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Preface 
 

 

 

Artificial Intelligence researchers continue to face huge challenges in their 
quest to develop truly intelligent systems. The recent developments in the 
field of neural-symbolic computation bring an opportunity to integrate well-
founded symbolic artificial intelligence with robust neural computing 
machinery to help tackle some of these challenges.  

Neural-symbolic systems combine the statistical nature of learning and the 
logical nature of reasoning. 

The Workshop on Neural-Symbolic Learning and Reasoning provides a 
forum for the presentation and discussion of the key topics related to 
neural-symbolic integration.  

Topics of interest include:  

• The representation of symbolic knowledge by connectionist 
systems; 

• Learning in neural-symbolic systems; 
• Extraction of symbolic knowledge from trained neural networks; 
• Reasoning in neural-symbolic systems; 
• Biological inspiration for neural-symbolic integration; 
• Integration of logic and probabilities in neural networks;  
• Structured learning and relational learning in neural networks; 
• Applications in robotics, simulation, fraud prevention, semantic web, 

fault diagnosis, bioinformatics, etc. 
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Invited Keynote Talk 
 
 
 
The Connection Graph Proof Procedure as a Logical-Connectionist Model 
of the Mind 
 
Robert Kowalski, Department of Computing, Imperial College London, UK 
 
 
In this talk, I present an agent architecture in which thinking is modeled as 
activating links in a connection graph of goals and beliefs, represented in  
abductive logic programming (ALP) form. In this ALP agent model, beliefs are 
represented as logic programming clauses, and goals are represented as a 
variant of range-restricted FOL clauses. This clausal representation facilitates a 
connectionist (connection graph) implementation, in which forwards and 
backwards reasoning are different ways of selecting and activating links. The 
activation of links can also be determined in the manner of Patie Maes' activation 
networks, by associating different strengths with different goals and beliefs and 
different weights with different links, spreading the strength of activation 
throughout the graph in proportion to the weights on the links. 
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Neural Sub-Symbolic Reasoning

Andreas Wichert
Department of Informatics

INESC-ID / IST - Technical University of Lisboa
Portugal

andreas.wichert@ist.utl.pt

Abstract

The sub-symbolical representation often corre-
sponds to a pattern that mirrors the way the bio-
logical sense organs describe the world. Sparse bi-
nary vectors can describe sub-symbolic representa-
tion, which can be efficiently stored in associative
memories. According to the production system the-
ory, we can define a geometrically based problem-
solving model as a production system operating on
sub-symbols. Our goal is to form a sequence of as-
sociations, which lead to a desired state represented
by sub-symbols, from an initial state represented
by sub-symbols. We define a simple and universal
heuristics function, which takes into account the re-
lationship between the vector and the correspond-
ing similarity of the represented object or state in
the real world.

1 Introduction
One form of distributed representation corresponds to a pat-
tern that mirrors the way the biological sense organs describe
the world. Sense organs sense the world by receptors. By the
given order of the receptors the living organisms experience
the reality as a simple Euclidian geometrical world. Changes
in the world correspond to the changes in the distributed rep-
resentation. Prediction of these changes by the nervous sys-
tem corresponds to a simple geometrical reasoning process.
Mental imagery problem solving is an example for a complex
geometrical problem- solving. It is described by a sequence
of associations, which progressively change the mental im-
agery until a desired solution of a problem is formed. For
example, do the skis fit in the boot of my car? Mental rep-
resentations of images retain the depictive properties of the
image itself as perceived by the eye[Kosslyn, 1994]. The
imagery is formed without perception through the construc-
tion of the represented object from memory. Symbols on the
other hand are not present in the world; they are the con-
structs of human mind to simplify the process of problem
solving. Symbols are used to denote or refer to something
other than them, namely other things in the world (accord-
ing to the pioneering work of Tarski[Tarski, 1956]). They
are defined by their occurrence in a structure and by a formal
language, which manipulates these structures[Simon, 1991;

Newell, 1990]. In this context, symbols do not by themselves,
represent any utilizable knowledge. They cannot be used for
a definition of similarity criteria between themselves. The
use of symbols in algorithms which imitate human intelligent
behavior led to the famous physical symbol system hypothe-
sis by Newell and Simon (1976)[Newell and Simon, 1976]:
The necessary and sufficient condition for a physical system
to exhibit intelligence is that it be a physical symbol system.
We do not agree with the physical symbol system hypothesis.
Instead we state that the actual perception of the world and
manipulation in the world by living organisms lead to the in-
vention or recreation of an experience, which at least in some
respects, resembles the experience of actually perceiving and
manipulating objects in the absence of direct sensory stimula-
tion. This kind of representation is called sub-symbolic. Sub-
symbolic representation implies heuristic functions. Symbols
liberate us from the reality of the world although they are em-
bodied in geometrical problem solving through the usage of
additional heuristics functions. Without the use of heuristic
functions real world problems become intractable.

The paper is organized a follows: We review the represen-
tation principles of objects by features as used in cognitive
science. In the next step we indicate how the perception-
oriented representation is build on this approach. We define
the sparse sub-symbolical representation. Finally, we will in-
troduce the sub-symbolical problem solving which relies on
a sensorial representation of the reality.

2 Sub-symbols

Perception-oriented representation is an example of sub-
symbolical representation, such as the representation of num-
bers by the Oksapmin tribe of Papua New Guinea. The Ok-
sapmin tribe of Papua New Guinea counts by associating a
number with the position of the body[Lancy, 1983]. The
sub-symbolical representation often corresponds to a pattern
that mirrors the way the biological sense organs describe the
world. Vectors represent patterns. A vector is only a sub-
symbol if there is a relationship between the vector and the
corresponding similarity of the represented object or state in
the real world through sensors or biological senses. Feature
based representation is an example of sub-symbolical repre-
sentation.
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2.1 Feature Approach

Objectscan be described by a set of discrete features, such
as red, round and sweet[Tversky, 1977; McClelland and
Rumelhart, 1985]. The similarity between them can be de-
fined as a function of the features they have in common
[Osherson, 1995; Sun, 1995; Goldstone, 1999; Gilovich,
1999]. The contrast model of Tversky[Tversky, 1977] is one
well-known model in cognitive psychology[Smith, 1995;
Opwis and Plötzner, 1996] which describes the similarity be-
tween two objects which are described by their features. An
object is judged to belong to a verbal category to the extent
that its features are predicted by the verbal category[Osher-
son, 1987]. The similarity of a categoryC and of a feature
setF is given by the following formula, which is inspired by
the contrast model of Tversky[Tversky, 1977; Smith, 1995;
Opwis and Plötzner, 1996],

Sim(C, F ) =
|C ∩ F |

|C|
∈ [0, 1] (1)

|C| is the number of the prototypical features that define
the categorya. The present features are counted and normal-
ized so that the value can be compared. This is a very simple
form of representation. A binary vector in which the positions
represent different features can represent the set of features.
For each category a binary vector can be defined. Overlaps
between stored patterns correspond to overlaps between cat-
egories.

2.2 The Lernmatrix

The Lernmatrix, also simply called “associative memory”
was developed by Steinbuch in 1958 as a biologically in-
spired model from the effort to explain the psychological phe-
nomenon of conditioning[Steinbuch, 1961; 1971]. Later this
model was studied under biological and mathematical aspects
by Willshaw [Willshaw et al., 1969] and G. Palm [Palm,
1982; 1990].

Associative memory is composed of a cluster of units.
Each unit represents a simple model of a real biological neu-
ron. The Lernmatrix was invented in by Steinbuch, whose
goal was to produce a network that could use a binary version
of Hebbian learning to form associations between pairs of bi-
nary vectors, for example each one representing a cognitive
entity. Each unit is composed of binary weights, which corre-
spond to the synapses and dendrites in a real neuron. They are
described bywij ∈ {0, 1} in Figure 1.T is the threshold of
the unit. We call the Lernmatrix simplyassociative memoryif
no confusion with other models is possible[Anderson, 1995a;
Ballard, 1997].

The patterns, which are stored in the Lernmatrix, are rep-
resented by binary vectors. The presence of a feature is indi-
cated by a ‘one’ component of the vector, its absence through
a ‘zero’ component of the vector. A pair of these vectors is
associated and this process of association is called learning.
The first of the two vectors is called thequestion vectorand
the second, theanswer vector. After learning, the question
vector is presented to the associative memory and the answer
vector is determined by the retrieval rule.
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Figure 1: The Lernmatrix is composed of a set of units which
represent a simple model of a real biological neuron. The unit
is composed of weights, which correspond to the synapses
and dendrites in the real neuron. In this figure they are de-
scribed bywij ∈ {0, 1} where1 ≤ i ≤ m and1 ≤ j ≤ n. T
is the threshold of the unit.

Learning In the initialization phase of the associative mem-
ory, no information is stored. Because the information is rep-
resented in weights, they are all initially set to zero. In the
learning phase, pairs of binary vector are associated. Let~x be
the question vector and~y the answer vector, the learning rule
is:

wnew
ij

{

1 if yi · xj = 1
wold

ij otherwise. (2)

This rule is called the binary Hebbian rule[Palm, 1982].
Every time a pair of binary vectors is stored, this rule is used.

Retrieval In theone-stepretrieval phase of the associative
memory, a fault tolerant answering mechanism recalls the
appropriate answer vector for a question vector~x. For
the presented question vector~x, the most similar learned
~xl question vector regarding the Hamming distance is
determined and the appropriate answer vector~y is identified.
For the retrieval rule, the knowledge about the correlation
of the components is sufficient. The retrieval rule for the
determination of the answer vector~y is:

yi =

{

1
∑n

j=1 wijxj ≥ T
0 otherwise.

(3)

whereT is the threshold of the unit. The threshold is set as
proposed by[Palmet al., 1997] to the maximum of the sums
∑n

j=1 wijxj :

T := max
1≤i≤m

{

n
∑

j=1

wijxj

}

. (4)

Only the units that are maximal correlated with the ques-
tion vector are set to one.
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Storage capacity For an estimation of the asymptotic num-
ber of vectorpairs(~x, ~y) which can be stored in an associative
memory before it begins to make mistakes in retrieval phase,
it is assumed that both vectors have the same dimension n.
It is also assumed that both vectors are composed of M 1s,
which are likely to be in any coordinate of the vector. In
this case it was shown[Palm, 1982; Hecht-Nielsen, 1989;
Sommer, 1993] that the optimum value for M is approxi-
mately

M
.
= log2(n/4) (5)

and that approximately[Palm, 1982; Hecht-Nielsen, 1989]

L
.
= (ln 2)(n2/M2) (6)

of vector pairs can be stored in the associative memory. This
value is much greater then n if the optimal value for M is
used. In this case, the asymptotic storage capacity of the
Lernmatrix model is far better than those of other associa-
tive memory models, namely 69.31%. This capacity can be
reached with the use of sparse coding, which is produced
when very small number of 1s is equally distributed over
the coordinates of the vectors[Palm, 1982; Stellmann, 1992].
For example an optimal code is defined as following; in the
vector of the dimension n=1000000M=18 ones should be
used to code a pattern. The real storage capacity value is
lower when patterns are used which are not sparse or are
strongly correlated to other stored patterns. Usually subop-
timal sparse codes a sufficiently good to be used with the as-
sociative memory. An example of a suboptimal sparse code
is the representation of words by context-sensitive letter units
[Wickelgren, 1969; 1977; Rumelhart and McClelland, 1986;
Bentz et al., 1989]. The ideas for the used robust mecha-
nism come from psychology and biology[Wickelgren, 1969;
1977; Rumelhart and McClelland, 1986; Bentzet al., 1989].
Each letter in a word is represented as a triple, which con-
sists of the letter itself, its predecessor, and its successor. For
example, six context-sensitive letters encode the worddesert,
namely: de, des, ese, ser, ert, rt. The character “” marks
the wordbeginning and ending. Because the alphabet is com-
posed of 26+1 characters,273 different context-sensitive let-
ters exist. In the273 dimensional binary vector each position
corresponds to a possible context-sensitive letter, and a word
is represented by indication of the actually present context-
sensitive letters. We demonstrate the principle of sparse cod-
ing by an example of the visual system and visual scene rep-
resentation.

2.3 Sparse features
In hierarchical models of the visual system[Riesenhuber and
Poggio, 1999],[Fukushima, 1980], [Fukushima, 1989], [Car-
doso and Wichert, 2010] the neural units have a local view
unlike the common fully-connected networks. The receptive
fields of each neuron describe this local view. During the
categorization the network gradually reduces the information
from the input layer through the output layer. Integrating lo-
cal features into more global features does this. Supposed in
the lower layer tow cells recognize two categories at neigh-
boring position, and these two categories are integrated into a
more global category. The first cell is namedα the secondβ.
The numerical code forα andβ may represent the position of

each cell. A simple code would indicate if a cell is active or
not. One indicates active, zero not active. Forc cells we could
indicate this information by a binary vector of dimensionc.
For an image of sizex × y a cell covers the imageX times.
A binary vector that describes that image using the cell repre-
sentation has the dimensionc×X . For example gray images
of the size128 × 96 resulting in vectors of dimension12288
can be covered with:

• 3072 masks M of the size of a size2×2 resulting in a bi-
nary vector that describes that image has the dimension
c1 × 3072, X1 = 3072 (see Figure 2 (a) ).

• 768 masks M of the size of a size4× 4 resulting in a bi-
nary vector that describes that image has the dimension
c2 × 768, X2 = 768 (see Figure 2 (b) ).

• 192 masks M of the size of a size8× 8 resulting in a bi-
nary vector that describes that image has the dimension
c3 × 192, X3 = 192 (see Figure 3 (a) ).

• 48 masks M of the size of a size16×16 resulting in a bi-
nary vector that describes that image has the dimension
c4 × 48, X4 = 48 (see Figure 3 (b) ).

(a)

(b)

Figure 2: (a) Two examples of of squared masksM of a size
2 × 2. (b) Two examples of squared masksM of a size4 ×
4. The masks were learned using simple k-means clustering
algorithm.

(a)

(b)

Figure 3: (a) Two examples of of squared masksM of a size
8 × 8. (b) Two examples of squared masksM of a size16 ×
16. The masks were learned using simple k-means clustering
algorithm.
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The idealc value for a sparse code is related toM
.
=

log2(n/4).
X = log2(X · c/4)

2X = X · c/4

c =
4 · 2X

X
(7)

The ideal value forc grows exponentially in relation toX .
Usually the used value forc is much lower then the ideal
value resulting in a suboptimal sparse code. The represen-
tation of images by masks results in a suboptimal code. The
optimal code is approached with the size of masks, the bigger
the mask, the smaller the value ofX . The number of pixels
inside a mask grows quadratic. A bigger masks implies the
ability to represent more distinct categories, which implies a
biggerc.

An ideal value forc is possible, if the value forX << 100.
Instead of covering an image by masks, we indicate the
present objects. Objects and their position in the visual field
can represent a visual scene. A sub-vector of the vector rep-
resenting the visual scene represents each object. For exam-
ple, if there is a total of10 objects, thec value is409. To
represent409 different categories of objects at different posi-
tions resulting in 4090 dimensional binary vector. This vector
could represent 409!

(409−20)! different visual states of the world.
The storage capacity of the associative memory in this case
would be around159500 patterns, which is28 times bigger
as the number of the units (4090).

2.4 Problem Solving
Human problem solving can be described by a problem-
behavior graph constructed from a protocol of the person
talking aloud, mentioning considered moves and aspects of
the situation. According to the resulting theory, searching
whose state includes the initial situation and the desired situ-
ation in a problem space[Newell, 1990;?] solves problems.
This process can be described by the production system the-
ory. The production system in the context of classical Ar-
tificial Intelligence and Cognitive Psychology is one of the
most successful computer models of human problem solv-
ing. The production system theory describes how to form a
sequence of actions, which lead to a goal, and offers a com-
putational theory of how humans solve problems[Anderson,
1995b]. Production systems are composed of if-then rules
that are also called productions. A rule [contains several if
patterns and one or more then patterns. A pattern in the con-
text of rules is an individual predicate, which can be negated
together with arguments. A rule can establish a new asser-
tion by the then part (its conclusion) whenever the if part (its
premise) is true. One of the best-known cognitive models,
based on the production system, is SOAR. The SOAR state,
operator and result model was developed to explain human
problem-solving behavior[Newell, 1990]. It is a hierarchical
production system in which the conflict-resolution strategy
is treated as another problem to be solved. All satisfied in-
stances of rules are executed in parallel in a temporary mode.
After the temporary execution, the best rule is chosen to take
action. The decision takes place in the context of a stack of

earlier decisions. Those decisions are rated utilizing prefer-
ences and added to the stack by chosen rules. Preferences
are determined together with the rules by an observer using
knowledge about a problem.

According to the production system theory, we can define
a geometrically based problem-solving model as a produc-
tion system operating on vectors of fixed dimensions. Instead
of rules, we use associations and vectors represent the states.
Our goal is to form a sequence of associations, which lead to a
desired state represented by a vector, from an initial state rep-
resented by a vector. Each association changes some parts of
the vector. In each state, several possible associations can be
executed, but only one has to be chosen. Otherwise, conflicts
in the representation of the state would occur. To perform
these operations, we divided a vector representing a state into
sub-vectors. An association recognizes some sub-vectors in
the vector and exchanges them for different sub-vectors. It is
composed of a precondition of fixed arranged m sub-vectors
and a conclusion. Suppose a vector is divided into n sub-
vectors withn > m. An association recognizes m different
sub-vectors and exchanges them for different m sub-vectors.
To recognize m sub-vectors out of n sub-vectors we perform
a permutation p(n,m) and verify if each permutation corre-
sponds to a valid precondition of an association. For exam-
ple, if there is a total of 7 elements and we are selecting a
sequence of three elements from this set, then the first selec-
tion is one from 7 elements, the next one from the remaining
6, and finally from the remaining 5, resulting in 7 * 6 * 5 =
210, see Figure 4.2 1 0 p o s s i b l ep e r m u t a t i o n s

A s t a t e r e p r e s e n t e d b ys e v e n c o g n i t i v e e n t i t i e s

A s s o c i a t i v em e m o r yp r e m i s s e d e s c r i b e sc o r r e l a t i o n b e t w e e nc o g n i t i v e e n t i t i t e s
Figure 4: To recognize one learned association permutations
are formed. For example, if there is a total of 7 elements
and we are selecting a sequence of three elements from this
set, then the first selection is one from 7 elements, the next
one from the remaining 6, and finally from the remaining 5,
resulting in 7 * 6 * 5 = 210. In our example, all possible three-
permutations sub-vectors of seven sub-vectors are formed to
test if the precondition of an association is valid.

