
Supplying Collaborative Source-code Retrieval Tools

to Software Developers

Juan M. Fernández-Luna
Departamento de Ciencias de
la Computación e Inteligencia

Artificial, CITIC-UGR.
Universidad de Granada,
18071 Granada, Spain

jmfluna@decsai.ugr.es

Juan F. Huete
Departamento de Ciencias de
la Computación e Inteligencia

Artificial, CITIC-UGR.
Universidad de Granada,
18071 Granada, Spain
jhg@decsai.ugr.es

Julio C. Rodríguez-Cano
Centro de Desarrollo Territorial

Holguín. Universidad de las
Ciencias Informáticas, 80100

Holguín, Cuba
jcrcano@uci.cu

ABSTRACT
Collaborative information retrieval (CIR) and search-driven
software development (SDD) are both new emerging research
fields; the first one was born in response to the problem of
satisfying shared information needs of groups of users that
collaborate explicitly, and the second to explore source-code
retrieval concept as an essential activity during software de-
velopment process. Taking advantages of the recent con-
tributions in CIR and SDD, in this paper we introduce a
plug-in that can be added to the NetBeans IDE in order
to enable remote teams of developers to use collaborative
source-code retrieval tools. We also include in this work
experimental results to confirm that CIR&SDD techniques
give out better search results than individual strategies.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and presentation (e.g.,
HCI)]: Group and Organization Interfaces; H.3.3 [Information
Storage and Retrieval]: Search Process.

General Terms
Design, Human Factors.

Keywords
Collaborative Information Seeking and Retrieval, Search-
driven Software Development, Multi-user Search Interface.

1. INTRODUCTION
“Collaboration” seems to be the buzzword this year,

just like “knowledge management” was last year.

– David Coleman

In the last few years, Information Retrieval (IR) Systems
have become critical tools for software developers. Today
we can use vertical IR systems focused in integrated deve-
lopment environment (IDE) extensions for source-code re-
trieval as such Strathcona [5], CodeConjurer [6], and Code-
Genie [1], but these only allow an individual interaction from
the team developers’s perspective.

Copyright c� 2011 for the individual papers by the papers’ authors.
Copying permitted only for private and academic purposes. This volume is
published and copyrighted by the editors of EuroHCIR2011.

EuroHCIR ’11 Newcastle, UK

One of the reasons that the existing IR systems do not
adequately support collaboration is that there are not good
models and methods that describe users’ behavior during
collaborative tasks. To address this issue, the community
has adopted CIR as an emerging research field in charge to
establish techniques to satisfy the shared information needs
of group members, starting from the extension of the IR
process with the knowledge about the queries, the context,
and the explicit collaboration habits among group members.
CIR community identifies four fundamental features in this
multidisciplinary field that can enhance the value of colla-
borative search tools: user intent transition, awareness, di-
vision of labor, and sharing of knowledge [2].

In addition, SDD is a new research area motivated by
the observation that software developers spend most of their
time searching pertinent information that they need in order
to solve their tasks at hand. We identified that SDD context
was a very interesting field where collaborative IR features
could be greatly exploited. For this reason we use the phrase
collaborative SDD to refer to the application of di↵erent
collaborative IR techniques in the SDD process [3].

It’s known than some IDE incorporate tools with support
for developer’s collaboration practices, but without making
emphasis in source-code retrieval. In this sense, the objec-
tive of this paper is to present the results of the comparison
of traditional SDD and collaborative SDD. In both search
scenarios, we use the NetBeans IDE plug-in COSME (CO-
llaborative Search MEeting) with the appropriate configura-
tions. COSME endows NetBeans IDE with traditional and
collaborative source-code retrieval tools.

This paper is organized as follows: The first section presents
a brief overview of related works and place our research in
context. Then, we describe our software tool and method,
explaining the di↵erent aspects of our experimental evalua-
tion. Finally we discuss the results and present some con-
clusion remarks.

2. RELATED WORK
There is a small body of work that investigates methods

to join collaborative information retrieval and search-driven
software development. On the one hand, some researchers
have identified di↵erent search scenarios where it is necessa-
ry to extend IR systems with collaborative capabilities. For
example, in the Web context, SearchTogether [8] is a sys-
tem which enables remote users to synchronously or asyn-
chronously collaborate when searching the Web. It supports

collaboration with several mechanisms of group awareness,
division of labor, and persistence. On the other hand, the
SDD community presents di↵erent prototypes and systems.
For example, Sourcerer [1] is an infrastructure for large-scale
indexing and analysis of open source code. Sourcerer crawls
Internet looking for Java code from a variety of locations,
such as open source repositories, public web sites, and ver-
sion control systems.

