drug pair. This feature includes the tokens (words)
between two target drug entities. Given two annotated target drug entities, first
all the words between them are extracted and then the Porter’s stemming (1980)
is performed to reduce words to their base forms.

23

*�
6�
�?	�
�<����>�+�
<��
��#�
���	%�	��
�?	
��	��	



F2: Lemma of target entities. This feature consists of the lemma of the
target drug entities annotated in the given sentence. That is, this feature records
the words of the target drug names.

F3: UMLS semantic types of target entities. This feature is to record
the six UMLS semantic types of the drug entities annotated in the given sentence.

F4: Information of other drug entities. This feature is to indicate
whether there is other drugs between the current target drug pair and the num-
ber of other drug entities.

F5: Relative position between verbs and target drug entities. This
feature is to record if there is verb before, between or after the target drug pair.

Except for the above two approaches, we also explore experiment using only
the position information of verbs and target drug entities as follows.

F6: Position of verbs and target drug entities. This feature is different
from above 5 feature types, which only records the position information of verbs
and drug entities. To do so, for the first drug entity, we record the relative
positions of three closest verbs before it and after it. For example, if the position
of the two verbs offset is 10 and 11, and the position of the first drug is 15,
the first three feature values is 5, 4 (relative position) and 0 (since no third
verb before the first drug). For the second drug entity, we record the relative
positions of three closest verbs after it. In addition, we also assign one label for
each verb to record if there is a negation before it, yes for 1 and no for 0. We
manually created list of 16 negation words including: little, few, hardly, never,
none, neither, seldom, scarcely, rarely, cannot, can’t, isn’t, hasn’t, couldn’t, unlike,
without.

3.3 Learning Algorithms

Generally, according to the different kernel functions from computational learn-
ing theory, SVMs are classified into two categories, i.e., linear and nonlinear (such
as polynomial, radial-based function (RBF), etc). Specifically, in this study, we
adopt the radial-based nonlinear SVM because in our preliminary study the
nonlinear SVM performs better than linear SVM models. The SVM software we
used in all experiments is LIBSVM-2.9 (2001).

4 Results And Discussion

4.1 Text Preprocessing

In text processing step, the stop words (504 stop words), punctuation and num-
bers were removed. The Porter’s stemming (1980) was performed to reduce words
to their base forms. The resulting vocabulary has 3715 words (terms).

4.2 System configuration and Results

In this work, we config five different classification systems with different example
generation strategies and different feature types. The classifiers for all systems
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were optimized independently in a number of 5-fold cross-validation (CV) ex-
periments on the provided training sets. First we consider two baseline systems
at sentence level described in section 3.1. We create a global feature set consist-
ing of all words in texts. The resulting vocabulary of the two systems has 3715
and 3224 words (terms) respectively. Table 2 shows the results of the first two
systems at sentence level.

Table 2. Two system configurations at sentence level with two assumptions and results
on the test data.

System Description (sentence level) P (%) R (%) F1(%)

1 assumption 1, all words in texts 14.37 76.82 24.21

2 assumption 2, all words in texts 39.63 16.95 23.75

In the third system, we conducted several comparative experiments at drug
pair level using different combination of features described in section 3.2. In ad-
dition, in the fourth system, we evaluated the system with only relative position
information between drugs and verbs in one sentence. Finally, in the fifth sys-
tem, we performed majority voting to combine the best results of the first four
systems to further improve performance. Table 3 shows the results of these three
systems at drug pair level using different feature sets.

Table 3. System configurations at drug pair level with different feature types and
results on the test data.

System Description (drug pair level) P (%) R (%) F1(%)

3 F1 31.49 68.48 43.14
F1, F2 28.08 42.91 33.94
F1, F2, F3 32.70 31.92 32.31
F1, F2, F3, F4 37.96 31.13 34.21
F1, F2, F3, F4, F5 41.71 35.63 38.43

4 F6 32.70 27.28 29.75

5 Majority voting 29.57 46.49 36.15

4.3 Discussion

Based on the above series of experiments and results shown in Table 2 and Table
3, some interesting observations can be found as follows.

Specifically, the first two baseline systems at sentence level yield quite sim-
ilar F-measures of 24.21 and 23.75 but different recall and precision. The first
system has high recall but low precision. Conversely, the second system has high
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precision but quite low recall. This difference comes from the different princi-
ple of the two assumptions. This F-measure is similar to the result reported in
Segura-Bedmar et al. (2011b) using only linguistical patterns with the aid of
domain expert.

Generally, the systems at drug pair level (Table 3) perform better than those
at sentence level (Table 2). This result is consistent with our preliminary surmise
that it is too rough for example generation at sentence level and it did not take
the relation between drug pair into consideration. Certainly many previous work
on entity relation extraction generated example using this representation.

Moreover, the comparative result of the third serial of systems, i.e., the sys-
tems at drug pair level with different feature sets, is beyond our preliminary
expectation. Surprisingly, the system with only words between two drug entities
performs the best among the serial of the third systems. Although we extracted
and constructed more features which are supposed to hold more useful informa-
tion, such as drug names, drug types and the position information between drug
and verb, these features did not improve the performance. One possible expla-
nation is that the number of F1 feature is much larger than other features, and
thus F1 feature dominates the performance of classifier. Another possible reason
is that these manually constructed or NLP features may not be appropriate for
representation and thus more advanced NLP techniques and advanced ways of
incorporating NLP output is necessary for future exploration.