Out of several possible associations, we chose the one,
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Figure 5: The simplest method corresponds to a random
choice,and does not offer any advantage over simple sym-
bolical representation. An example of visual planning of the
tower building task of three blocks using the random choice
is shown. The upper left pattern represents the initial state;
the bottom right pattern, the desired state.

which modifies the state in such a way that it becomes more
similar to the desired state according to the Equation 1. The
desired state corresponds to the category of Equation 1, each
feature represents a possible state. The states are represented
by sparse features. With the aid of this heuristic hill climb-
ing is performed. Each element represents an object. Objects
are represented by some dimensions of the space and form a
sub-space by themselves, see Figure 4.

The computation can be improved by a simple and uni-
versal heuristics function, which takes into account the rela-
tionship between the vector and the corresponding similar-
ity of the represented states see Figure 5 and Figure 6. The
heuristics function makes a simple assumption that the dis-
tance between the states in the problem space is related to the
similarity of the vectors representing the states.

The similarity between the corresponding vectors can in-
dicate the distance between the sub-symbols representing the
state. Empirical experiments in popular problem-solving do-
mains of Artificial Intelligence, like robot in a maze, block
world or 8-puzzle indicated that the distance between the
states in the problem space is actually related to the similarity
between the images representing the states[Wichert, 2001;
Wichertet al., 2008; Wichert, 2009].

3 Conclusion
Living organisms experience the world as a simple. The ac-
tual perception of the world and manipulation in the world
by living organisms lead to the invention or recreation of an
experience that, at least in some respects, resembles the expe-
rience of actually perceiving and manipulating objects in the

Figure 6: The computation can be improved by a simple and
universal heuristics function, which takes into account the re-
lationship between the vector and the corresponding similar-
ity of the represented object or states in the real world as ex-
pressed by Equation 1 for binary vectors. The heuristics func-
tion makes a simple assumption that the distance between the
states in the problem space is related to the distance between
the sub-symbols representing the visual states. The distance
between the states in the problem space is related to the dis-
tance between the visual state. An example of visual planning
of the tower building task of three blocks using hill climbing
using the similarity function, see Equation 1. The upper left
pattern represents the initial state; the bottom right pattern,
the desired state.

absence of direct sensory stimulation. This kind of represen-
tation is called sub-symbolic. Sub-symbolic representation
implies heuristic functions. The assumption that the distance
between states in the problem space is related to the similar-
ity between the sub-symbols representing the states is only
valid in simple cases. However, simple cases represent the
majority of exiting problems in domain. Sense organs sense
the world by receptors which a part of the sensory system
and the nervous system. Sparse binary vectors can describe
sub-symbolic representation, which can be efficiently stored
in associative memories. A simple code would indicate if a
receptor is active or not. One indicates active, zero not active.
Forc receptors we could indicate this information by a binary
vector of dimensionc with only one ”1”, the bigger the c, the
sparser the code. For receptors inX positions the sparse code
results inc × X dimensional vector withX ones.
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Abstract
CABot3, the third Cell Assembly roBot, is an agent
implemented entirely in simulated neurons. It is
situated in a virtual 3D environment and responds
to commands from a user in that environment. It
parses the user’s natural language commands to set
goals, uses those goals to drive its planning sys-
tem, views the environment, moves through it, and
learns a spatial cognitive map of it. Some systems
(e.g. parsing) perform perfectly, but others (e.g.
planning) are not always successful. So, CABot3
acts as a proof of concept, showing a simulated neu-
ral agent can function in a 3D environment.

1 Introduction
CABot3, the third Cell Assembly roBot, is a video game
agent implemented entirely in simulated neurons. It assists
a user in the game: viewing the 3D environment; processing
natural language commands; making simple plans; and mov-
ing through, modifying, and learning about the environment.

As its name suggests, CABot3 makes extensive use of Cell
Assemblies (CAs), reverberating circuits of neurons that are
the basis of short and long-term memories [Hebb, 1949].
CABot3 represents symbolic knowledge in a neural network
by CAs. Simple rules are implemented by simple state transi-
tions, with a particular set of active CAs leading to the activa-
tion of a new set of CAs, and complex rules are implemented
by variable binding combined with state transitions.

CABot3 is a virtual robot that creates and uses plans with
a neural implementation of a Maes net [Maes, 1989], while
natural language parsing is based around a standard linguistic
theory [Jackendoff, 2002]. All agent calculations are done
with Fatiguing Leaky Integrate and Fire (FLIF) neurons (see
Section 2.1) and some of the network structure can be related
to brain areas (see Section 4.2). The agent learns a spatial
cognitive map of the rooms in the video game.

Two components of the CABots have been evaluated as
cognitive models. The Natural Language Parser [Huyck,
2009] parses in human-like times, creates compositional se-
mantic structures, and uses semantics to resolve prepositional
phrase attachment ambiguities. It also learned the meaning of
the verb centre from environmental feedback, closely related
to a probability matching task [Belavkin and Huyck, 2010].

2 The Structure of CABot3
Due to space constraints, a complete description of
CABot3 is not possible, though an almost complete de-
scription of an earlier version, CABot1, is available
[Huyck and Byrne, 2009], and the code is available on
http://www.cwa.mdx.ac.uk/cabot/cabot3/CABot3.html. A
brief description of the neural model is described next, fol-
lowed by a description of the subnetworks used, and a brief
description of how those subnetworks are connected to gen-
erate CABot3’s functionality.

2.1 FLIF Neurons
FLIF neurons are a modification of the relatively commonly
used LIF model [Amit, 1989]. When a neuron has sufficient
activation, it fires, and sends activation to neurons to which
it is connected proportional to the weight wji of the synapse
from the firing pre-synaptic neuron j to the post-synaptic neu-
ron i. That weight can be negative. The simulations use dis-
crete cycles, so the activation that is sent from a neuron that
fires in a cycle is not collected by the post-synaptic neuron
until the next cycle. If a neuron fires, it loses all its activation,
but if it does not fire, it retains some, while some activation
leaks away (decay); this is the leaky component and is mod-
elled by a factor D > 1, where the activation is divided by
D to get the initial activation at the next step. In CABot3,
activation of neuron i at time t, Ait is defined by Equation 1.
Vi is the set of all neurons that fired at t− 1 connected to i.

Ait
=

Ait−1

D
+

∑

j∈Vi

wji (1)

Additionally, FLIF neurons fatigue. Each cycle they fire
the fatigue level is increased by a constant, but when they do
not fire, the fatigue level is reduced by another constant, but
never below 0. The neuron fires at time t if its activity A
minus fatigue F is greater than the threshold, see Equation 2.

Ait
− Fit

≥ θ (2)
FLIF neurons are a relatively faithful model of neurons,

though are relatively simple compared to compartmental
models [Hodgkin and Huxley, 1952]. If each cycle is con-
sider to take ten ms., it has been shown that 90% of the spikes
emitted fall within one cycle of the spikes of real neurons on
the same input [Huyck, 2011]. Aside from their biological
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Figure 1: Gross Topology of CABot3. Boxes represent sub-
ystems of subnets. The oval represents the environment.

fidelity, another benefit is that 100,000 FLIF neurons with a
10ms cycle can be simulated in real time on a standard PC.

Neurons are grouped into CAs, either manually by the de-
veloper, or through emergent connectivity. A given neuron
may be part of one or more CAs.

2.2 SubNetworks
The FLIF neurons in CABot3 are grouped into 36 subnet-
works. Each subnet is an array of neurons, and each may
have different FLIF parameters and learning parameters, in-
cluding no learning. In CABot3, connectivity within a subnet
is always sparse, but it varies between subnets; this connectiv-
ity may have some degree of randomness, but in some cases
it is tightly specified by the developer to guarantee particular
behaviour. Subnets may also be connected to each other with
neurons from one sending synapses to others; these types of
connections vary similarly. These reflect differences, possi-
bly caused in part by genetics, between different types of bi-
ological neuron.

Apart from biological fidelity, another advantage of sub-
nets is that they facilitate software engineering. Tasks can be
partitioned, with one developer working on one net or a set of
nets for a particular subsystem. Communication with other
subsystems may take place via only one subnet allowing a
degree of modularity1.

2.3 Gross Topology
CABot3 can be divided into a series of subsystems each con-
sisting of subnets (Figure 1. Arrows show directed connec-
tions from one subsystem to another, each, aside from the
game, representing a large number of synapses. Verb learn-
ing is not tested in CABot3, thus the connection is represented
with a dotted line and is omitted in later diagrams. Also, for
clarity in later diagrams, due to the prevalence of connec-
tions from control, connections from the control subsystems
to other subsystems are omitted.

The basic subsystems are described below. Section 3.1 de-
scribes the game and the control subsystem; the game re-
ceives simple commands from the agent. Section 3.2 de-

1Note this modularity may conflict with actual brain topology.

scribes the vision subsystem; 3.3 the planning subsystem, 3.4
the natural language processing (NLP) subsystem, 3.5 verb
learning, and Section 3.6 describes the spatial cognitive map
learning subsystem. Connections between the subsystems are
also described in these sections. Section 4 summarizes the
evaluation of CABot3.

3 Subsystems
Each subsystem is explained below, concentrating on those
that have not been explained elsewhere.

3.1 Communication, Control and the Game

The game was developed using the Crystal Space [Crystal
Space, 2008] games engine. It is a black and white 3D envi-
ronment with an agent, a user, four rooms connected by four
corridors, and a unique object in each room (see Figure 4);
the objects were vertically or horizontally striped pyramids
or stalactites (down facing pyramids). The agent and user can
move around the rooms independently. The game provides
the input to the vision system using a dynamically updated
picture of the game from the agent’s perspective. The user
issues text commands as input to the NLP system. The game
also has a bump sensor, and this ignites a CA in the fact sub-
net in the planning system (see Section 3.3) when the agent
bumps into a wall. Similarly, the game takes commands from
the agent’s planning system to turn left or right, or move for-
ward or backward.

The control subsystem consists of one subnet, the control
subnet, which in turn consists of five orthogonal CAs2. These
CAs mark the state of the agent, either parsing or clearing a
parse, setting a goal or clearing it, or a stub. The initial state
is turned on at agent start up, and one state is always on.

In the first state, the system is waiting for input or parsing
a sentence. This state has connections to most of the NLP
subnets to facilitate the spread of activation. When the last
grammar rule ignites, it forces the control state to move on.

Most of the CAs involved in parsing, and planning, and all
of the control CAs are orthogonal oscillators. When active,
they oscillate from having one half of the neurons firing to
having the other half firing, then back to the first set. This
allows the CA to avoid fatigue as its neurons only fire half
the time. This is not biologically accurate, but enables precise
behaviour with relatively few neurons.

When it has finished parsing, control moves to the clear
parse state. This changes the instance counters in the NLP
subsystem preparing it for the next sentence. After a few
steps, activation accumulates in the set goal state causing it
to ignite, and suppress the clear parse state.

In the third state, the goal in the planning system is set
from the semantics of the parse via the intermediate goal set
subnet. In the fourth state, information is cleared from the
NLP system after the goal is met, and the fifth is a stub.

The control allows the system to parse while still process-
ing a goal. Vision remains active at all times.

2A neuron in an orthogonal CA belongs to that and only that CA.
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3.2 Vision
The visual system of CABot3 consists of six subnets: visual
input, retina, V1, gratings, V1Lines, and object recognition.
The retina, V1, gratings, and V1Lines share some similari-
ties with their human counterparts, but are much simplified
models. Higher-level object recognition in CABot3 is not bi-
ologically plausible and does not mimic known mechanisms
in the human visual system. It does however carry out two
important functions of the visual system: the simultaneous
identification of what is seen and where it is in the visual field.

The visual input, retina, V1 and object recognition nets
have been described elsewhere and are only slightly modi-
fied [Huyck et al., 2006]. The most important modification
is the addition of grating cells that mimic known properties
of the primate visual system, in that they respond selectively
to textures of a certain orientation and frequency [DeValois et
al., 1979].

The visual input subnet is a 50x50 network of FLIF neu-
rons that do not fatigue. Input to this subnet is clamped to the
external stimulus, thus activation is constant until the agent’s
point of view changes. Each neuron in the 50x50 subnet cor-
responds to an identically located ”cell” in a 50x50 grid of
light levels from the environment.

The CABot1 retina subnet contains six 50x50 grids of FLIF
neurons. Each subnet contains retinotopic receptive fields of
a single size and polarity: 3x3 receptive fields with single-
cell centre; 6x6 receptive fields with a 2x2 cell centre and
the 9x9 receptive fields with a 3x3 cell centre. For each of
these sizes there is a subnet with an on-centre/off-surround
polarity (neurons fire when the centre of the receptive field
is stimulated and the surround is not) and an off-centre/on
surround polarity.

In the V1 area of the human visual system there are neu-
rons, known as simple cells, that are tuned to specific edge
and angle orientations. These simple cells are location spe-
cific. In the CABot3 V1 and V1Lines subnets, FLIF neu-
rons have been connected to replicate this behaviour. V1 and
V1Lines were split for engineering convenience. Weighted
connections feed activation from on-centre and off-centre
cells in the retina subnet. There are eight orientation specific
edge detectors and four angle detectors.

The edge detectors in V1Lines also have recurrent connec-
tions to grating detector subnets. Grating detector cells iden-
tify repeated patterns of edges of a given orientation and fre-
quency. These grating detectors allow CABot3 to recognise
textures in the environment. This allows CABot3 to distin-
guish between objects of the same shape but that are ‘painted’
with different textures.

The object recognition net is the least biologically plau-
sible of the visual subnets. There are five modules in the
subnet, made up of a number of overlapping cell assem-
blies. These specialise to recognise pyramids, stalactites,
door jambs, doors, or unknown objects. The same modules
also carry the “where” (position) as each subnet is a retino-
topic representation of the visual field.

3.3 Planning
The planning system is basically a Maes net [Maes, 1989].
The gross topology is shown in Figure 2. All subsystems link
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Figure 2: Gross Topology of the Planning Subsystem. Boxes
represent subnets.

to the planning subsystem. Its primary entry point is from the
NLP subsystem, which sets the goal. The primary outcome
is to the game; the CAs in the action subnet are polled and a
symbolic command is emitted to the game.

This subnet structure was used throughout CABot1, 2 and
3, and a simple example is the command, Move forward.
When parsing is completed, the control subnet in combina-
tion with the NLP subnets cause an orthogonal oscillating CA
in the goal net to ignite. This is equivalent to a goal being set
in the Maes net. With a simple action, this goal CA causes
the corresponding module subnet CA to ignite, which in turn
causes the corresponding CA in the action subnet to ignite.
The action CA is then polled to emit the command to the
game. Backward inhibition extinguishes the goal and module
CAs, and accumulated fatigue causes the action CA to stop.

Simple movements do not require any facts, but actions are
often predicated on facts that are set by the environment. For
example, an environmentally sensitive command is Turn to-
ward the pyramid. In this case, the vision system ignites a
fact CA expressing the target’s location in the visual field, for
instance, “target on left”. The combination of activity from
the fact net and the goal net cause the appropriate module CA
to ignite, which in turn causes the appropriate action CA to
ignite. This is an example of needing two (or more) CAs ig-
nited to ignite a third. This is done by allowing the activation
of the neurons in the third CA to rise, but which is below
threshold when one CA is ignited. The second CA then pro-
vides enough activation to ignite the third CA.

Note that the full Maes net has a concept of Maes module
activation. In CABot3, the module CAs are either on or off,
and there is no activation level (but see Sections 3.4 and 5).

The system executes 21 commands, four primitives (e.g.
Turn right), two compounds (e.g. Move left which executes
a left then forward), turn toward pyramid or stalactite, go to
seven objects, explore, stop, and move before four objects.
The seven objects are door, and pyramid or stalactite either
(vertically) barred, (horizontally) striped, or unspecified.

Moving to an object may require several steps. CABot3
centres the object in the visual field and then moves to it until
the object fills the visual field, possibly centring again along
the way. Any command can be stopped by the Stop command.

The most sophisticated thing the system does, in response
to the Explore command, is to explore the four rooms and
memorize the objects in the room (see Section 3.6). To test
that the system has correctly memorized the map, a command
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such as Move before the striped pyramid may be used. The
system then moves to the room before the striped pyramid and
stops without having seen it again, showing it has memorized
its location (see Section 4.1).

In all, the goal subnet contains 26 CAs, including subgoals.
The fact subnet has 66 CAs, the module subnet seven, and the
action subnet six including two error conditions.

3.4 Natural Language Processing
The stackless parser has been described elsewhere [Huyck,
2009]. Input is provided symbolically from Crystal Space,
each word is associated with an orthogonal set of neurons in
the input net, and they are clamped on when the particular
word is being processed.

The subnets involved follow Jackendoff’s Tripartite theory,
with NLP broken into three main systems, lexicon, syntax and
semantics, and the systems communicate via subsystems.