CIR systems can be applied in several domains, such as
travel planning, organizing social events, working on a home-
work assignment or medical environments, among many oth-
ers. We identified software development as another possi-
ble application field where much evidence of collaboration
among programmers on a development task can be found.
For example, concurrent edition of models and processes re-
quire synchronous collaboration between architects and de-
velopers who can not be physically present at a common
location [7].

However, current SDD systems do not have support for
explicit collaboration among developers with shared techni-
cal information needs, which frequently look for additional
documentation on the API (Application Programming In-
terface), read posts for people having the same problem,
search the company’s site for help with the API, or looking
for source code examples where other people successfully
used the API. Fortunately, in the last few years, some re-
searchers have realized that collaboration is an important
feature, which should be analyzed in detail in order to be
integrated with operational IR systems, upgrading them to
CIR systems.

As an approach to these situations, we propose in this
work the COSME plug-in [4]. It makes the contribution in
current SDD providing explicit support for teams of devel-
opers, enabling developers to collaborate on both the pro-
cess and results of a search. COSME provides collabora-
tive search functions for exploring and managing source-code
repositories and documents about technical information in
the software development context.

In order to support such CIR techniques, COSME pro-
vides some collaborative services in the context of SDD:

• The embedded chat tool enables direct communication
among di↵erent developers.

• Relevant search results can be shared with the explicit
recommender mechanisms.

• Another important feature is the automatic division
of labor. By implementing an e↵ective division of la-
bor policy the search task can be split across team
developers, thereby avoiding considerable duplication
of e↵ort.

• Through awareness mechanisms all developers are al-
ways informed about the team activities to save e↵ort.
Awareness is a valuable learning mechanism that help
the less experienced developers to view the syntax used
by their teammates, being an inspiration to reformu-
late their queries.

• All search results can be annotated, either for personal
use, like a summary, or in the team context, for dis-
cussion threads and ratings.

3. THE COSME PLUG-IN
To improve software developers with shared technical in-

formation needs we implemented the COSME front-end as
a NetBeans IDE plug-in. The principal technologies that
we used to implement it include the CIRLab framework [2],
NetBeans IDE platform, Java as programming language,
and AMENITIES (A MEthodology for aNalysis and desIgn
of cooperaTIve systEmS) as software engineering method-
ology. COSME is designed to enable either synchronous
or asynchronous, but explicit remote collaboration among
teams of developers with shared technical needs. In the fol-
lowing section we are going to outline COSME.

3.1 Current Features
Figure 1 is a screenshot showing various features of our

COSME plug-in. We refer to the circled numbers in the
following text.

1. Search Control Panel: It is integrated in turn for
three collapsible panels; (a) configuration, where the devel-
opers can select the search options and engines to accomplish
the search tasks; (b) filters show the user’s interest field ac-
cording to the collection contents; and (c) collection type
permit to specify the type of search result’s items.

2. Search Results Window: The search results can
be classified according to three di↵erent source-code local-
ization: (d) results can be obtained as a consequence of
division of labor techniques introduced by the collaborative
search session (CoSS) chairman. A CoSS is a group of end-
users working together to satisfy their shared information
needs. One CoSS only can have one developer in the roll of
chairman; (e) or by explicit recommendations accomplished
for group members of their CoSS; (f) finally, search results
also can be obtained by individual search.

3. Item Viewer: It shows full item content in di↵erent
formats, e.g. pdf, plain text, and Java source-code files.
All item formats are showed to the developers within the
NetBeans IDE.

4. CoSS Portal: Developer can use the chat tool em-
bedded in the CoSS Portal to negotiate the creation of a
collaborative search session or to join at any active CoSS.
For each CoSS, the chairman can to establish the integrity
criteria, membership policy, and division of labor principles.