Another surprise is that the fourth system performs better than the two
baseline systems at sentence level but still worse than the third system. Since
the fourth system only considers relative position information rather than words
and other features, this result is quite interesting. However, we do not expect
more improvement on this simple feature set and we have no further explorations.

As an ensemble system, the fifth system combines the best results of the
previous four systems. However, this majority voting strategy has not shown
significant improvements. The possible reason may be that these classifiers come
from a family of SVM classifiers and thus the random errors are not significantly
different.

5 Summary

Based on the comparative experimental results, we summarized that, first, ex-
ample generated at drug pair level performs better than sentence level; second,
using only words between drug pair entities performs better than adding more
constructed NLP and domain-specific features. It indicates that NLP output has
not yet succeeded in improving classification performance over the simple bag-
of-words approach and more advanced way of incorporating NLP output need
to be explored.

We have to mention that although the best performance on the test set yields
a final score of no more than 45% (F-measure), which is quite lower than the
best performance 60.01% reported in Segura-Bedmar et al. (2011a), it is still
quite promising since we do not involve domain expert, domain knowledge and
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complicated NLP outputs neither. In other words, this suggests that there may
be ample room for improving the performance.
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Abstract. Drug-drug interactions (DDIs) cause nearly 3% of all hospi-
tal admissions. Regulatory authorities such as the Food and Drug Ad-
ministration (FDA) and the pharmaceutical companies keep a rigorous
tab on the DDIs. The major source of DDI information is the biomedical
literature. In this paper we present a DDI extraction approach based on
all paths graph kernel [1] from the DrugDDI corpus [2]. We also evaluate
the method on an in-house developed clinical in vivo pharmacokinetic
DDI corpus. When the DDI extraction model was evaluated on the test
dataset from both corpora we recorded a F-score of 0.658 on the clinical
in vivo pharmacokinetic DDI corpus and 0.16 on the DrugDDI corpus.

1 Introduction

Polypharmacy has been a general clinical practice. More than 70% of old pop-
ulation (age >65) take more than 3 medications at the same time in US and
some European countries. Since more than 80% of the drugs on the market are
metabolized by the Cytochrome P450 enzyme system, and many of these drugs
are inhibitors and inducers of CYP450 enzyme system, drug interactions have
been extensively investigated in vitro and in vivo [3,4,5]. These DDIs in many
ways affect the overall effectiveness of the drug or at some times pose a risk of
serious side effects to the patients [6]. Thus, it becomes very challenging to for
the successful drug development and clinical patient care. Regulatory authori-
ties such as the Food and Drug Administration (FDA) and the pharmaceutical
companies keep a rigorous tab on the DDIs. Major source of DDI information
is the biomedical literature. Due to the unstructured nature of the free text in
the biomedical literature it is difficult and laborious process to extract and an-
alyze the DDIs from biomedical literature. With the exponential growth of the
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biomedical literature, there is a need for automatic information extraction (IE)
systems that aim at extracting DDIs from biomedical literature. The use of IE
systems to extract relationship among biological entities from biomedical liter-
ature has experienced success to a great scope [7] for example protein-protein
interaction extraction. Researchers have now started to investigate DDI IE from
biomedical literature. Some early attempts include retrieval of DDI relevant ar-
ticles from MEDLINE [8] ;DDI extraction based on reasoning approach [9]; DDI
extraction based on shallow parsing and linguistic rules[10];and DDI extraction
based on shallow linguistic kernel [2].

BioCreAtIvE has established the standard of evaluation methods and datasets
in the area of information extraction [7,11,12,13] which has been a asset for the
community. To encourage the involvement of the community in the DDI extrac-
tion Segura-Bedmar et al.[2] released an annotated corpus of DDIs (DrugDDI
corpus) from the biomedical literature and organized the DDIExtraction2011
challenge.

In this article, we implement the all paths graph kernel [1] to extract DDIs
from the DrugDDI corpus. We also test the all paths graph kernel approach on
in-house corpus that has annotations of pharmacokinetic DDIs from MEDLINE
abstracts.

The paper is organized as follows, section 2.1 and 2.2 describe the datasets,
section 2.3 describes the all paths graph kernel approach and section 3 describes
the results.

2 Methodology

DrugDDI Corpus We used the unified format [14] of the DrugDDI corpus
[2] of the DrugDDI corpus. Detailed description of the corpus can be found at
DrugDDI Corpus.