Stackless parsing is done by activation levels, with the
number of neurons in a CA firing in a cycle reflecting CA
activity. In practice this is done by a tightly specified topol-
ogy that has the number of neurons firing in the CA decaying
over time; activation levels reflect the order of items.

Semantics are handled by overlapping encoding derived
from WordNet. This could be useful in resolving parsing am-
biguities, though this is not implemented in CABot3.

Grammar rule CAs are selected by activation of component
(lexical or higher order category) CAs. Variable binding is
done with short-term potentiation [Hempel et al., 2000], and
this is how instances store their semantics. Noun instances
represent noun phrases and verb instances, verb phrases in-
cluding their arguments. A case frame is generated for each
parse, and the slots are bound to other instances or to the se-
mantics of words. These bindings are learned but decay over
time. The next time they are used, two parses later, the in-
stance frames have been erased by automatic weight decay.

3.5 Motivation and Reinforcement Learning
Hebbian learning strengthens the connections between CAs
as well as within a CA. CAs are associated with some atomic
propositions, and more complex propositions (such as impli-
cation rules) are represented by groups (e.g. pairs) of asso-
ciated CAs. However, Hebbian rules do not differentiate be-
tween learning ‘good’ or ‘bad’ propositions. After several
atomic propositions or symbols have been learnt in the form
of corresponding CAs, the main problem is to learn the cor-
rect or favourable propositions from these.

This problem was solved by a motivational system that is
used to control Hebbian learning so that propositions with
higher utility values or rewards are reinforced [Belavkin and
Huyck, 2008]. The mechanism uses two specialised subnets:
utility and explore. Neurons in the utility network output sig-
nals corresponding to a reward or payoff obtained from the
environment. Neurons in the explore network output signals
that represent random noise and they can be connected to any
set of CAs that needs to be randomised to allow stochastic
exploration of their interrelations. The utility network has in-
hibitory connections to the explore network so that high val-
ues of utility correspond to low level of randomness at the
output of the explore network.
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Figure 3: Subnets involved in spatial cognitive mapping.

It has been demonstrated previously that the mechanism
described above can be used to learn simple sets of rules in a
CA-based architecture [Belavkin and Huyck, 2008], and that
it can be used to model probability matching observed in an-
imals and people [Belavkin and Huyck, 2010]. The mecha-
nism was used by CABot2 to learn the verb centre and the
corresponding action associated with a visual stimulus. It is
unplugged in the currently available version of CABot3.

3.6 Spatial Cognitive Map Learning
Spatial cognitive mapping is the psychological process of
recording, recollecting and acting on locations and objects
in a physical environment [Downs and Stea, 1973]. CABot3
implements a simple version of this complex process based
on the authors’ previous work [Huyck and Nadh, 2009]; the
CABot3 agent explores the rooms, learns the objects, associ-
ations between them, and navigates to specific rooms.

Figure 3 shows the subnets involved. Room1 and room2
encode adjacent rooms that the agent moves through, where
room1 is the prior room and room2 is the current room. The
sequence net encodes the associations between the rooms,
and the objects in them. The counter net supports the order.

On receiving the Explore command, the agent goes around
the environment, room by room, learning the objects it sees.
When an object is in its visual field, for instance a striped
pyramid, the current room in association with it is encoded
as a CA in Room1. The object in view is recognised from
activity in the fact net, and learning lasts 200 cycles as it has
been observed to be the minimum number of cycles required
for CAs to be learnt. When the agent moves to the next room,
the same routine happens, but as it has come from an adja-
cent room, the current room is also encoded in room2. The
previous room CA in room1 is still active, the current room
CA in room2 ignites, and the association between the two
rooms learnt as a CA in the sequence net. Learning in the
sequence subnet happens via co-activation with the two ac-
tive room CAs in the two room nets lasting 200 cycles. This
in essence creates individual CAs representing the rooms and
their constituent objects in the two room nets, and the associa-
tion between the rooms the agent passes through in sequence.
Counter keeps track of the room the agent is currently in.
When the agent is done exploring, room1 and room2 have a
CA associated with the item in the fact net, and the sequence
net has five CAs representing the association between each
room and its adjacent room.

After exploration, when the agent is issued with a com-
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mand such as Move before the striped pyramid, the involved
fact such as “striped pyramid” ignites in fact (Figure 2). Fact
in turn ignites the learnt CA in room2 representing the room
with the “striped pyramid”. As the sequence net has encoded
the association between rooms, the active CA in room2 ac-
tivates the associated room in room1, which is the room be-
fore the room in room2 that the agent entered through while
exploring. Thus the agent deduces the target room from its
simple learnt cognitive map. With the target room active, the
agent starts moving, and when it reaches the target room, ac-
tivity in the goal subnet informs it of task completion.

4 Evaluation
The evaluation of a CABot3 agent is a complex process.
Many of the components have been evaluated separately. For
the purposes of testing CABot3 itself, parsing, for example,
consists of a few dozen grammar rules that it uses to parse
all of the acceptable commands correctly, so as to set an ap-
propriate goal. In parsing, all of the connections are deter-
ministic, and the parsing subnets are insulated by layers of
connections from the more stochastic areas.

The evaluation of the planning system and cognitive map-
ping systems are briefly described in Section 4.1. The control
system is a simple finite state automata which switches states
when other systems reach certain states, for example when
the parser finishes, the control state changes. This system
largely switches states when appropriate, but occasional er-
rors do occur, but these are largely self correcting. However,
it occasionally gets into states from which it cannot recover.

The vision system works robustly for a limited range of
textures. There are two orientations and a limited range of
spatial frequencies that the grating cells can accommodate
due to the size and resolution of the retinal nets. Within
these limitations, however, the system identifies textures reli-
ably. Where objects are presented clearly on the retina (that
is, where the viewing angles are not extreme) the visual sys-
tem robustly identifies the objects in the 3D world.

4.1 Explore Evaluation
The planning system is responsible for a relatively wide range
of activities. Most of these it performs entirely correctly; for
example the command Turn left. always works correctly. The
most sophisticated physical task the agent performs is to ex-
plore all of the rooms, making use of vision and spatial cogni-
tive mapping (see Section 3.6). This exploration is relatively
simple though it can take several hundred moves. An example
is shown in Figure 4.

CABot3 initially tries to identify the room it is in by the
unique object it sees. In the case of Figure 4, it sees the striped
pyramid, and this is put into its spatial cognitive map. It then
finds the corridor, which it can see at a distance. It moves
to the front of the corridor keeping to the left edge, stopping
when it bumps into the edge of the corridor. It then turns right
and moves through the corridor along the edge. At the end of
the corridor it turns right to see the object in the next room. It
can see there is an object but the agent is not close enough to
identify it. It moves toward the object, in this case the barred
pyramid, until it can identify it. It then puts that in the cog-
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Figure 4: Forward moves of CABot3 while exploring the
rooms, starting at S with moves marked by dots.

nitive map, and repeats the process for the next two rooms,
stopping when it identifies the object in the initial room.

Explore works about half the time. It appears cognitive
mapping works each time, and all of the failures are due to
navigation problems.

4.2 Subnet Evaluation
The subnet topology is important both for software engineer-
ing and for relating to brain areas. From the software engi-
neering perspective, the method has been successful. Break-
ing the full network into subnets has enabled development of
systems to be partitioned with one developer working on one
task, (e.g. vision) in isolation. The systems have then been
combined to work together in the full CABot3 agent.

The brain did not evolve this way, so it is also important
to see how different subnets might map to brain areas. There
is a strong correlation between CABot3’s early vision areas
and biological vision areas, with both accounting for similar
behaviour. There is a looser correlation between the explore
subnet in reinforcement learning and the basal ganglia. How-
ever, in most cases the subnets have little correlation with
brain areas. None the less, the basic subnet topology could
be used to closely mimic known brain area topology and be-
haviour. As subnets still have connections to and from other
subnets, so CABot3 is one large network.

5 Conclusion
Many researchers thought that implementing AI systems with
simulated neurons was too complex (e.g. [Smolensky, 1988]).
Perhaps this was true a few decades ago, but the authors be-
lieve that CABot3 shows that this fear has passed.

The mere implementation of a relatively simple agent
may miss the point that many connectionists hope to make:
that the neural level is not the correct level to study the
brain. While the authors would agree that many complex be-
haviours, such as attractor dynamics and supervised learning,
are being effectively studied with non-neural connectionist
systems, this does not mean that the same problems cannot
be effectively studied in neural systems.

Moreover, simulated neural systems have an important ad-
vantage over connectionist systems when it comes to study-
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ing AI: existing intelligent agents (humans and other animals)
use neurons to think, and the neural and cognitive behaviour
of these animals is being studied. Simulated neural systems,
which match sensible intermediate behaviour, can be devel-
oped as milestones on the way to full fledged AI systems.

During the project, it was shown that in general a network
of CAs, and in particular a network of FLIF neuron CAs,
was Turing complete [Byrne and Huyck, 2010]. In some
sense, this makes the implementation of CABot3 unsurpris-
ing. While CABot3 is obviously not a neuron by neuron sim-
ulation of a human brain, it does have a series of links to neu-
robiological and cognitive behaviour that increase its validity.
The base neural model is a relatively accurate if simplified
model of neurons. In CABot3, some subnets are reasonable
approximations of brain areas. The use of CAs for long and
short-term memories and as the basis of symbols is neuropsy-
chologically supported, and provides a bridge between sub-
symbolic and symbolic processing. Cognitive models provide
solid links to psychological behaviour from a neural system.

While it is possible to continue to program new and im-
proved neural systems, the authors believe the key is to have
the system learn its behaviour. Thus, a vast range of fu-
ture work is possible such as: improving existing systems;
adding new sensory modalities, for example sound detec-
tion and speech recognition; moving from virtual to physi-
cal robots; improving the fit with biological data, for example
more neurons, more realistic topologies, and more accurate
neural models; new and more sophisticated cognitive mod-
els; and improving computation, for example by use of spe-
cialised neural hardware. Simulated CAs themselves could
also be improved so that a single CA could be learned, and
persist for an appropriate duration. More radical improve-
ments also present themselves including improved learning,
for example at the CA level and in combination with variable
binding, improved understanding of dual attractor dynamics,
integration of attention, and experiments with agents that con-
tinue to improve over several days or longer.

CABot3 is an agent in an environment functioning in real
time, implemented in simulated neurons. It is a solid step in
the development of agents implemented in simulated neurons,
and it is intended that more sophisticated agents will be de-
rived from it. Building systems like this will involve trade offs
between biological and psychological fidelity, and computa-
tional constraints. By building more biologically and psycho-
logically plausible systems that perform more tasks, signifi-
cant advancements in the understanding of general cognition
can be made.
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Abstract 

We present a compact – yet expressive – Multi-
purpose, distributed binding mechanism, which is 
useful for encoding complex symbolic knowledge 
and computation, using Artificial Neural Networks 
(ANNs) or using Satisfiability (SAT) solvers. The 
technique is demonstrated by encoding unrestricted 
First Order Logic (FOL) unification problems as 
Weighted Max SAT problems and then translating 
the later into ANNs (or learning them). It is capa-
ble of capturing the full expressive power of FOL, 
and of economically encoding a large Knowledge 
Base either as long term synapses or as clamped 
units in Working Memory. Given a goal, the mech-
anism is capable of retrieving from the synaptic 
knowledge just what is needed, while creating nov-
el, compound structures in the Working Memory. 
Two levels of size reduction are shown. First, we 
build a Working Memory, using a pool of multi-
purpose binders, based on the assumption that the 
number of bindings that are actually needed is far 
less than the number of all theoretically possible 
bindings. The second level of compactness is due 
to the fact that, in many symbolic representations, 
when two objects are bound, there is a many-to-one 
relationship between them. This happens because, 
frequently, either only one value is pointed by vari-
able or only one variable point to a value. A cross-
bar binding network of n × k units with such re-
striction, can be transformed into an equivalent 
neural structure of size O(n log(k)).  We show that, 
for performing unrestricted FOL unifications, the 
Working Memory created is only log dependent on 
the KB size; i.e., O(n log(k)). The variable binding 
technique described is inherently fault tolerant as 
there are no fatal failures, when some random neu-
rons become faulty and the ability to cope with 
complex structures decays gracefully.  Processing 
is distributed and there is no need for a central con-
trol even to allocate binders. The mechanism is 
general, and can further be used for other applica-
tions, such as language processing, FOL inference 
and planning. 

1 Introduction 

1.1 The Binding Problem 

Human cognition is capable of producing combinatorial 
structures. The general binding problem concerns how items 
that are encoded in distinct circuits of a massively parallel 
computing device (such as the brain or ANN) can be com-
bined in complex ways for perception, reasoning or for ac-
tion [Feldman 2010].  Consider for example, a planning 
problem, where the task is to pick up an object and move it 
from its current position to another place. In order to meet a 
goal, a “brain”-like device, must be able to represent the 
object, its properties, its position and the ways to manipulate 
it, in such a way that the goal is achieved. The object and its 
properties must be bound together, and this rather complex 
structure should also be used in conjunction with other enti-
ties and rules, such as the action consequences (e.g., moving 
X from Y to Z clears position Y while occupying position 
Z). In another example, consider the sentence: “Sally ate”: 
In language processing, the verb “EAT” is a predicate with 
at least two roles - EAT(“Sally”,X). The noun “Sally” 
should be bound to the first role, while an existentially 
quantified variable (representing “something”) should be 
bound to the second role.  Once we get the information that 
“Sally ate salad”, and knowing the rule: EAT(Y,X)⇒ DI-
GESTED(X) we should reason that “the salad is digested”. 
In order to do that, we must bind the variable X to the noun 
“salad”, while X must be bounded to both EAT(,X) and 
DIGESTED(X). 
  

1.2 Connectionism and Variable Binding 

During the years, connectionist systems have been criticized 
for “Propositional Fixation” [McCarthy 1988]. In  [Fodor, 
Phylyshyn 1988] connectionism was criticized for lacking 
abilities to construct combinatorial representations and for 
performing processes that are sensitive to complex structure.  
Exactly how compositionality can occur is a fundamental 
question in cognitive science and the binding aspect of it has 
been identified as a key to any neural theory of language 
[Jackendoff 2002]. Several attempts have been made to ap-
proach the variable binding problem in a connectionist 
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framework [Shastri, Ajjanagadde 1993], [Browne, Sun 
2000], [Zimmer et al. 2006], [Van der Velde, Kamps, 
Kamps 2006], [Barret et al. 2008], [Velik 2010]; yet, virtu-
ally all these suggestions, have limitations, related to either 
limited expressiveness, size and memory requirements, cen-
tral control demands, lossy information, etc.   
 
For example, compositionality can be provided using Hol-
lographic Reduced Represenations [Plate 1995]; however, 
the convolution operation used, is lossy and errors are intro-
duced as structures become more complex or as more opera-
tions are done.  The BlackBoard Architecture [Van der 
Velde, Kamps, Kamps 2006] can form complex structures 
but does not manipulate those structures to perform cogni-
tion. Shastri’s temporal binding has only limited FOL ex-
pressiveness and no mechanism for allocating temporal 
binders. Finally, all the above systems need neurons in 
numbers that is at best linear in the KB; while some use 
much more neurons than that.

1
 For FOL compositionality in 

ANNs see [Ballard 1986], [Pinkas 1992],  [Shastri 1999], 
[Lima 2000], [Garcez, Lamb 2006]. For partial-FOL encod-
ings in Satisfiability, see [Domingos 2008], [Clark et al. 
2001].  
 
The ability to represent combinatorial structures and reason-
ing with them, still presents challenges to theories of neuro-
cognition [Marcus 2001], while the variable binding prob-
lem is fundamental to such ability [Feldman 2010]. 
  

1.3 Unification 

In conventional computing, unification is a key operation 
for realizing inference, reasoning, planning and language 
processing.  It is the main vehicle for conventional symbolic 
systems to match rules with facts, or rules with other rules.  
In unification, two or more distinct hierarchical entities 
(terms) are merged, to produce a single, unified, tree-like 
structure. This unified structure adheres to the constraints of 
both the original entities. Formally, unification is an opera-
tion which produces from two or more logic terms, a set of 
substitutions, which either identifies the terms or makes the 
terms equal modulo some equational theory. For connec-
tionist approaches to unification see [Hölldobler 1990], 
[Weber 1992], [Komendantskaya 2010]. 
 For easiness of reading, we have chosen to demonstrate 
our compact variable binding mechanism on the more fun-
damental unification function, rather than on full FOL infer-
ence.   

1.4 Artificial Neural Networks and SAT 

ANNs may be seen as constraint satisfaction networks, 
where neuron-units stand for Boolean variables, and where 
the synapse weights represent constraints imposed on the 
variables.  Any ANN may be seen as such a constraint net-

                                                 
1 The BlackBoard architecture uses billions of neurons to rep-

resent thousands of atomic concepts; HRR Production systems 

[Stewart, Elliasmith 2008] needs about one million neurons.  

work; yet, for ANNs with symmetric weights (e.g. Hopfield, 
Boltzmann Machines, MFT) a simple conversion has been 
shown for translating any Weighted MAX SAT problem 
into symmetric ANN and vice-versa [Pinkas, 1991].  Any 
such SAT problem could be compiled into an ANN, which 
performs stochastic gradient descent on an energy function 
that basically counts the number of unsatisfied logical con-
straints. The size of the generated network is linear in the 
size of the original formula, though additional hidden units 
may be required. In addition to compilation, the logical con-
straints of a network could be PAC learnt using Hebbian-
like rule [Pinkas 1995], thus, for small-size constraints, a 
network can efficiently learn its weights and structure from 
a training set that is composed of the satisfying models. The 
performance efficiency of this neural mechanism can be 
attributed to the similarities of symmetric ANNs to stochas-
tic local search algorithms, such as WALKSAT [Kautz et al 
2004]. Due to the tight relationship between ANNs and 
Weighted Max SAT, our methodology is to specify an ANN 
designed for certain symbolic computation (e.g. unification), 
using a set of Boolean variables (the visible units) and a set 
of constraints; i.e., Boolean formulae designed for restrict-
ing the values of the visible units. The constraints specified 
are used to force the visible units to converge to a valid so-
lution that satisfies as many (weighted) formulae as possi-
ble. We have written a compiler that translates such specifi-
cations into either weighted CNF (for Weighted Max SAT 
Solvers) or for ANN with symmetric weights. 
 