4. EXPERIMENTAL EVALUATION
In this section we are going to show how collaborative

features applied to SDD improves the traditional opera-
tion without them. Then if we consider the null hypoth-
esis (H0) that ATSDD

� A
CSDD

, our alternative hypothesis
(H1) is that the collaborative work should help to improve
the retrieval performance in a SDD task: A

TSDD

< A
CSDD

,
where TSDD stands for Traditional SDD and CSDD for Col-
laborative SDD. To evaluate our proposal we compare 10
group interactions in two di↵erent kinds of search scenarios
(SS) on SDD, SS2k+1 and SS2(k+1); k 2 0, . . . , 9. SS2k+1

represents a team of developers that use a conventional IR
system, this means that developers do not have access to
techniques of division of labor, sharing of knowledge, or
awareness (traditional SDD – TSDD), while S2(k+1) repre-
sents a team of developers that uses a CIR system. Then, 5
teams worked in a TSDD context (those with odd subindexes)
and the other 5 with CSDD (even subindexes). In both
search scenarios, we used COSME with the appropriate con-
figurations for both settings.

Figure 1: Screenshot of NetBeans IDE with COSME plug-in installed

The search scenario was a common task proposed to a
group of developers without Java background: select the
most relevant classes to manage GUI (Graphical User In-
terface) components using di↵erent Java API with a total
of 2420 files. Specifically, Jidesoft (634), OpenSwing (434)),
SwingX (732)) and Swing (620). We have focussed on these
API because they are directly related to the context of the
experiment although they are not complete: we have only
considered their most relevant API packages for the experi-
ment.

For evaluation purposes, we created our own test collec-
tion: a group of 10 experts proposed a set of 100 topics
strongly related to the objective of the experimentation,
then their corresponding queries were submitted to each of
the following search engines: Lucene, Minion, Indri and Ter-
rier. A document pool was obtained by ranking fusion and
later the experts, grouped in pairs, determined the relevant
documents for each topic.

In collaborative SDD, it is very important to analyze the
interaction among group members, therefore, unlike the eval-
uation of a traditional SDD system, we can not fix the
queries. Then each participating group could freely formu-
late their queries to the search engine. In order to compare
team results, the search engine identified the most similar
queries formulated by the members of the teams with re-
spect to those formulated by experts. If the system found
enough similarity and if they occur in all the groups, then
these queries are considered that deals with the same topic
and selected for group comparison purposes. The similar-
ity measure between queries is calculated by Equation 1. A
user query (q

u

) and an expert query (q
e

) are considered to
be the same if they are within a given similarity threshold.
A new query q

u

0 is obtained applying the Porter stemmer
algorithm to q

u

’s terms, and analogously, we would obtain

q
e

0.

sim(q
u

, q
e

) =
| q

u

0 T q
e

0 |
| q

u

0 S q
e

0 | = � (1)

In Equation 1, � is a value between 0 and 1. For this ex-
periment we assumed that there exists an expert’s relevance

judgement to q
u

only if 9 � �
N
2 +1

N

, where N =| q
u

0 S q
e

0 |,
selecting the relevance judgements that correspond to �

max

for each q
e

.
In order to measure the e↵ectiveness of the described SS

TSDD

and SS
CSDD

scenarios, we considered as evaluation mea-
sures the metrics proposed by Pickens et al. in [9], i.e. se-
lected precision (P

s

, the fraction of documents judged rel-
evant by the developer that were marked relevant in the
ground truth), and selected recall (R

s

) as their dependent
measures. To summarize e↵ectiveness in a single number we
use F1s measure.

According to the documents that each team selected for
each common topic, F1s measure was computed. In order to
accomplish the statistical analysis of the results, we use the
non parametric test of Wilcoxon (all against all). The Monte
Carlo method was used and adjusted with the 99% trust
intervals and 10000 signs. It was considered the existences
of significance (Sig.) as appear in Table 1.

We could notice significative di↵erences between TSDD
and CSDD groups, considered two by two. As F1s values for
CSDD groups are better than those computed from TSDD
groups for those cases, then we could conclude that when
teams works supported by collaborative tools, they obtain
better results. From Table 1, we could realize that apart
from SS5, each SS

TSDD

has got at least one SS
CSDD

with
significant di↵erence values of F1s. With this results we
accept H1, because A

TSDD

< A
CSDD

.

SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9

F1s

SS2 0, 062
SS3 0, 180 0, 051
SS4 0, 022† 0, 212 0, 038†

SS5 0, 272 0, 069 0, 152 0, 054
SS6 0, 045† 0, 201 0, 080 0, 290 0, 056
SS7 0, 215 0, 031† 0, 340 0,090 0, 206 0, 042†

SS8 0, 053 0, 131 0, 061 0, 190 0, 072 0, 158 0, 070
SS9 0, 243 0, 072 0, 201 0, 029† 0, 344 0, 068 0, 238 0, 042†

SS10 0, 065 0, 098 0, 041† 0, 290 0, 072 0, 235 0, 045† 0, 132 0, 058

†: significant di↵erence (0, 01 Sig < 0, 05)
‡: highly significant di↵erence (Sig < 0, 01)

Table 1: Wilcoxon Test Results.