2.1 Clinical in-vivo pharmacokinetic DDI corpus

Our research group has been studying clinical DDIs reported in biomedical liter-
ature (MEDLINE abstracts) and extraction of numerical pharmacokinetic (PK)
data from them[15]. During this process, we have collected MEDLINE abstracts
that contain clinical PK DDIs, and further develop them into a PK DDI cor-
pus. We decided that the ultimate goal of this task is extraction of DDIs from
biomedical literature and it will be interesting to use this corpus as an additional
resource. This corpus comprises of 219 MEDLINE abstracts which contains one
or more of PK DDIs in same sentences. Here we call it PK-DDI corpus. Please
note that a PK DDI means that one drugs exposure is changed by the co-
administration of the other drug. As DrugDDI corpus focuses mainly on DDIs
that change drug effects, our PK-DDI corpus is a good complementary source. In
order to identify drugs in our PK-DDI corpus, we developed a dictionary based
tagging approach using all the drug name entries in DrugBank [16]. The corpus
was converted into the unified format as proposed in [14]. The DDI instances
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were annotated based on guidelines from in-house experts. We split the corpus
into training (80%) and testing (20%) fractions. This corpus will also be made
public on the lines of the DrugDDI corpus. There are 825 true DDI pairs present
in our corpus.

2.2 All paths graph kernel

We implemented the approach described by Airola et al. [1] for DDI extrac-
tion. This approach centers around the drugs, where a graph representation of
the sentence is generated. Sentences are described as dependency graphs with
interacting components (drugs). The dependency graph is composed of two un-
connected sub-graphs: i) One sub-graph explores the dependency structure of
the sentence; ii) the other explores the linear order of the words in the sentence.
We used the Stanford parser [17]to generate the dependency graphs for both
corpora. IIn the dependency graph, the shortest path between two entities was
given higher weight as compared to other edges, this is because the shortest path
contains important keywords which are indicative of interaction between two en-
tities. In the linear sub-graph, all the edges have the same weight and the order
in which words occur before, in the middle, or after drug mentions was consid-
ered. The all paths graph kernel algorithm [18] was subsequently implemented to
compute the similarity between the graphical representations of the sentences.
In particular, all paths graph kernels will be generated for tagger positive DDI
sentences and negative DDI sentences. We then used Support Vector Machines
(SVM) for classification. More details about the all paths graph kernel algorithm
can be found in [1]. A pictorial representation of the approach is presented in
figure 1.

3 Results

In this study we used an in-house corpus in addition to the DrugDDI corpus;
both corpora contain training and testing subsets. We generated DDI extraction
models based on both the training datasets individually and combined, and
evaluated the performance of the DDI extraction models on the respective testing
datasets.

Table 1 illustrates the summary of training and testing data in two corpuses.
For the purpose of evaluation we used precision, recall and the balanced F-Score
measure. We also performed 10-fold cross-validation during the training phase.

Table 2 displays the DDI extraction performance on DDI-PK corpus testing
data. It suggests that using the DDI-PK corpus training data either with or
without the DrugDDI corpus training data, led to the precision above 0.78 and
recall above 0.64. On the other hand, if only the DrugDDI corpus was used, both
precision and recall were around 0.41.

Table 3 displays the DDI extraction performance on DrugDDI corpus testing
data. It suggests that all there models had similar perform in F-score, which was
between 0.13 and 0.16, although using DDI PK corpus generated slightly better
F-score than the other two approaches.
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Fig. 1. Description of the methodology

Dataset Number of sentences Number of DDI Pairs

PK DDI Corpus (Train) 1939 2411

PK DDI Corpus (Test) 498 606

DDI Corpus (Train) 3627 20888

DDI Corpus (Test) 1539 7026
Table 1. Summary of the corpora used in this study
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Dataset F-Score Precision Recall

PK DDI Corpus (Train) + DDI Corpus (Train) 0.64 0.53 0.8

PK DDI Corpus (Train) 0.658 0.567 0.7857

DDI Corpus (Train) 0.415 0.417 0.414

Table 2. Performance of the different models on PK DDI Corpus (Testing dataset)

Dataset F-Score Precision Recall

PK DDI Corpus (Full) + DDI Corpus (Train) 0.1346 0.1250 0.1457

PK DDI Corpus (Full) 0.1605 0.1170 0.2556

DDI Corpus (Train) 0.1392 0.1187 0.1682
Table 3. Performance of the different models on DrugDDI corpus test data

4 Discussion and Conclusion

There is large room for improvement in the DDI extraction from the biomedical
literature. We also learned that the in-house DDI PK corpus and Drug DDI
corpus have different DDI structures. It seems the all paths graph kernel method
performed better in DDI PK corpus than the Drug DDI corpus.

The apparent low precision and recall in the Drug DDI corpus may result
from the fact that the number of real DDIs is much less than the number of
false DDIs in both corpus, but a comparison with the results of other teams is
forthcoming once those get released. It is also possible that the weights on the
sub-graph need to be further adjusted to get a better performance. We noticed
a marked performance difference between the training corpora. The sentences in
the DrugDDI corpus were long and complex. On the other hand, our DDI PK
corpus has a simply sentence structure, and there is an average of one to two
DDI pairs per abstract. Even with the same algorithm, these major differences
between two corpora resulted in different DDI extraction performances.

DrugDDI corpus focuses on DDIs that affect the clinical outcomes (i.e. phar-
macodynamics DDI); while PK DDI corpus focuses on DDIs that change the
drug exposure. They are complementary to each other. Therefore, our work en-
riches the set of resources and analysis available to this community.
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