We believe that our fault tolerant mechanism and meth-
ods for dynamically forming recursive structures will scale 
and be useful for both the engineering of massively parallel 
devices, and for modeling of high-level cognitive processes. 

2 Improving CrossBar Binding 

The simplest, most naïve binding techniques is CrossBar 
binding. The term was mentioned in [Barrett et al. 2008], 
yet it was intuitively used by many connectionist systems in 
the past [Ballard 1986], [Anandan 1989] and in many SAT 
reductions; e.g.,  [Kautz, at el 2006]. Formally, we define 
crossbar binding as a Boolean matrix representation of a 
relation between 2 sets of items, using Characteristic Matrix 
of the relation; i.e., if A contains m objects and B contains n 
objects, then the characteristic matrix R has m lines and n 
columns, containing m × n Boolean variables (neurons). We 
say that item i is bound to item j iff R(i,j)=1. In this naïve, 
binding mechanism, a neuron should be allocated for each 
possible binding, and all theoretic combinations of two 
items must be pre-enumerated as rows and columns of the 
matrix. A crossbar matrix, that needs to represent a complex 
tree or a graph, must bind together not just simple constitu-
ents, but all the compounded entities representing partial 
trees (or sub-graphs). It is possible to represent a FOL KB 
this way at the cost of using an enormous number of neu-
rons, and with an extremely localist approach. Even more 
frustrating is the fact that this technique will not be suitable 
for dynamically creating novel, nested structures upon de-
mand. The number of theoretic bindings, for all possible tree 
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structures, grows exponentially with the number of constitu-
ent items and must be computed in advance. 
We improve this simplistic binding mechanism in several 
steps: 

2.1 Using Binders as “pointers” to form Graphs 

First, we introduce
2
  a special kind of entities called Gen-

eral Purpose Binders (GPBs). GPBs are similar to pointers 
except for the fact that a single GPB can point to several 
objects, as the crossbar paradigm permits implementation of 
arbitrary relations between binders and objects. In the spe-
cial case where binders point to binders, arbitrary directed 
graphs can be built. In this scenario, we can interpret each 
GPB as a node in the graph, and the crossbar, as specifying 
the arcs of the graph (adjacency matrix). In such graph in-
terpretation, each node may be labeled using a labeling 
crossbar, that ties together binders, with symbols such as, 
predicates, functions or constants in FOL. Arcs can also be 
labeled, as the binder-to-binder crossbar, may have a third 
dimension which relates one or more labels to each arc. This 
enables the formation of arbitrary complex graph structures, 
that can be used to represent language constituents and in 
particular, FOL terms, predicates, literals and clauses. Un-
like in the naïve crossbar approach, unrestricted graphs can 
be built directly out of simple constituents, with GPB as the 
mechanism for gluing them together.  

Because the binders are general-purpose entities, we can 
construct a working memory out of a pool of such binders. 
As long as GPBs remain unallocated, they can be used for 
dynamic creation of novel, goal oriented structures. To do 
so, the “right” constraints should be embedded in the synap-
ses, forcing binders first to be allocated and then to assume 
a desired structure for solving the goal. These constraints, 
stored at the synaptic weights, are the driving force that 
causes the visible units to converge to the needed graph-like 
structures. 

 
Using this technique, we show that arbitrary KB of size k, 

can be encoded in a working Memory (WM) with O(k) 
binders and with  a total size of  O(k

2
). Unfortunately, when 

the KB tends to grow, the WM and the set of constraints 
may become too large for the mechanism to be used in real 
applications.

 3
 

2.2 Using a pool of binders “As Needed” 

Luckily, we can reduce that size requirement, drastically, as 
we can assume that, at a certain time, only few binders are 
actually needed for the processing of a given goal. This is 
supported by cognitive studies [Cowan 1981] and consti-
tutes a common assumption of several connectionist sys-
tems [Shastri, Ajjanagadde 1993], [Barrett et al 2008]. We 
therefore can design a Working Memory of neural units, 
which uses only a pool of General Purpose Binders, labeled 
and nested within each other; i.e., a small set of binders, for 

                                                 
2 The method was suggested in [Pinkas 1992] and used in [Li-

ma 2000], [Lima 2007] for clamping a KB in Working Memory. 
3 O(k3) constraints are needed for  unification in this paradigm. 

representing only those graphs that are actually needed for 
computing the goal. It turns out that this approach is con-
sistent with cognitive theories, where a large KB is stored in 
synapses (long term memory); and a smaller size working 
memory is used for retrieving only few KB items at a time. 
Only those items that are necessary to the process

4
 get to be 

retrieved from the synaptic KB. For example, if our purpose 
is to find a plan for a goal, expressed in FOL, we need to 
design the WM with enough binders to represent a valid 
plan. We retrieve the facts and rules of the world from that 
KB only if they are required by the plan we desire to make.  
  To implement a pool of binders for FOL unification, the 
WM should contain three crossbar matrices: One for label-
ing nodes by symbols (predicates, functions, constants). The 
second is for nesting of the nodes in Graphs and labeling the 
arcs according to slots of the predicates and functions. The 
third crossbar is for retrieving items from the long term 
memory where the KB is stored (e.g., terms, literals or 
clauses). This third matrix ties a binder to a KB item and 
triggers the constraints of that item to be activated so that 
the binder node is forced to assume the structure of the KB 
item retrieved.  The mechanism starts working as goal acti-
vated constraints cause some binders to be tied to KB items 
and activate some KB constraints. Those constraints, in 
turn, activate other constraints, till the WM converges to a 
valid solution. When we implement unification problems, 
the size of the WM is O(n ×k) where n is the maximal num-
ber of nodes in a solution; k is the size of the KB and n<<k. 
This constitutes a drastic improvement, as the WM size is 
linear in the size of the KB, instead of being quadratic.

5
 Ac-

tually, we can do even better: 
 

2.3 Crossbars with n*log(k) size complexity 

In the next size improvement, we further reduce the size of 
many crossbar matrices from O(n*k)  to O(n* log(k)). Thus, 
in our unification example, a WM of O(n* log (k)) is creat-
ed, where n is the maximal size of a unification tree and k is 
the size of the KB. This means that the WM size is only log 
dependent

6
  on the KB size; rather than linearly as in previ-

ous section. 
 The key to this log-reduction, is the fact that frequently, 
binding relationships have many-to-one or one-to-many 
restrictions. For example, the crossbar matrix for node label-
ing, allows for a binder to point only to a single symbol 
(whereas many binders could point to the same symbol). 
This many-to-one relationship causes the rows of the cross-
bar labeling matrix to be Winner-Takes-All (WTA) arrays, 
where only one neural unit (if any) may fire. Normally, we 
need mutual exclusion constraints to force the rows of the 
matrix to be either all-zeros or have a single variable set to 
one. In such a scenario, however, we can replace each WTA 

                                                 
4 When an item is already in WM, no retrieving is needed. 
5 The number of constraints needed for unification is O(n2k); 

linear in the KB size, when n<<k. 
6 Even, if occurs check is used, the WM size is still linear in 

the KB size when n<<k. 
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line (with k-variables), with a much smaller size line of only 
O(log(k)) variables. Each such line of log(k) variables (neu-
rons), represents an index (or a signature) to the target label. 
Therefore, if a binder may point to just a single object (out 
of k possible objects), we may use only log(k) bit signa-
tures. Fig 1 illustrates, how one binder with WTA line that 
points to object 6 (out of 15 objects) is reduced to only 4 
bits LOG WTA array, representing the signature of that 
item. This signature, once it emerges in a binder’s row, acti-
vates a set of constraints associated with the bounded object. 
These constraints force the binder to get the retrieved item’s 
structure and may cause a chain reaction of more con-
straints, retrieving more KB items and so forth.  

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

 
1 2 3 4 

0 1 1 0 

 

Figure 1.  On top: A Standard WTA pointing to the 6th object; 

Bellow: a LOG WTA array with a binary value of 6 representing 

the 6th object’s signature ‘0110’. 

 

It should be noted that, once a LOG WTA encoding is used 
instead of the standard WTA, the constraints imposed on 
WM might need to be adjusted. 

7
 

 
 

3   Fault Tolerance  

 

The variable binding mechanism suggested and its applica-
tion to unification are inherently fault tolerant, if each varia-
ble is allocated a processing unit (a neuron).  Small random 
damage to the neurons does not radically affect the unifica-
tion process (if at all). For example, if a single neuron relat-
ed to a binder, in one of the crossbar matrices, becomes 
faulty and stops firing, then the binder cannot point to a cer-
tain symbol; however, other binders from the pool can be 
used for pointing to that symbol if such is needed. In the 
meantime, this “faulty” binder may still be used, as it can be 
allocated to point to other symbols. Even if the faulty neu-
ron starts firing constantly, it may still participate in the 
process if the symbol that is pointed by that “faulty” binder 
happens to be needed. The binder will simply not be used, if 
that symbol is irrelevant to the goal.  If the damage to the 
WM neurons is more widespread, so that a binder cannot 
take part in the process, then this binder will not be allocat-
ed, and therefore will not be used in the graph construction. 
This may shorten the number of available GPB nodes in the 
largest graph but will not destroy the ability of the WTA to 
unify less complex terms (shallower trees).

8
  

                                                 
7 E.g., mutual exclusion constraints -  for  enforcing WTA are 

eliminated. Long OR constraints of O(k) size, become only of 

log(k) length.  
8 This property may help in supporting neuro-linguistic theo-

ries that relate certain symptoms of aphasia, with loosing abilities 

4 Conclusions  

We have shown a general purpose binding mechanism that 
uses a pool of general purpose binders, and allocates them to 
KB items, only when they are necessary for achieving the 
goal. A large KB may be stored in long term connections 
rather than in the Working Memory. KB constraints are ac-
tivated only upon need, and only if they are supportive for 
achieving the goal. We then showed that further log reduc-
tion is possible if the binding represents a many-to-one rela-
tionship. The size of a crossbar matrix is then reduced from 
O(n*k) to O(n*log(k)) and the number of constraints is also 
reduced.

9
 We demonstrated the use of the suggested binding 

technique in ANN that performs FOL unification with size
10

 
that is O(n×log(k)). The mechanism is distributed since 
there is no central control and even binder allocation is done 
in a totally distributed way. It is also inherently robust, as no 
fatal failures occur when neurons “die”. We have performed 
initial experiments with the GPB pool mechanism (without 
the LOG WTA reduction), these experiments indicate the 
feasibility of the approach on rather complex unification 
tasks including multi-instance parallel-unification and recur-
sive occurs checking. LOG WTA and fault tolerance exper-
iments are the subject of ongoing work. The mechanism 
described is general and can further be used for other appli-
cations such as: language processing, FOL inference and 
planning. We are working on extending the techniques, for 
full FOL inference and conjecture that these techniques will 
also improve other SAT encodings that use crossbar-like 
bindings, e.g. as in [Kautz, et al 2006]. 
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Abstract
Normative systems are dynamic systems because
their rules can change over time.
Considering this problem, we propose a neural-
symbolic approach to provide agents the instru-
ments to reason about and learn norms in a dynamic
environment.
We propose a variant of d’Avila Garcez et al. Con-
nectionist Inductive Learning and Logic Program-
ming(CILP) System to embed Input/Output logic
normative rules into a feed-forward neural network.
The resulting system called Normative-CILP(N-
CILP) shows how neural networks can cope with
some of the underpinnings of normative reasoning:
permissions, dilemmas, exceptions and contrary to
duty problems.
We have applied our approach in a simplified
RoboCup environment, using the N-CILP simula-
tor that we have developed. In the concluding part
of the paper, we provide some of the results ob-
tained in the experiments.

1 Introduction
In artificial social systems, norms and policies are mech-
anisms to effectively deal with coordination in normative
multi-agent systems. An open problem in AI is how to
equip agents to deal effectively with norms (and policies) that
change over time [Boella et al., 2009], either due to explicit
changes by legislators, or due to the interpretation process
by those agents who are in charge of applying the law (e.g,
judges).

In the work of [Corapi et al., 2010], they focused on re-
fine existing knowledge about the norms by using inductive
learning. Differently in game-theoretic approaches [Sen and
Airiau, 2007; Boella and van der Torre, 2006; Shoham and
Tennenholtz, 1997], few machine learning techniques have
been applied to tackle open problems like learning and/or re-
vising new norms in open and dynamic environments.

In this paper we use Input/Output (I/O) logic [Makinson
and van der Torre, 2000], a symbolic formalism used to rep-
resent and reason about norms. We study how to represent
I/O within the computational model of neural networks, in

order to take advantage of their ability to learn, by addressing
the following research question:

• How to define a formal framework combining I/O logic
and neural-symbolic computation for normative reason-
ing?

Among other formalisms used in normative systems, we
choose I/O logic because it presents a strong (and natural)
similarity with neural networks: both have a separate specifi-
cation of inputs and outputs. We exploit such similarity first
to encode knowledge expressed in terms of I/O rules into neu-
ral networks, and then to use the neural network to reason and
learn new norms in a dynamic environment.

Methodologically, we adopt the Neural-Symbolic
paradigm of [d’Avila Garcez et al., 2002] which embeds
(symbolic) logical programs into feed-forward neural
networks. Neural-symbolic systems provide translation
algorithms from symbolic logic to neural networks and
vice-versa. The network is used for robust learning and com-
putation, while the logic provides (i) background knowledge
to help learning (when the logic is translated into the neural
network) and (ii) high-level explanations for the network
models1 (when the trained neural network is translated into
the logic). A sound translation for the (i) step is done by
using the CILP system [d’Avila Garcez et al., 2002].

In normative reasoning there are some problems which
have to be handled. These problems are: permissions, dilem-
mas, contrary to duties and exceptions. A normative agent,
is an agent capable to behave within an environment regu-
lated by norms, must be able to handle the situations listed
above. A way to handle such situations is by using priorities.
A description about how a normative agent can handle such
situations with the use of priorities is described in [Boella et
al., 2011].

In particular, we address the following sub-questions:
• How to use priorities with I/O logic rules in order to han-

dle normative reasoning problems?
• How to translate I/O logic into neural networks by using

CILP and keeping the soundness of the logic?
We provide a description of the simulator used for testing

our approach. The simulator has been written in Java2 and
1We are not going to discuss this step in this paper.
2www.java.com/
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using the package Joone3, a framework to model neural net-
works.

After describing the simulator we provide the results ob-
tained from some of the experiments made.

The paper is structured as follows. In Section 2 we intro-
duce the neural-symbolic approach, the I/O logic and the ar-
chitecture of a normative agent. In Section 3 we first describe
which restrictions need to be applied to I/O rules. Then how
we embed priorities within the rules and at last the role of
permissions in our approach. In Section 4 we describe the
case study used in the experiments. In Section 5 we describe
the simulator and the experiments. In Section 6 we present
the conclusions.

2 Related work
Neural-Symbolic approach
The main purpose of a neural-symbolic approach is to bring
together connectionist and symbolic approaches [d’Avila
Garcez et al., 2002]. In this way it is possible to exploit the
strengths of both approaches and to avoid their drawbacks.
With such approach we are able to formally represent the
norms governing the normative system. In addition we are
also capable to exploit the instance learning capacities of neu-
ral networks and their massive parallel computation.

Algorithms like KBANN[Towell and Shavlik, 1994] and
CILP[d’Avila Garcez and Zaverucha, 1999] provide a sound
translation of a symbolic representation of the knowledge
within a neural network. The advantage of CILP, is that it
uses the sigmoid function for its perceptrons. This allows the
use of backpropagation for learning. In what follows, we use
a variant of CILP since we are interested in the integration of
reasoning and learning capabilities.

I/O Logic
To describe the norms regulating the system we use I/O Logic
[Makinson and van der Torre, 2000]. Rules used in I/O logic
are defined in the shape R1 = (A,B). Both A and B rep-
resent sets of literals. The literals contained in A (or in B)
can be either in conjunction or disjunction between them. A
represent the antecedent of the rule, what must be considered
true in order to activate the rule. Instead B is the consequent,
what is considered true after the rule has been activated.

I/O logic provides some reasoning mechanisms to produce
outputs form the inputs. The first of this mechanisms is the
simple-minded output. This mechanism does not satisfy the
principle of identity. Instead the simple-minded output pos-
sess other features like strengthening input, conjoining out-
put and weakening output. The I/O logic also provides other
reasoning mechanisms, basic output, reusable output and
reusable basic output which allow additional features. Re-
spectively input disjunction for the basic output, reusability
for the reusable output and both for reusable basic output. A
detailed description of the I/O logic mechanisms and features
can be found in [Makinson and van der Torre, 2000].

In [Boella et al., 2010] it is described how a connectionist
approach like neural networks can embed the different fea-
tures of I/O logic. In this way it is possible by using transla-

3http://sourceforge.net/projects/joone/
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Figure 1: Neural-Symbolic Normative Agent.

tion algorithms like KBANN or CILP to reproduce the mech-
anisms of I/O logic.

Normative agent
An agent is defined as an entity that actively interacts with
its surrounding environment and with other agents if we con-
sider a multi-agent system. In this paper we will focus on
a single agent, more precisely a normative agent. Figure 1
shows a normative agent, an entity that has to act and behave
by following the norms regulating the environment where it
acts. A more detailed description of what is a normative agent
can be found in [Boella et al., 2011].