5. CONCLUSIONS AND FUTURE WORKS
Collaboration in SDD is just being recognized as an im-

portant research area. While in some cases collaborative
SDD can be handled by conventional search engines, we
need to understand how the collaborative nature of source-
code retrieval a↵ects the requirements on search algorithms.
Research in this direction needs to adopt the theories and
methodologies of SDD and CIR, and supplement them with
new approach constructs as appropriate. In this work we
present COSME as a collaborative SDD tool that helps team
developers to find better sources than searching with tradi-
tional SDD strategies, as well as an experimental approach
that confirms our hypotheses.

Our ongoing work focuses on the COSME back-end which
poses fundamental research challenges as well as provides
new opportunities to let group members collaborate in new
ways:

(i) Profile Analysis. We aim to analyze the user-generated
data using various techniques from the study of di↵erent col-
laborative virtual environments and recommender systems.
With the results, our goal is to provide better personalized
search results, support the users while searching and recom-
mend users to relevant trustworthy collaborators.

(ii) P2P/hybrid-network Retrieval. Due to scalability
and privacy issues we favor a distributed environment by
means of a P2P (peer-to-peer) retrieval feature based on hy-
brid architecture to store the user-generated data and col-
lections (CASPER – CollAborative Search in PEer-to-peer
netwoRks). The main challenges in this respect are to ensure
a reliable and e�cient data analysis.

6. ACKNOWLEDGMENTS
This work has been partially supported by the Spanish re-

search programme Consolider Ingenio 2010: MIPRCV (CSD2007-
00018), the Spanish MICIN project TIN2008-06566-C04-01
and the Andalusian Consejeŕıa de Innovación, Ciencia y Em-
presa project TIC-04526. We also would like to thank Car-
men Torres for support and discussions and for all of our
experiment participants.

7. REFERENCES
[1] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer: An

internet-scale software repository. In SUITE ’09:
Proceedings of the 2009 ICSE Workshop on

Search-Driven Development-Users, Infrastructure, Tools
and Evaluation, pages 1–4, Washington, DC, USA,
2009. IEEE Computer Society.

[2] J. M. Fernández-Luna, J. F. Huete, R. Pérez-Vázquez,
and J. C. Rodŕıguez-Cano. Cirlab: A groupware
framework for collaborative information retrieval
research. Information Processing and Management,
44(1):256–273, 2009.

[3] J. M. Fernández-Luna, J. F. Huete, R. Pérez-Vázquez,
and J. C. Rodŕıguez-Cano. Improving search–driven
development with collaborative information retrieval
techniques. In HCIR ’09: IIIrd Workshop on
Human–Computer Interaction and Information
Retrieval, Washington DC, USA, 2009.

[4] J. M. Fernández-Luna, J. F. Huete, R. Pérez-Vázquez,
and J. C. Rodŕıguez-Cano. Cosme: A netbeans ide
plugin as a team–centric alternative for search driven
software development. In Group 2010: Ist Workshop on
Collaborative Information Seeking, Florida, USA, 2010.

[5] R. Holmes. Do developers search for source code
examples using multiple facts? In SUITE 2009: First
International Workshop on Search-Driven Development
Users, Infrastructure, Tools and Evaluation, Vancouver,
Canada, 2009.

[6] W. Janjic. Lowering the barrier to reuse through
test-driven search. In SUITE 2009: First International
Workshop on Search-Driven Development Users,
Infrastructure, Tools and Evaluation, Vancouver,
Canada, 2009.

[7] M. Jiménez, M. Piattini, and A. Vizcáıno. Challenges
and improvements in distributed software development:
A systematic review. 2009.

[8] M. R. Morris and E. Horvitz. Searchtogether: an
interface for collaborative web search. In UIST ’07:
Proceedings of the 20th annual ACM symposium on
User interface software and technology, pages 3–12,
New York, NY, USA, 2007. ACM.

[9] J. Pickens, G. Golovchinsky, C. Shah, P. Qvarfordt, and
M. Back. Algorithmic mediation for collaborative
exploratory search. In SIGIR ’08: Proceedings of the
31st annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 315–322, New York, NY, USA, 2008. ACM.