In this paper we do not focus on which action the agent
should execute in a particular situation. For situation we
mean a particular state of the environment, including all the
inputs that the agent can use to make its decisions. Instead
we concentrate our efforts into deciding what an agent ought
to do and can do while in a particular situation.

The normative agent must be capable to handle the prob-
lems that can arise. In normative reasoning some of this prob-
lems are dilemmas exceptions and contrary to duties. Dilem-
mas occurs when the agent is facing two contradictory obliga-
tions. With contradictory obligations we mean two different
obligations which cannot be accomplished both. An exam-
ple is the Sartre’s soldier, which has the moral obligation to
not to kill, but being the soldier he has to fight and kill his
enemies. The second problem that an agent may face is the
exception. An exception, like the name suggests, occurs dur-
ing exceptional situations. In these exceptional situations it is
possible that a rule which usually has to be applied is over-
ridden by a different one. We can provide an example by
considering the rules of a football match. The standard rule is
that the players cannot play the ball with their hands. In this
case we have an exception if we consider the goalkeeper. This
particular player while inside its own goal area, is allowed to
use its hands to play the ball. The last problem mentioned is
the contrary to duty[Prakken and Sergot, 1996]. In normative
reasoning the violation of a rule is not always to be consid-
ered a critical failure. In some circumstances is possible to
handle the violation by fulfilling alternative obligations. As
an example we can consider the situation where we are in a
pub with a friend. Supposing that our friend is drinking a
beer. The general rule is that we should not spill our friends
beer. Considering the unfortunate situation where we acci-
dentally (or not) spill our friend’s beer. Our friend has now
the possibility to severe our friendship due to our violation.
In this situation we still have the possibility to repair to the
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violation, by considering to buy our friend a new beer.

3 Neural Networks for Norms
3.1 I/O logic for Norms
In order to use I/O logic to represent normative rules, we need
to add modalities. We add two different types of modalities,
the obligation (O) used to define what the agent is ought to
do or prohibited4 and the permission (P) use to define what
is permitted to the agent. We will consider the modalities
introduced are unary operators, acting over a single literal.
For example P(α) represents the permission to do α.

Considering again an I/O logic rule: R1 = (A,B) where
A and B are set of literals. By unfolding the set B we can
consider all the literals contained in the consequent: B =
{β1, β2, . . . , βn}. At each literal in the consequent, can be
added one of the possible modalities. By doing so what we
obtain is a normative rule, a rule which does not states facts
but, oughts, prohibitions and permissions for the normative
agent. For example: O(β1),P(β2),O(β3), a normative rule
with such consequent, would mean that β1 and β3 are oughts
and β2 is a permission instead.

3.2 I/O rules restrictions
For the translation we adopt a variant of the CILP algorithm.
We use N-CILP, that translates a knowledge base containing
I/O logic rules in a neural network.

In order to allow N-CILP to translate I/O logic rules, we
have apply some restrictions on the rules. However those re-
strictions are not crippling the expressivity of the logic.

1. First we need to restrict the antecedent (input) of the
rule. We want that the literals in the antecedent are con-
nected by conjunctions only. We see now how this does
not harm the expressivity of the logic. Considering a I/O
logic rule with a disjunction in the antecedent like the
following: (A1 ∨ A2, B) where A1 and A2 are sets of
conjuncted literals. For each disjunction we split the an-
tecedent. In this particular case we split the starting rule
into two rules with a new antecedent and the same con-
sequent. Obtaining in this case two rules: (A1, B) and
(A2, B) that considered together allow the same seman-
tics of the starting rule.

2. We restrict the consequent (output) to contain a single
literal. If we consider the set of consequents to be con-
stituted by conjuncted literals, then every literal in the
set produces a new rule, with itself in the consequent
and the same antecedent as the starting rule.
In this case the logic may lose some expressivity, it may
happen if we need disjunctions in the consequent. Dis-
junctions in the consequent can be used to introduce un-
certainty in the system. However due to the fact that
we consider normative systems, the rules are used to de-
scribe the norms governing the system. We can safely
assume that norms are meant to regulate the system and
not introduce uncertainty.

4By prohibition we mean the obligation of a negative literal. In
example we can have O(¬χ) which means the obligation to do not
χ, in other words the prohibition to do χ.

3. The last restriction regards the consequent. In addition
we have to restrict it to be a positive literal. We address
this problem by syntactically considering a negative lit-
eral as positive. In example the consequent ¬βi is con-
sidered as: β′

i. The newly created literal is semantically
still considered negative. Also in this case the logic does
not lose expressivity.

3.3 Priorities
Priorities are used to give a partial ordering between rules.
This ordering is useful because sometimes between two ap-
plicable rules we want to apply only one. This can happen
when considering for example exceptions.

Here we explain how we encode priorities within the rules
by using the negation as failure (∼). Considering for example
two rules: R1 = (A1 ∧A2,O(β1)), R2 = (A1 ∧A3,O(β2))
and a priority relation between them: R1 � R2, where the
first rule has the priority. Knowing A1, A2 and A3 are sets of
conjuncted literals, we embed the priority into the rule with
the lowest priority. To do so we include into the antecedent
of the rule with lower priority, the negation as failure of the
literals in the antecedent of the higher prioritized rule, that
does not appear in the antecedent of the lower priority rule.

Considering for example the two rules given, we have to
modify R2. In this case we need to include in the antecedent
ofR2 the part of the antecedent ofR1 that differs, in this case
A2. After embedding the priority within the second rule, it
becomes: R′

2 = (A1∧ ∼ A2 ∧A3,O(β2)).

3.4 Permissions
An important distinction between oughts and permissions, is
that the second ones are not explicitly encoded in the neural
network. In our approach we consider that something is per-
mitted to the agent if not explicitly forbidden5. Due to this
we consider rules with a permission in their consequent to
implicitly have the priority over the rules that forbid the same
action.

For example considering two rules R1 = (A1,P(β1)),
R2 = (A2,O(¬β1)). The first rule permits β1 and the second
forbids it. In this case we consider implicitly the following
priority relation R1 � R2 to hold.

4 Case study
To test the performance of our approach to normative reason-
ing we use the RoboCup scenario. For simplicity we focused
on the reasoning of a single robot, leaving out the multi-agent
aspect of the scenario.

With our approach, the robot does not plan the sequence
of the actions. Instead the robot analyzes the current sit-
uation and by taking into consideration the rules of the
game[Menegatti, 2007], it knows what is ought and what is
prohibited.

If we consider that the robot makes its decisions taking into
account only the rules, then the robot is acting within a static
environment. Because the rules does not change in the middle
of the game. In order to add dynamism into the environment

5We consider the ought of a negative literal as a prohibition.
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we add an additional ruling element. The first ruling element
is the referee, which enforces the rules of the game. The ad-
ditional ruling element is the coach, which demands to the
robots to play in a specific way. The coach can introduce new
rules or lift some of the existing ones during the game. In this
way, a robot that acts in an environment where the coach is
involved, sometimes needs to adapt its behavior.

4.1 Knowledge base structure
The knowledge base used by the robot contains both the rules
of the game and the coach directions. Both the rules and the
directions are shaped in I/O logic rules format. The knowl-
edge base used in the experiments contains 29 rules, includ-
ing the rules which have a permission in their consequent.

The knowledge base also contains the priority relations be-
tween the rules, which are used to resolve possible conflicts
among them (like the production of contradicting oughts).

We show some of the rules contained in the knowledge
base:

R1 : (>6,O(¬impact opponent))
R2 : (>,O(¬use hands))
R3 : (goalkeeper ∧ inside own area,P(use hands))

R4 : (ball ∧ opponent approaching,O(pass))

The first rule states that a robot should never impact into an
opponent. The second rule is again a prohibition, that states
that a robot should not use its hands to play the ball. The third
rule is different, because states that the goalkeeper is allowed
to use its hands while inside its own goal area. The last rule is
not from the RoboCup ruling, instead is one of the rules that
the coach may have given to robots, to influence their playing
behavior. The fourth rule states that if an opponent is ap-
proaching the robot handling the ball, then that robot should
pass the ball.

5 Simulator and experimental results
5.1 The simulator
In Figure 2 it is shown how the simulator works. The knowl-
edge base contains the the rules that the robot knows. We
consider that the priorities are embedded within the rules as
described in the previous section. The knowledge base is used
as the input for the N-CILP translation algorithm.

6> means that the antecedent is always true, in other words the
rule is always applied.

¬α β γ

R1 R2

˜

φ¬φ

ρ σ

R3

˜

ψ

Figure 3: Example of Embedding

N-CILP
Given a knowledge base KB for each rule Rk = (αi1 ∧ . . .∧
αin∧ ∼ αin+1 ∧ . . .∧ ∼ αim,O(βo1))in KB do:

1. For each literal αij (1 ≤ j ≤ m) in the input of the rule.
If there is no input neuron labeled αij in the input level,
then add a neuron labeled αij in the input layer.

2. Add a neuron labeled Nk in the hidden layer.
3. If there is no neuron labeled βo1 in the output level, then

add a neuron labeled βo1 in the output layer.
4. For each literal αij (1 ≤ j ≤ n); connect the respective

input neuron with the neuron labeled Nk in the hidden
layer with a positive weighted arc.

5. For each literal αih (n + 1 ≤ j ≤ m); connect the
respective input neuron with the neuron labeled Nk in
the hidden layer with a negative weighted arc7.

6. Connect the neuron labeled Ni with the neuron in the
output level labeled βo1 with a positive weighted arc8

In [d’Avila Garcez et al., 2002] it is shown how the weights
of the resulting neural network can be calculated.

In Figure 3 we show the structure of a neural network
constructed with the N-CILP algorithm from the translation
of four rules. The rules are R1 = (¬α ∧ β ∧ γ,O(¬φ)),
R2 = (γ ∧ ρ,O(φ)), R3 = (γ,O(¬ψ)) and the permis-
sion rule R4 = (γ ∧ σ,P(ψ)) . Between the rules we
have a priority ordering R2 � R1 that inhibits the activa-
tion of the first rule whenever the second is activated. This
priority is embedded within the rules as described earlier
in this section and as a result we obtain a new first rule:
R′

1 = (¬α ∧ β ∧ γ∧ ∼ ρ,O(¬φ)). The implicit priority
ofR4 overR3 embeds within the latter the negation as failure
obtaining a new rule R′

3 = (γ∧ ∼ σ,O(¬ψ)) . The neu-
ral network is built from rules R′

1, R2 and R′
3

9, notice the
dotted lines in the network which are negative weighted arcs
representing the negation as failures in the rules R′

1 and R′
3,

with the task to inhibit the rules if the respective negation as
failure given in input is activated.

7The connections between these input neurons and the hidden
neuron of the rule represents the priorities translated with the nega-
tion as failure.

8Each output in the rules is considered as a positive atom during
the translation, this means that if we have a rule with a negative
output ¬β, in the network we translate an output neuron labeled β′

that has the same meaning of ¬β but for the translation purpose can
be treated as a positive output.

9Rule with a permission P in the consequent are not encoded in
the neural network.
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5.2 Experimental results
We describe some experiments used to test the capabilities of
neural networks constructed with N-CILP. We introduce the
measures used to evaluate the behavior of the networks and
the parameters used.

To evaluate the evaluate the performance of the neural net-
work, we use two distinct measures: tot and part.

tot =

∑n
i=1 I(

∧k
j=1(cij == oij))

n

part =

∑n
i=1

∑k
j=1 I(cij == oij)

n ∗ k
n refers to the cardinality of the test set and k indicates the

number of output neurons of the neural network. oij indicates
the value of j-th output of the NN for the i-th test instance.
cij indicates the true value (desired value) of the j-th literal
of the i-th test instance. I(·) is the indicator, a function re-
turning 1 if the argument is true and zero otherwise. The tot
measure evaluates how many instances were processed en-
tirely correctly. Instead part considers the number of single
output neurons correctly activated.

By having 16 output neurons in the neural networks used
in the test, using only tot to measure the accuracy could be
misleading. To clarify this point we can consider an example.
We can assume that by processing two instances, the neural
network have produced for the first, 15 correct outputs out of
the total 16. For the second it managed to return all the correct
outputs. If we take into account the tot measure, we obtain an
accuracy of 50% that does not seems a great result. Instead by
considering the part measure, we obtain an accuracy higher
than the 96%. Which better underlines that the network only
missed one output out of 32 produced for the two instances
given.

In our experiments we train the neural network using a
10fold cross validation. We divide the initial data set of in-
stances in ten distinct subsets. Each subset is then used as
test set while the others are used together as training set. In
this way the instances seen during training are left out of the
testing phase to train ten networks and the results averaged.

In all the experiments we set the training parameters for the
neural networks as follows: learning rate: 0.8, momentum:
0.3 and training cycles: 100 [Haykin, 1999].

Non symbolic approach comparison
We compare the learning capacity of a network built with N-
CILP with a non symbolic neural network. One of the well
known issues of neural networks is deciding the number of
neurons to use in the hidden level. To not to put the non
symbolic neural network in excessive disadvantage, we de-
cided to adopt the same number of hidden neurons for both
networks10. The difference between the networks involved in
this test lies in their connection weights. The neural network
built with N-CILP sets its weights according to the rules in
the knowledge base. Instead the non symbolic network has
its weights randomly initialized. One advantage of a network

10The number of hidden neurons to use in the neural networks is
equal to the number of rules used for the network construction with
N-CILP.

built with N-CILP is that even without any training, it is capa-
ble to correctly process instances by applying the rules con-
tained in the knowledge base.

The network built with N-CILP uses a starting knowledge
base containing 20 rules. During the training phase the net-
work tries to learn 9 additional rules from the instances pro-
vided. The non symbolic network during the training phase
is provided with the same instances, the difference is that this
network have to learn all the 29 rules applied in the instances.

The results from the experiments show that the non sym-
bolic neural network obtains the following accuracies: tot:
5,13% part: 45,25%. Instead the network built N-CILP: tot:
5,38% part: 49,19%. We can see that under exactly the same
conditions, N-CILP improves the training-set performance of
the network.

Enhancing the knowledge base
The second experiment measures how the neural network per-
forms by increasing the number of rules in the knowledge
base. This test is important because the goal of a Neural-
Symbolic System, is not only to construct a neural network
capable to compute the same semantics as rule into the knowl-
edge base. Another important objective is to exploit the learn-
ing capabilities of the neural networks, allowing the robot to
increase the number of rules in its knowledge base from what
it learned[d’Avila Garcez et al., 2002].

The test is done incrementally. From the full set of 29 rules,
the experiment first step starts with a knowledge base contain-
ing 20 rules and tries to learn the remaining 9. Successively 2
rules are incrementally added into the initial knowledge base
during each step. In this way the unknown rules that the net-
work has to learn decreases by 2 each step. In example at the
second step of the experiment the starting knowledge base
contains 22 rules and the network tries to learn 7 rules during
the training phase.

During each step the neural network is tested over instances
where the full set of rules is applied. In this way the network
continues to process using the rules already known, reducing
the risk to forget them and in the meantime it tries to learn of
the unknown rules.

The results of this experiment are shown in Figure 4. We
can see that for the first two steps of the experiment the accu-
racies measured quite low. instead for the last two steps the
performance of the neural network increases, reaching an ac-
curacy peak of 98,01% for the part measure and 91,18% for
the tot.

From the experiment proposed we observed a direct corre-
lation between the number of the rules in the starting knowl-
edge base and the performance of the neural network. An-
other thing that can be noticed is that the smaller becomes
the number of rules that the network does not know, w.r.t.
the number of rules in the initial knowledge base can impact
the performances of the network, also due to the fact that a
network built from a larger knowledge base possesses more
connections.

6 Conclusion
In this paper we presented a way to combine a connection-
ist and a symbolic approach that can be used for normative
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Figure 4: Accuracy of tot and part measures increasing the
number of rules

reasoning. In this way agents behaving in normative environ-
ments, are able to adapt themselves to the normative evolution
of the world. An important step that has not been covered by
this paper concerns rules extraction. Rules extraction refers
to the process where a new knowledge base is recompiled
from the trained network. A method to achieve this task has
already been proposed in [d’Avila Garcez et al., 2002].

For a normative agent is important to be able to cope with
normative problems. Here we have show how the priorities,
used to achieve this task, can be embedded within the rules
and translated using the N-CILP algorithm.

In the paper we provided some of the results obtained with
the simulator by using our approach for a normative agent.
We are aware that more experiments are needed in order to
claim the validity of the approach. However we believe that
the results obtained so far are promising. We show a compar-
ison between our approach and a (not so disadvantaged) non
symbolic neural network. Further comparisons with other ap-
proaches for dynamic normative system should be made. In
example like comparing the pure symbolic approach used by
[Corapi et al., 2010], based on inductive learning, and our
neural-symbolic approach.

A related line of research involves the area of Argumenta-
tion. Argumentation has been proposed, among other things,
as a method to help symbolic machine learning. It would be
interesting to investigate the links between the work presented
here, argumentation applied to law, and the neural symbolic
approach to argumentation introduced in [d’Avila Garcez et
al., 2005].
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Towards Developmental AI:
The paradox of ravenous intelligent agents

Michelangelo Diligenti, Marco Gori, and Marco Maggini
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1 Introduction
In spite of extraordinary achievements in specific tasks,
nowadays intelligent agents are still striving for acquiring
a truly ability to deal with many challenging human cog-
nitive processes, especially when a mutable environment is
involved. In the last few years, the progressive awareness
on that critical issue has led to develop interesting bridging
mechanisms between symbolic and sub-symbolic representa-
tions and to develop new theories to reduce the huge gap be-
tween most approaches to learning and reasoning. While the
search for such a unified view of intelligent processes might
still be an obliged path to follow in the years to come, in
this paper, we claim that we are still trapped in the insidious
paradox that feeding the agent with the available information,
all at once, might be a major reason of failure when aspir-
ing to achieve human-like cognitive capabilities. We claim
that the children developmental path, as well as that of pri-
mates, mammals, and of most animals might not be primarily
the outcome of biologic laws, but that it could be instead the
consequence of a more general complexity principle, accord-
ing to which the environmental information must properly
be filtered out so as to focus attention on “easy tasks.” We
claim that this leads necessarily to stage-based developmen-
tal strategies that any intelligent agent must follow, regardless
of its body.

2 Developmental path and focus of attention
There a number of converging indications that most of nowa-
days approaches to learning and reasoning have been bounc-
ing against the same wall (in the case of sequential infor-
mation, see e.g. [Frasconi et al., 1995]). This is especially
clear when facing cognitive tasks that involve both learning
and reasoning capabilities, that is when symbolic and sub-
symbolic representations of the environment need to be prop-
erly bridged. A unified approach to embrace the behavior of
intelligent agents involved in both perceptual and symbolic
information is based on expressing learning data and explicit
knowledge by constraints [Diligenti et al., 2010]. Following
that framework, let us consider tasks that can be formalized
by expressing a parsimonious solution consistent with a given
set of constraints C = {χ1, . . . , χq}. It is worth mentioning
that the in the case of supervised learning, the parsimonious
satisfaction of the constraints is reduced to a finite collection

of points according to the classic statistical framework be-
hind kernel machines. We consider an agent which operates
dynamically in a mutable environment where, at each time
t, it is expected to access only a limited subset Ct ⊂ CU of
constraints, where CU can be thought of as the universal set
of constraints. Of course, any agent of relevant interest might
be restricted to acquire a limited set of constraints C, so as
∀t ∈ T : Ct ⊂ C ⊂ CU . Instead of following a develop-
mental path, one could think of agents that acquire C all at
once.

Definition 2.1 A ravenous agent is one which accesses the
whole constraint set at any step, that is one for which
∀t ∈ T : Ct = C.

At first a glance, ravenous agents seem to have more
chances to develop an efficient and effective behavior, since
they can access all the information expressed by C at any
time. However, when bridging symbolic and sub-symbolic
models one often faces the problem of choosing a develop-
mental path. It turns out that accessing all the information
at once might not be a sound choice in terms of complexity
issues.

The paradox of ravenous agents: Ravenous agents
are not the most efficient choice to achieve a parsimonious
constraint consistency.

To support the paradox, we start noting that hierarchi-
cal modular architectures used in challenging perceptual
tasks like vision and speech are just a way to introduce inter-
mediate levels of representation, so as to focus on simplified
tasks. For example, in speech understanding, phonemes
and words could be intermediate steps for understanding
and take decisions accordingly. Similarly, in vision, SIFT
features could be an intermediate representation to achieve
the ability to recognize objects. However, when looking for
deep integration of sub-symbolic and symbolic levels the
issue is more involved and mostly open. We discuss three
different contests that involve different degree of symbolic
and sub-symbolic representations.

Developmental paths
• Reasoning in the environment - When thinking of cir-

cumscription and, in general, of a non-monotonic rea-
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soning, one immediately realizes that we are addressing
issues that are outside the perimeter of ravenous agents.
For example, we can start from a default assumption,
that is the typical “bird flies.” This leads us to conclude
that if a given animal is known to be a bird, and nothing
else is known, it can be assumed to be able to fly. The
default assumption can be retracted in case we subse-
quently learn that the animal is a penguin. Something
similar happens during the learning of the past tense
of English verbs [Rumelhart and McClelland, 1986],
that is characterized by three stages: memorization of
the past tense of a few verbs, application of the rule
of regular verbs to all verbs and, finally, acquisition of
the exceptions. Related mechanisms of retracting pre-
vious hypotheses arise when performing abductive rea-
soning. For example, the most likely explanation when
we see wet grass is that it rained. This hypothesis, how-
ever, must be retracted if we get to know that the real
cause of the wet grass was simply a sprinkler. Again,
we are in presence of non-monotonic reasoning. Like-
wise, if a logic takes into account the handling of some-
thing which is not known, it should not be monotonic.
A logic for reasoning about knowledge is the autoepis-
temic logic, which offers a formal context for the repre-
sentation and reasoning of knowledge about knowledge.
Once again, we rely on the assumption of not to con-
struct ravenous agents, which try to grasp all the infor-
mation at once, but on the opposite, we assume that the
agent starts reasoning with a limited amount of informa-
tion on the environment, and that there is a mechanism
for growing up additional granules of knowledge.

• Nature helps developing vision - The visual behavior of
some animals seems to indicate that motion plays a cru-
cial role in the process of scene understanding. Like
other animals, frogs could starve to death if given only a
bowlful of dead flies 1, whereas they catch and eat mov-
ing flies [Lettvin et al., 1968]. This suggests that their
excellent hunting capabilities depend on the acquisition
of a very good vision of moving objects only. Saccadic
eye movements play an important role in facilitating hu-
man vision and, in addition, the autonomous motion is
of crucial importance for any animal in vision develop-
ment. Birds, some of which exhibit proverbial abilities
to discover their preys (e.g. eagles, terns), are known to
detect slowly moving objects, an ability that is likely to
have been developed during evolution, since the objects
they typically see are far away when flying. A detailed
investigations on fixational eye movements across ver-
tebrate indicates that micro-saccades appear to be more
important in foveate than afoveate species and that sac-
cadic eye movements seem to play an important role in
perceiving static images [Martinez-Conde and Macknik,
2008]. When compared with other animals, humans are
likely to perform better in static - or nearly static - vi-
sion simply because they soon need to look at objects
and pictures thoughtfully. However, this comes at a late

1In addition to their infrared vision, snakes are also known to
react much better to quick movements.

stage during child development, jointly with the emer-
gence of other symbolic abilities. The same is likely to
hold for amodal perception and for the development of
strange perceptive behavior like popular Kanizsa trian-
gle [Kanizsa, 1955]. We claim that image understand-
ing is very hard to attack, and that the fact that humans
brilliantly solve the problem might be mostly due to the
natural embedding of pictures into visual scenes. Hu-
man perception of static images seems to be a higher
level quality that might have been acquired only after
having gained the ability of detecting moving objects.
In addition, the saccadic eye movements might suggest
that static images are just an illusory perception, since
human eyes always perceive moving objects. As a con-
sequence, segmentation and recognition are only appar-
ently separate processes: They could be in fact two faces
of the same medal that are only regarded as separate
phases mostly because of the bias induced by years of
research in pattern recognition aimed at facing specific
perceptual tasks. Interestingly, animals which develop
a remarkable vision system, and especially humans, in
their early stages characterized by scarce motion abil-
ities, deal primarily with moving objects from a fixed
background, which facilitates their segmentation and,
consequently, their recognition. Static and nearly static
vision comes later in human developments, and it does
not arise at all in many animals like frogs. The vision
mechanisms seems to be the outcome of complex evolu-
tive paths (e.g. our spatial reasoning inferences, which
significantly improve vision skills, only emerge in late
stage of development). We subscribe claims from devel-
opmental psychology according to which, like for other
cognitive skills, its acquisition follows rigorous stage-
based schemes [Piaget, 1961]. The motion is likely to be
the secret of vision developmental plans: The focus on
quickly moving objects at early stages allows the agent
to ignore complex background.

• On the bridge between learning and logic
Let us consider the learning task sketched in Fig. 2,
where supervised examples and FOL predicates can be
expressed in the same formalism of constraints. There
is experimental evidence to claim that a ravenous agent
which makes use of all the constraints C (supervised
pairs and FOL predicates) is not as effective as one
which focuses attention on the supervised examples and,
later on, continues incorporating the predicates [Dili-
genti et al., 2010]. Basically, the developmental path
which first favors the sub-symbolic representations leads
to a more effective solution. The effect of this devel-
opmental plan is to break up the complexity of learn-
ing jointly examples and predicates. Learning turns out
to be converted into an optimization problem, which is
typically plagued by the presence of sub-optimal solu-
tions. The developmental path which enforces the learn-
ing from examples at the first stage is essentially a way
to circumvent local minima.
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Figure 1: The task consists of learning three classes from examples and from a set of FOL predicates. The ordering of
presentation does matter.

3 Conclusions
This paper supports the position that stage-based learning, as
discussed in developmental psychology is not the outcome
of biology, but is instead the consequence of optimization
principles and complexity issues that hold regardless of the
body. This position is supposed to re-enforce recent studies
on developmental AI more inspired to studies in cognitive
development (see e.g. [Sloman, 2009]) and is somehow
coherent with the growing interest in deep architectures and
learning [Bengio et al., 2009].

Acknowledgements: We thank Luciano Serafini for
insightful discussions.
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Abstract
Argumentation is a leading principle both founda-
tionally and functionally for agent-oriented comput-
ing where reasoning accompanied by communication
plays an essential role in agent interaction. We con-
structed a simple but versatile neural network for neu-
ral network argumentation, so that it can decide which
argumentation semantics (admissible, stable, semi-
stable, preferred, complete, and grounded semantics)
a given set of arguments falls into, and compute ar-
gumentation semantics via checking. In this paper,
we are concerned with the opposite direction from
neural network computation to symbolic argumenta-
tion/dialogue. We deal with the question how various
argumentation semantics can have dialectical proof
theories, and describe a possible answer to it by ex-
tracting or generating symbolic dialogues from the
neural network computation under various argumen-
tation semantics.

1 Introduction
Much attention and effort have been devoted to the symbolic
argumentation so far [Rahwan and Simari, 2009][Prakken and
Vreeswijk, 2002][Besnard and Doutre, 2004], and its applica-
tion to agent-oriented computing. We think that argumenta-
tion can be a leading principle both foundationally and func-
tionally for agent-oriented computing where reasoning accom-
panied by communication plays an essential role in agent in-
teraction. Dung’s abstract argumentation framework and argu-
mentation semantics [Dung, 1995] have been one of the most
influential works in the area and community of computational
argumentation as well as logic programming and non-monotonic
reasoning.

In 2005, A. Garcez et al. proposed a novel approach to ar-
gumentation, called the neural network argumentation [d’Avila
Garcez et al., 2005]. In the papers [Makiguchi and Sawamura,
2007a][Makiguchi and Sawamura, 2007b], we dramatically de-
veloped their initial ideas on the neural network argumentation to
various directions in a more mathematically convincing manner.
More specifically, we illuminated the following questions which
they overlooked in their paper but that deserve much attention
since they are beneficial for understanding or characterizing the
computational power and outcome of the neural network argu-
mentation from the perspective of the interplay between neural
network argumentation and symbolic argumentation.

1. Can the neural network argumentation algorithm deal with
self-defeating or other pathological arguments?

2. Can the argument status of the neural network argumenta-
tion correspond to the well-known status in symbolic argu-
mentation framework such as in [Prakken and Vreeswijk,
2002]?

3. Can the neural network argumentation compute the fixpoint
semantics for argumentation?

4. Can symbolic argumentative dialogues be extracted from
the neural network argumentation?

The positive solutions to them helped us deeply understand
relationship between symbolic and neural network argumenta-
tion, and further promote the syncretic approach of symbolism
and connectionism in the field of computational argumentation
[Makiguchi and Sawamura, 2007a][Makiguchi and Sawamura,
2007b]. They, however, paid attention only to the grounded
semantics for argumentation in examining relationship between
symbolic and neural network argumentation.

Ongoingly, we constructed a simple but versatile neural net-
work for neural network argumentation, so that it can decide
which argumentation semantics (admissible, stable, semi-stable
semantics, preferred, complete, and grounded semantics) [Dung,
1995][Caminada, 2006] a given set of arguments falls into,
and compute argumentation semantics via checking [Gotou,
2010]. In this paper, we are concerned with the opposite direc-
tion from neural network computation to symbolic argumenta-
tion/dialogue. We deal with the question how various argumen-
tation semantics can have dialectical proof theories, and describe
a possible answer to it by extracting or generating symbolic dia-
logues from the neural network computation under various argu-
mentation semantics.

The results illustrate that there can exist an equal bidirectional
relationship between the connectionism and symbolism in the
area of computational argumentation. And also they lead to a
fusion or hybridization of neural network computation and sym-
bolic one [d’Avila Garcez et al., 2009][Levine and Aparicio,
1994][Jagota et al., 1999].

The paper is organized as follows. In the next section, we
explicate our basic ideas on the neural network checking argu-
mentation semantics by tracing an illustrative example. In Sec-
tion 3, with our new construction of neural network for argu-
mentation, we develop a dialectical proof theory induced by the
neural network argumentation for each argumentation semantics
by Dung [Dung, 1995]. In Section 4, we describe some related
works although there is no work really related to our work except
for Garcez et al.’s original one and our work. The final section
discusses the major contribution of the paper and some future
works.
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2 Basic Ideas on the neural argumentation
Due to the space limitation, we will not describe the technical
details for constructing a neural network for argumentation and
its computing method in this paper (see [Gotou, 2010] for them).
Instead, we illustrate our basic ideas by using a simple argumen-
tation example and following a neural network computation trace
for it. We assume readers are familiar with the Dungean seman-
tics such as admissible, stable, semi-stable, preferred, complete,
and grounded semantics [Dung, 1995][Caminada, 2006].

Let us consider an argumentation network on the left side
of Figure 1 that is a graphic presentation of the argumen-
tation framework AF =< AR, attacks >, where AR =
{i, k, j}, and attacks = {(i, k), (k, i), (j, k)}.

i k j

io ko jo

ih2
kh2

jh2

ih1
kh1

jh1

ii ki ji

weight is a

weight is -b

weight is -1

Figure 1: Graphic representation of AF (left) and Neural net-
work translated from the AF (right)

According to the Dungean semantics [Dung, 1995][Cami-
nada, 2006], the argumentation semantics for AF is determined
as follows: Admissible set = {∅, {i}, {j}, {i, j}}, Complete ex-
tension = {{i, j}}, Preferred extension = {{i, j}}, Semi-stable
extension = {{i, j}}, Stable extension = {{i, j}}, and Grounded
extension = {{i, j}}.

Neural network architecture for argumentation
In the Dungean semantics, the notions of ‘attack’, ‘defend (ac-
ceptable)’ and ‘conflict-free’ play the most important role in
constructing various argumentation semantics. This is true
in our neural network argumentation as well. Let AF =<
AR, attacks > be as above, and S be a subset of AR, to be
examined. The argumentation network on the left side of Figure
1 is first translated into the neural network on the right side of
Figure 1. Then, the network architecture consists of the follow-
ing constituents:
• A double hidden layer network: It is a double hidden layer

network and has the following four layers: input layer, first
hidden layer, second hidden layer and output layer, which
have the ramified neurons for each argument, such as αi,
αh1 , αh2 and αo for the argument α.

• A recurrent neural network (for judging grounded exten-
sion): The double hidden layer network like on the right
side of Figure 1 is piled up high until the input and output
layers converge (stable state) like in Figure 2. The symbol
τ represents the pile number (τ ≥ 0) which amounts to the
turning number of the input-output cycles of the neural net-
work. In the stable state, we set τ = converging. Then,
Sτ=n stands for a set of arguments at τ = n.

• A feedforward neural network (except judging grounded
extension): When we compute argumentation semantics ex-
cept grounded extension with a recurrent neural network, it

surely converges at τ = 1. Hence, the first output vector
equals to second output vector. We judge argumentation
semantics by using only first input vector and converged
output vector. As a result we can regard a recurrent neu-
ral network as a feedforward neural network except judging
grounded extension.

• The vectors of the neural network: The initial input vector
for the neural network is a list consisting of 0 and a that rep-
resent the membership of a set of arguments to be examined.
For example, it is [a, 0, 0] for S = Sτ=0 = {i} ⊆ AR. The
output vectors from each layer take as the values only “-a”,
“0”, “a” or “-b”.1 The intuitive meaning of them for each
output vector are as follows:

Output layer
– “a” in the output vector from the output layer repre-

sents membership in
S′

τ = {X ∈ AR | defends(Sτ , X)}2 and the argu-
ment is not attacked by S′

τ .
– “-a” in the output vector from the output layer rep-

resents membership in S′+
τ .3

– “0” in the output vector from the output layer repre-
sents the argument belongs to neither S′

τ nor S′+
τ .

Second hidden layer
– “a” in the output vector from the second hidden

layer represents membership in S′
τ and the argument

is not attacked by S′
τ .

– “0” in the output vector from the second hidden
layer represents membership not in S′

τ or the argu-
ment is attacked by S′

τ .
Fisrt hidden layer

– “a” in the output vector from the first hidden layer
represents membership in Sτ and the argument is
not attacked by Sτ .

– “-b” in the output vector from the first hidden layer
represents the membership in S+

τ .
– “0” in the output vector from the first hidden layer

represents the others.
Input layer

– “a” in the output vector from the input layer repre-
sents membership in Sτ .

– “0” in the output vector from the input layer repre-
sents the argument does not belong to S.

A trace of the neural network
Let us examine to which semantics S = {i} belongs in AF on
the left side of Figure 1 by tracing the neural network compu-
tation. The overall visual computation flow is shown in Figure
2.

Stage1. Operation of input layer at τ = 0
Sτ=0 = S = {i}. Hence, [a, 0, 0] is given to the input layer
of the neural network in Figure 1. Each input neuron computes
its output value by its activation function (see the graph of the
activation function, an identity function, on the right side of the
input layer of Figure 2). The activation function makes the input

1Let a,b be positive real numbers and they satisfy
√

b > a > 0.
2Let S⊆AR and A∈AR. defends(S, A) iff ∀B ∈ AR(attacks(B,

A) → attacks(S, B)).
3Let S ⊆ AR. S+ = {X ∈ AR | attacks(S, X)}.
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Figure 2: A trace of the neural network for argumentation with S = {i} and activation functions

layer simply pass the value to the hidden layer. The input layer
thus outputs the vector [a, 0, 0].

In this computation, the input layer judges Sτ=0 = {i} and
inputs a2 to ih1 through the connection between ii and ih1 whose
weight is a. At the same time, the input layer inputs −ab to kh

through the connection between ii and kh1 whose weight is −b
so as to make the first hidden layer know that i ∈ Sτ=0 attacks k
(in symbols, attacks(i, k)). Since the output values of ki and ji

are 0, they input 0 to other first hidden neurons.
In summary, after the input layer receives the input vector

[a, 0, 0], it turns out to give the hidden layer the vector [ a · a
+ 0·(−b), a · (−b) + 0 · a + 0 · (−b), 0 · a ]= [a2,−ab, 0].

Stage 2. Operation of first hidden layer at τ = 0
Now, the first hidden layer receives a vector [a2,−ab, 0] from
the input layer. Each activation function of ih1 , kh1 and jh1 is a
step function as put on the right side of the first hidden layer in
Figure 2. The activation function categorizes values of vectors
which are received from the input layer into three values as if
the function understand each argument state. Now, the following
inequalitis hold: a2 ≥ a2, −ab ≤ −b, −b ≤ 0 ≤ a2. Accord-
ing to the activation function, the first hidden layer outputs the
vector [a,−b, 0].

Next, the first hidden layer inputs a2 + b into the second
hidden neuron ih2 through the connections between ih1 and ih2

whose weight is a, kh1 and ih2 whose weight is −1, so that the
second hidden layer can know attacks(k, i) with i ∈ Sτ=0. At
the same time, the first hidden layer inputs −a − ab into kh2

through the connections between ih1 and kh2 whose weight is
−1, kh1 and kh2 whose weight is a, so that the second hidden
layer can know attacks(i, k) with k ∈ S+

τ=0 and inputs 0 into
jh2 so that the second hidden layer can know the argument j is
not attacked by any arguments with j ̸∈ Sτ=0.

In summary, after the first hidden layer received the vector
[a2,−ab, 0], it turns out to pass the output vector [a2 +b,−a−
ab, 0] to the second hidden neurons.

Stage 3. Operation of second hidden layer at τ = 0
The second hidden layer receives a vector [a2,−ab, 0] from first
hidden layer. Each activation function of ih2 , kh2 and jh2 is a
step function as put on the right side of the first hidden layer in
Figure 2 with its threshold, θi = a2 + b, θk = a2 + 2b and
θj = 0 respectively.

These thresholds are defined by the ways of being attacked as
follows:

• If an argument X can defend X only by itself (in Figure
1, such X is i since defends({i}, i)), then the threshold of
Xh2 (θX ) is a2+tb (t is the number of arguments bilaterally
attacking X).

• If an argument X can not defend X only by it-
self and is both bilaterally and unilaterally attacked
by some other argument (in Figure 1, such X is
k since ¬defends({k}, k)&attacks(j, k)&attacks(i, k)),
then the threshold of Xh2 (θX ) is a2 + b(s + t) (s(t) is the
number of arguments unilaterally(bilaterally) attacking X).
Note that l=m=1 for the argument k in Figure 1.

• If an argument X is not attacked by any other arguments (in
Figure 1, such X is j), then the threshold of Xh (θXh

) is 0.

• If an argument X can not defend X only by itself and is
just unilaterally attacked by some other argument, then the
threshold of Xh2 (θX ) is bs (s is the number of arguments
unilaterally attacking X).

By these thresholds and their activation functions (step func-
tions), if S defends X then Xh2 outputs a. Otherwise, Xh2
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outputs 0 in the second hidden layer. As the result, the second
hidden layer judges either X ∈ S′

τ or X ̸∈ S′
τ by two output

values (a and 0). In this way, the output vector in the second
hidden layer yields [a, 0,a]. This vector means that the second
hidden layer judges that the arguments i and j are defended by
Sτ=0, resulting in S′

τ=0 = {i, j}.
Next, the second hidden layer inputs a2 into the output neu-

rons io and jo through the connections between ih2 and io, jh2

and jo whose weights are a,so that the output layer can know
i, j ∈ Sτ=0 and i, j ∈ S′

τ=0. At the same time, the second hid-
den layer inputs −2a into ko through the connections between
ih2 and ko, jh2 and ko whose weights are −1,so that output layer
can know attacks(i, k) and attacks(j, k) with k ∈ S′+

τ=0.
Furthermore, it should be noted that another role of the second

hidden layer lies in guaranteeing that S′
τ is conflict-free4. It is

actually true since the activation function of the second hidden
layer makes Xh2 for the argument X attacked by Sτ output 0.
The conflict-freeness is important since it is another notion for
characterizing the Dungean semantics.

In summary, after the second hidden layer received the vec-
tor [a2 + b,−a − ab, 0], it turns out to pass the output vector
[a2,−2a,a2] to the second hidden neurons.

Stage 4. Operation of output layer at τ = 0

The output layer now received the vector [a2,−2a,a2] from the
second hidden layer. Each neuron in the output layer has an ac-
tivation function as put on the right side of the output layer in
Figure 2.

This activation function makes the output layer interpret any
positive sum of input values into the output neuron Xo as X ∈
S′

τ , any negative sum as X ∈ S′+
τ , and the value 0 as X ̸∈ S′

τ
and X ̸∈ S′+

τ . As the result, the output layer outputs the vector
[a,−a,a].

Summarizing the computation at τ = 0, the neural network
received the vector [a, 0, 0] in the input layer and outputted
[a,−a,a] from the output layer. This output vector means that
the second hidden layer judged S′

τ=0 = {i, j} and guaranteed
its conflict-freeness. With these information passed to the output
layer from the hidden layer, the output layer judged S′+

τ=0 = {k}.

Stage 5. Inputting the output vector at τ = 0 to the
input layer at τ = 1 (shift from τ = 0 to τ = 1)
At τ = 0, the neural network computed S′

τ=0 = {i, j} and
S′+

τ=0 = {k}. We continue the computation recurrently by con-
necting the output layer to the input layer of the same neural
network, setting first output vector to second input vector. Thus,
at τ = 1, the input layer starts its operation with the input vector
[a,−a,a]. We, however, omit the remaining part of the opera-
tions starting from here since they are to be done in the similar
manner.

Stage 6. Convergence to a stable state
We stop the computation immediately after the time round τ = 1
since the input vector to the neural network at τ = 1 coincides
with the output vector at τ = 1. This means that the neural
network amounts to having computed a least fixed point of the
characteristic function that was defined with the acceptability of
arguments by Dung [Dung, 1995].

4A set S of arguments is said to be conflict-free if there are no argu-
ments A and B in S such that A attacks B.

Stage 7. Judging admissible set, complete extension
and stable extension
Through the above neural network computation, we have ob-
tained S′

τ=0 = {i, j} and S′+
τ=0 = {k} for Sτ=0 = {i}, and

S′
τ=1 = {i, j} and S′+

τ=1 = {k} for Sτ=1 = {i, j}. Moreover,
we also have such a result that both the sets {i} and {i, j} are
conflict-free.

The condition for admissible set says that a set of arguments S
satisfies its conflict-freeness and ∀X ∈ AR(X ∈ S → X ∈ S′).
Therefore, the neural network can know that the sets {i} and
{i, j} are admissible since it confirmed the condition at the time
round τ = 0 and τ = 1 respectively.

The condition for complete extension says that a set of ar-
guments S satisfies its conflict-freeness and ∀X ∈ AR(X ∈
S ↔ X ∈ S′). Therefore, the neural network can know that
the set {i, j} satisfies the condition since it has been obtained at
τ = converging. Incidentally, the neural network knows that
the set {i} is not a complete extension since it does not appear in
the output neuron at τ = converging.

The condition for stable extension says that a set of arguments
S satisfies ∀X ∈ AR(X ̸∈ S → X ∈ S′+). The neural network
can know that the {i, j} is a stable extension since it confirmed
the condition from the facts that Sτ=1 = {i, j}, S′

τ=1 = {i, j}
and S′+

τ=1 = {a}.

Stage 8. Judging preferred extension, semi-stable
extension and grounded extension
By invoking the neural network computation that was stated from
the stages 1-7 above for every subset of AR, and AR itself as an
input set S, it can know all admissible sets of AF , and hence
it also can know the preferred extensions of AF by picking up
the maximal ones w.r.t. set inclusion from it. In addition, the
neural network can know semi-stable extensions by picking up a
maximal S ∪ S+ where S is a complete extension in AF . This
is possible since the neural network already has computed S+.

For the grounded extension, the neural network can know that
the grounded extension of AF is S′

τ=converging when the com-
putation stopped by starting with Sτ=0 = ∅. This is due to the
fact that the grounded extension is obtained by the iterative com-
putation of the characteristic function that starts from ∅ [Prakken
and Vreeswijk, 2002].

Readers should refer to the paper [Gotou, 2010] for the sound-
ness theorem of the neural network computation illustrated so
far.

3 Extracting Symbolic Dialogues from the
Neural Network

In this section, we will address to such a question as if symbolic
argumentative dialogues can be extracted from the neural net-
work argumentation. The symbolic presentation of arguments
would be much better for us since it makes the neural net argu-
mentation process verbally understandable. The notorious criti-
cism for neural network as a computing machine is that connec-
tionism usually does not have explanatory reasoning capability.
We would say our attempt here is one that can turn such criticism
in the area of argumentative reasoning.

In our former paper [Makiguchi and Sawamura, 2007b], we
have given a method to extract symbolic dialogues from the
neural network computation under the grounded semantics, and
showed its coincidence with the dialectical proof theory for the
grounded semantics. In this paper, we are concerned with the
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question how other argumentation semantics can have dialecti-
cal proof theories. We describe a possible answer to it by ex-
tracting or generating symbolic dialogues from the neural net-
work computation under other more complicated argumentation
semantics. We would say this is a great success that was brought
by our neural network approach to argumentation since dialec-
tical proof theories for various Dungean argumentation seman-
tics have not been known so far except only some works (e. g.,
[Vreeswijk and Prakken, 2000], [Dung et al., 2006]).

First of all, we summarize the trace of the neural network com-
putation as have seen in Section 2 as in Table 1, in order to make
it easy to extract symbolic dialogues from our neural network.
Wherein, SPRO,τ=k and SOPP,τ=k denote the followings re-
spectively: At time round τ = k(k ≥ 0) in the neural network
computation, SPRO,τ=k = S

′

τ=k, and SOPP,τ=k = S
′+
τ=k (see

Section 2 for the notations).

Table 1: Summary table of the neural network computation
SPRO,τ=k SOPP,τ=k

τ = 0 input S {}
output . . . . . .

τ = 1 input . . . . . .
output . . . . . .

...
... . . . . . .

Table 2: Summary table of the neural network computation
in Fig. 2

SPRO,τ=k SOPP,τ=k

τ = 0 input {i} {}
output {i, j} {k}

τ = 1 input {i, j} {k}
output {i, j} {k}

For example, Table 2 is the table for S = {i} summarized
from the neural network computation in Fig. 2

We assume dialogue games are performed by proponents
(PRO) and opponents (OPP) who have their own sets of argu-
ments that are to be updated in the dialogue process. In advance
of the dialogue, proponents have S(= Sτ=0) as an initial set
SPRO,τ=0, and opponents have an empty set {} as an initial set
SOPP,τ=0.

We illustrate how to extract dialogues from the summary table
by showing a concrete extraction process of dialogue moves in
Table 2:

1. P(roponent, speaker): PRO declares a topic as a set of be-
liefs by saying {i} at τ = 0. OPP just hears it with no
response {} for the moment. (dialogue extraction from the
first row of Table 2)

2. P(roponent, or speaker): PRO further asserts the incre-
mented belief {i, j} because the former beliefs defend j,
and at the same time states the belief {i, j} conflicts with
{k} at τ = 0. (dialogue extraction from the second row of
Table 2)

3. O(pponent, listener or audience): OPP knows that its belief
{k} conflicts with PRO’s belief {i, j} at τ = 0. (dialogue
extraction from the second row of Table 2)

4. No further dialogue moves can be promoted at τ = 1, re-
sulting in a stable state. (dialogue termination by the third
and fourth rows of Table 2)

Thus, we can view P(roponent, speaker)’s initial belief {i} as
justified one in the sense that it could have persuaded O(pponent,
listener or audience) under an appropriate Dungean argumenta-
tion semantics. Actually, we would say it is admissibly justified
under admissibly dialectical proof theory below. Formally, we
introduce the following dialectical proof theories, according to
the respective argumentation semantics.

Definition 1 (Admissibly dialectical proof theory) The admis-
sibly dialectical proof theory is the dialogue extraction pro-
cess in which the summary table generated by the neural net-
work computation satisfies the following condition: ∀A ∈
SPRO,τ=0 ∀k ≥ 0(A ∈ SPRO,τ=k), where SPRO,τ=0 is the
input set at τ = 0.

Intuitively, the condition says every argument in SPRO,τ=0 is
retained until the stable state as can be seen in Table 2. It should
be noted that the condition reflects the definition of ‘admissible
extension’ in [Dung, 1995].

Definition 2 (Completely dialectical proof theory) The com-
pletely dialectical proof theory is the dialogue extraction pro-
cess in which the summary table generated by the neural network
computation satisfies the following conditions: let SPRO,τ=0 be
the input set at τ = 0.

1. SPRO,τ=0 satisfies the condition of Definition 1.

2. ∀A ̸∈ SPRO,τ=0 ∀k(A ̸∈ SPRO,τ=k)

Intuitively, the second condition says that any argument that does
not belong to SPRO,τ=0 does not enter into SPRO,τ=t at any
time round t up to a stable one k. Those conditions reflect the
definition of ‘complete extension’ in [Dung, 1995].

Definition 3 (Stably dialectical proof theory) The stably di-
alectical proof theory is the dialogue extraction process in which
the summary table generated by the neural network computation
satisfies the following conditions: let SPRO,τ=0 be the input set
at τ = 0.

1. SPRO,τ=0 satisfies the conditions of Definition 2.

2. AR = SPRO,τ=n ∪ SOPP,τ=n, where AF =<
AR, attacks > and n denotes a stable time round.

Intuitively, the second condition says that PRO and OPP cover
AR exclusively and exhaustively. Those conditions reflect the
definition of ‘stable extension’ in [Dung, 1995].

For the dialectical proof theories for preferred [Dung, 1995]
and semi-stable semantics [Caminada, 2006], we can similarly
define them taking into account maximality condition. So we
omit them in this paper.

As a whole, the type of the dialogues in any dialectical proof
theories above would be better classified as a persuasive dialogue
since it is closer to persuasive dialogue in the dialogue classifi-
cation by Walton [Walton, 1998].

4 Related Work
Garcez et al. initiated a novel approach to argumentation, called
the neural network argumentation [d’Avila Garcez et al., 2005].
However, the semantic analysis for it is missing there. That is,
it is not clear what they calculate by their neural network argu-
mentation. Besnard et al. proposed three symbolic approaches
to checking the acceptability of a set of arguments [Besnard and
Doutre, 2004], in which not all of the Dungean semantics can be
dealt with. So it may be fair to say that our approach with the
neural network is more powerful than Besnard et al.’s methods.
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Vreeswijk and Prakken proposed a dialectical proof theory for
the preferred semantics [Vreeswijk and Prakken, 2000]. It is
similar to that for the grounded semantics [Prakken and Sartor,
1997], and hence can be simulated in our neural network as well.

In relation to the neural network construction and computa-
tion for the neural-symbolic systems, the structure of the neural
network is a similar 3-layer recurrent network, but our neural
network computes not only the least fixed point (grounded se-
mantics) but also the fixed points (complete extension). This is a
most different aspect from Hölldobler and his colleagues’ work
[Hölldobler and Kalinke, 1994].

5 Concluding Remarks
It is a long time since connectionism appeared as an alterna-
tive movement in cognitive science or computing science which
hopes to explain human intelligence or soft information process-
ing. It has been a matter of hot debate how and to what ex-
tent the connectionism paradigm constitutes a challenge to clas-
sicism or symbolic AI. In this paper, we showed that symbolic
dialectical proof theories can be obtained from the neural net-
work computing various argumentation semantics, which allow
to extract or generate symbolic dialogues from the neural net-
work computation under various argumentation semantics. The
results illustrate that there can exist an equal bidirectional rela-
tionship between the connectionism and symbolism in the area
of computational argumentation. On the other hand, much effort
has been devoted to a fusion or hybridization of neural net com-
putation and symbolic one [d’Avila Garcez et al., 2009][Levine
and Aparicio, 1994][Jagota et al., 1999]. The result of this pa-
per as well as our former results on the hybrid argumentation
[Makiguchi and Sawamura, 2007a][Makiguchi and Sawamura,
2007b] yields a strong evidence to show that such a symbolic
cognitive phenomenon as human argumentation can be captured
within an artificial neural network.

The simplicity and efficiency of our neural network may be
favorable to our future plan such as introducing learning mecha-
nism into the neural network argumentation, implementing the
neural network engine for argumentation, which can be used
in argumentation-based agent systems, and so on. Specifically,
it might be possible to take into account the so-called core
method developed in [Hölldobler and Kalinke, 1994] and CLIP
in [d’Avila Garcez et al., 2009] although our neural-symbolic
system for argumentation is much more complicated due to the
complexities and varieties of the argumentation semantics.
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Abstract 

The DARPA Mind’s Eye program seeks to develop 
in machines a capability that currently exists only 
in animals: visual intelligence. This short paper de-
scribes the initial results of a Neural-Symbolic ap-
proach for action recognition and description to be 
demonstrated at the 7

th
 international workshop on 

Neural-Symbolic Learning and Reasoning. 

Introduction 

Humans in particular perform a wide range of visual tasks 
with ease, which no current artificial intelligence can do in a 
robust way.  Humans have inherently strong spatial judg-
ment and are able to learn new spatiotemporal concepts 
directly from the visual experience. Humans can visualize 
scenes and objects, as well as the actions involving those 
objects. Humans possess a powerful ability to manipulate 
those imagined scenes mentally to solve problems. A ma-
chine-based implementation of such abilities would require 
major advances in each of the following technology focus 
areas: Robust recognition, Anomaly detection, Description, 
Gap-filling (i.e., interpolation, prediction, and post diction). 
These are human intelligence-inspired capabilities, which 
are envisaged in service of systems to directly support hu-
mans in complex perceptual and reasoning tasks (e.g. like 
Unmanned Ground Vehicles). 
 
The DARPA Mind’s Eye program seeks to develop in ma-
chines a capability that currently exists only in animals: 
visual intelligence [Donlon, 2010]. In particular, this pro-
gram pursues the capability to learn generally applicable 
and generative representations of action between objects in 
a scene, directly from visual inputs, and then reason over 
those learned representations. A key distinction between this 
research and the state of the art in machine vision is that the 
latter has made continual progress in recognizing a wide 
range of objects and their properties—what might be 
thought of as the nouns in the description of a scene. The 
focus of Mind’s Eye is to add the perceptual and cognitive 
underpinnings for recognizing and reasoning about the verbs 
in those scenes, enabling a more complete narrative of ac-
tion in the visual experience.  
 

The contribution of TNO, a Dutch research institute and one 
of the teams working on the Mind’s Eye program, is called 
CORTEX and is presented in this paper. CORTEX is a 
Visual Intelligence (VI) system and consists of a visual 
processing pipeline and reasoning component that is able to 
reason about events detected in visual inputs (e.g. from a 
movie or live camera) in order to; i) recognize actions in 
terms of verbs, ii) describe these actions in natural language, 
iii) detect anomalies and iv) fill gaps (e.g. video blackouts 
by missing frames, occlusion by moving objects, or entities 
receding behind objects). 

Neural-Symbolic Cognitive Agent 

To learn spatiotemporal relations between detected events 
(e.g. size of bounding boxes, speed of moving entities, 
changes in relative distance between entities) and verbs 
describing actions (e.g. fall, bounce, dig) the reasoning 
component uses a Neural-Symbolic Cognitive Agent 
(NSCA) that is based on a Recurrent Temporal Restricted 
Boltzmann Machine (RTRBM) (described in [de Penning et 
al., 2011] and presented during the IJCAI 2011 poster ses-
sion). This cognitive agent is able to learn hypotheses about 
temporal relations between observed events and related 
actions and can express those hypotheses in temporal logic 
or natural language. This enables the reasoning component, 
and thus CORTEX, to explain and describe the cognitive 
underpinnings of the recognition task as stated in the focus 
of the Mind’s Eye program. 
 
The hypotheses are modelled in a RTRBM, where each 
hidden unit Hj in the RTRBM represents a hypothesis about 
a specific relation between events e and verbs v being ob-
served in the visible layer V and hypotheses h

t-1
 that have 

been true in the previous time frame. Based on a Bayesian 
inference mechanism, the NSCA can reason about observed 
actions by selecting the most likely hypotheses h using 
random Gaussian sampling of the posterior probability dis-
tribution (i.e. h ~ P(H|V=e˄v, H

t-1
=h

t-1
)) and calculating the 

conditional probability or likelihood of all events and verbs 
assuming the selected hypotheses are true (i.e. P(V|H=h)). 
The difference between the detected events, available 
ground truth and the inferred events and verbs can be used 
by the NSCA to train the RTRBM (i.e. update its weights) 
in order to improve the hypotheses. 

Visual Intelligence using Neural-Symbolic Learning and Reasoning 

H.L.H. (Leo) de Penning
 

TNO Behaviour and Societal Sciences  

Kampweg 5, Soesterberg, The Netherlands.  
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Figure 1. CORTEX Dashboard for testing and evaluation. 

 

Experiments and Results 

The CORTEX system and its reasoning component are 
currently being tested on a recognition task using several 
datasets of movies and related ground truth provided by 
DARPA. Figure 1 shows the CORTEX Dashboard, a 
user-interface for testing and evaluation of the CORTEX 
system. With the CORTEX Dashboard we are able to 
visualize the detected entities (depicted by bounding box-
es in the upper-left image), probabilities on related events 
in each frame (depicted by intensities, green is 0 and yel-
low is 1, in the upper-right graph) and related verb proba-
bilities calculated by the reasoning component (depicted 
by bars in the centre graph). The bottom graph shows the 
precision, recall and F-measure (i.e. harmonic mean of the 
precision and recall) for all verbs used to evaluate the 
output of the reasoning component. Also it can visualize 
the learned hypotheses and extract these in the form of 
temporal logic or natural language, which can be used to 
explain and describe the recognized actions.  
 
Initial results show that the reasoning component is capa-
ble of learning hypotheses about events and related verbs 
and that it is able to reason with these hypotheses to cor-
rectly recognize actions based on detected events.  
Furthermore the results show that the reasoning compo-
nent is able to recognize actions that were not there in the 
ground truth for that specific input, but inferred from 
ground truth and related event patterns in other input. For 

example, reasoning about a movie that was trained to be 
recognized as a chase, resulted in some parts being recog-
nized as fall, because one of the persons was tilting over 
when she started running, although fall was not part of the 
ground truth for this movie. 

Conclusions and Future Work 

With the NSCA architecture, the reasoning component is 
able to learn and reason about spatiotemporal events in 
visual inputs and recognize these in terms of actions de-
noted by verbs. It is also able to extract learned hypothe-
ses on events and verbs that can be used to explain the 
perceptual and cognitive underpinnings of the recognition 
task and support other visual intelligence tasks, like de-
scription, anomaly detection and gap-filling, yet to be 
developed in the CORTEX system.  

References 

[Donlon, 2010] James Donlon. DARPA Mindʼs Eye Pro-

gram: Broad Agency Announcement. Arlington, 

USA, 2010. 

[de Penning et al., 2011] Leo de Penning, Artur S. dʼAvila 

Garcez, Luís C. Lamb, and John-Jules C. Meyer. A 

Neural-Symbolic Cognitive Agent for Online 

Learning and Reasoning. In Proceedings of the In-

ternational Joint Conference on Artificial Intelli-

gence (IJCAI), Barcelona, Spain, 2011. 

 

35



Neural-Symbolic Learning:How to play Soccer
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Abstract
In the present extended abstract we describe the
simulator developed. The purpose of this simula-
tor is to test our neural symbolic approach towards
normative reasoning.
After the translation process provided by the sim-
ulator I describe one of the case study used during
the experiments. To be more precise, the case study
regards RoboCup scenario.

1 The Simulator
The task of the simulator is to build a neural network starting
from a knowledge base. For the translation, the simulator uses
an approach similar to the one described in the book[d’Avila
Garcez et al., 2002]. More precisely the approach used is the
one described in [Boella et al., 2011a].

The simulator has been developed using Java1. To develop
the necessaries functions for the neural networks and the net-
works themselves, Joone2. Joone is a object oriented neural
engine, a framework written in Java that collects the functions
needed to build neural networks and work with them.

2 Translation process
The translation process receives in input two XML3 files. The
first file contains the lists of input and output perceptrons to
be included in the neural network. The second file contains
the rules that have to be translated within the neural network
by the N-CILP algorithm described in [Boella et al., 2011a].

The input file containing the lists of inputs and outputs is
needed for training purposes. Otherwise the neural network
would be constructed using the inputs and outputs used in the
rules inside the knowledge base, if this is the case, then the
neural network would not be able to learn new rules contain-
ing literals which are not already known.

The knowledge base file contains I/O logic rules, shaped in
XML format. The priority relationships between the rules are
encoded within the rules themselves as described in [Boella
et al., 2011a].

1http://www.java.com/en/
2http://sourceforge.net/projects/joone/
3http://www.w3.org/XML/

Figure 1: A snapshot of a RoboCup match.

With the mentioned files the simulator builds the neural
network following the N-CILP algorithm. In addition, the
simulator allows some optional translation features. The first
option allows to set the weights calculated by N-CILP as un-
trainable. By activating this option, for the resulting neural
network would be very difficult to forget the starting rules.
Anyway a possible drawback of this approach is that would
be difficult to forget wrong rules. The second option allows to
randomize the weights and thresholds of the network4. The
principal use of this option is to generate non-symbolic net-
works and compare their performances with the ones built
with N-CILP.

3 Neural Network
The network built by the N-CILP algorithm uses a step acti-
vation function for the perceptrons in the input level, because
they just need to pass the information from the inputs to the
following layer. For the hidden and output level instead, the

4The number of hidden perceptrons is defined by the N-CILP
algorithm.
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perceptrons used adopts an bipolar sigmoid activation func-
tion [Karlik and Olgac, 2010].

After being built, the neural network can be used to process
data. Thanks to the translation process, the neural network is
capable to process the data by following the rules contained
in the initial knowledge base.

In order to cope with a dynamically changing environment,
the network can be trained in a supervised fashion. By in-
stance learning the network is capable to extend its knowl-
edge and after the training. In this way the trained neural
network, should be able to correctly process data which the
starting knowledge base is not.

4 Case Study
One of the case studies used with the simulator involves
the RoboCup scenario (Figure 1). In our work described in
[Boella et al., 2011a] we focused on the normative aspect of
the game. For this reason, we have took into consideration
some of the rules that the robots had to follow. We used the
rulings used in 2007 contained in [Menegatti, 2007].

4.1 Rules of the RoboCup
In this section we will take a look at some of the rules that the
robots should follow in order to play properly. I represent the
rules using the I/O logic format [Makinson and van der Torre,
2000] with modalities as described in [Boella et al., 2011a].

R1 : (>,O(¬impact opponent))

R2 : (>,O(¬use hands))

R3 : (goalkeeper ∧ inside own area,P(use hands))

R4 : (kickoff,O(¬score))
R5 : (kickoff ∧mate touch ball,P(score))

The first rule refers to the prohibition to voluntarily impact
into an opponent.

The second rule also states a prohibition, the interdiction to
use the hands to play the ball. Differently, the third rule says
that the goalkeeper can use its hands inside its own goal area.

The fourth rule refers to the prohibition to score from the
kickoff. The last rule, the fifth, is related with the fourth. It
states that it is permitted to score in a kickoff situation if a
team mate touches the ball.

4.2 Adding dynamism in the system
By only considering the rules of the game, the system is static.
This because the rules of the game does not change during a
match. In order to include dynamism, we add to the system
another ruling element5. The additional ruling element is rep-
resented by the coach.

The coach gives directions to the robot about how they
should play during the match. The situation during the match
can change, and the coach may want to change accordingly
the strategies of the robot team. To do so, the coach can
add additional rules to the knowledge base or retract some
of them.

5The first ruling element is the referee which enforces the rules
of the game.

In the following list we take a look at some of the possible
rules that a coach may enforce.

R6 : (ball ∧ close to opponent goal,O(shoot))

R7 : (ball ∧ opponent approaching,O(pass))

R8 : (ball ∧ opponent approaching ∧
team mate marked,O(¬pass))

R9 : (opponent shooting,O(impact opponent))

The sixth rule refers to the ought to try to score when a
robot with the ball, is close to the opponent’s goal.

The seventh rule states the obligation to pass the ball if an
opponent is approaching. Differently, the eight rule states the
prohibition to pass, if the same condition holds and addition-
ally the team mate is marked by an opponent. In this case the
rules can be ordered by a priority relation in order to avoid
dilemmas[Boella et al., 2011b], like R8 � R7.

The last rule, the ninth, states that a robot should try to
prevent an opponent to scoring by impacting into him if it
is shooting. This rule clearly goes against R1 given by the
referee. Even in this case is possible to enforce the decision
of the robot with a priority (like R9 � R1) or leave at the
robot both the possibilities available (impact opponent or
¬impact opponent).
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1 Introduction
Artificial Neural Networks classifiers have many advantages
such as: noise tolerance, possibility of parallelization, better
training with a small quantity of data . . . . Coupling neural
networks with an explanation component will increase its us-
age for those applications. The explanation capacity of neu-
ral networks is solved by extracting knowledge incorporated
in the trained network [Andrews et al., 1995]. We consider a
single neuron (or perceptron) with Heaviside map as activa-
tion function (f(x) = 0 if x < 0 else 1). For a given percep-
tron with the connection weights vector W and the threshold
θ, this means finding the different states where the neuron is
active (wich could be reduced to the Knapsack problem.

With the existing algorithms, two forms of rules are re-
ported in the literature : ’If (condition) then conclusion’
form noted ’if then’ rules, ’If (m of a set of conditions) then
conclusion’ form noted ’MofN ’

The intermediate structures that we introduce are called
MaxSubset list and generator list. The MaxSubset is a min-
imal structure used to represent the if-then rules while the
generator list is some selected MaxSubsets from which we
can derive all MaxSubsets and all MofN rules. We introduce
heuristics to prune and reduce the candidate search space.
These heuristics consist of sorting the incoming links accord-
ing to the descending order, and then pruning the search space
using the subset cardinality bounded by some determined val-
ues.

2 The MaxSubsets and generators Rules
extraction approach

The general form of a MofN rule is ’if m1 of N1 ∧
m2 of N2∧...∧mp of Np then conclusion’ or ’

∧
i(mi of Ni)

then conclusion’; for each subset Ni of the inputs set, if mi

elements are verified, the conclusion is true.
The common limit of previous approaches is the exclusive

form of the extracted rules. Thus we introduce a novel ap-
proach called MaxSubset from which it is possible to generate
both forms of rules. The MaxSubset approach follows oper-
ations (3), (4) and (5) of figure 1; while the existing known
algorithms follow the path (1) for the if-then rules and (2) for
the MofN rules. The processes (3), (4) and (5) of the figure 1
are described as follows: (3) MaxSubsets and generators ex-
traction; (4) generation of if-then rules from the MaxSubsets

a 

b 

c 

d 

h1

h2

h3

c1

c2

c3

If - then rules MofN rules

MaxSubsets

Generators

Trained Artificial Neural Network

(1)
(2)

(3)

(4)
(5)

(1)ANN to the If the n rules
(2) ANN to the MofN rules

(3) ANN to the MaxSubsets and the
geneartors lsts
(4)From the MaxSubsets to the if the rules
(5) From the Generators to the MofN rules

Figure 1: Rules extraction process:

list and (5) generation of MofN rules from the generators list.
An extended version of this work is described in [Tsopze et
al., 2011].

3 Conclusion
This approach consists in extracting a minimal list of ele-
ments called MaxSubset list, and then generating rules in one
of the standard forms : if-then or MofN. To our knowledge,
it is the first approach which is able to propose to the user
a generic representation of rules from which it is possible to
derive both forms of rules.
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Abstract
We propose SHERLOCK - a novel problem-
solving application based on neuro-symbolic net-
works. The application takes a knowledge base and
rules in the form of a logic program, and compiles
it into a connectionist neural network that performs
computations. The network’s output signal is then
translated back into logical form. SHERLOCK al-
lows to compile logic programs either to classical
neuro-symbolic networks (the “core method”), or
to inductive neural networks (CILP) — the latter
can be trained using back-propagation methods.

1 Introduction
We take the ideas of neuro-symbolic integration to the level
of software engineering and design. That is, we do not con-
sider theoretical aspects of neuro-symbolic integration here,
but take its synthetic principle to be our main software engi-
neering principle. So, which methods could software engi-
neering borrow from the area of neuro-symbolic integration?
Here, we offer one possible answer, but see also [Cloete and
Zurada, 2000].

Declarative programming languages, and especially logic
programming, have one important underlying idea — they
are designed to be syntactically similar to the way people rea-
son. Logic programming, for example, is one of the easiest
languages to teach students with non-technical background or
general public alike. Also, it is feasible to parse natural lan-
guage into logic programming syntax. Therefore, the strength
of logic programming from the software engineering point of
view is that it makes for a general and easily accessible inter-
face for users with diverse backgrounds.

Neural networks, on the other hand, offer both massive par-
allelism and ability to adapt. However, it would seem almost
impossible to imagine that a person with non-technical back-
ground easily masters neural networks as part of his working
routine, alongside with a web-browser or a text editor. It is
common that industrial applications of neural networks are
designed and maintained by specialists, while non-specialist
users do not have ways to edit the applications. This is why

∗The work was supported by EPSRC, UK; Postdoctoral Fellow
research grant EP/F044046/2.

neural network applications are often problem-specific. Such
applications could be made more general and user-friendly if
the users were given a nice easy interface to manipulate neu-
ral networks at a level of natural language.

For example, consider a police officer who has just come
to a crime scene and wishes to record all evidence available.
To be efficient, the police officer uses a small portable com-
puter that has a problem-solving assistant. What should this
assistant be like? Neural network software would come in
handy, because it can be trained as new evidence is obtained;
also – it can be fast due to parallelism. On top of this neural
software, though, it is best to have an easy interface allowing
the officer to enter data in the form of a natural language.

We propose SHERLOCK — an application that allows
the user to type in the knowledge base in the language
close to the natural language, and then rely on the com-
piler that transforms the problem into a suitable neural net-
work. The network will attempt to solve the problem; and
once the solution is found — it outputs the answer in a
logical form. Thus, SHERLOCK successfully implements
the full neuro-symbolic cycle, [Hammer and Hitzler, 2007;
d’Avila Garcez et al., 2008].

Additionally, as we show in the poster and Section 3,
SHERLOCK can be embedded into a bigger knowledge-
refining cycle. In this case, we rely upon the backpropagation
learning that CILP (cf. [d’Avila Garcez et al., 2002]) offers.

SHERLOCK software relates to the work of [Gruau et al.,
1995] proposing a neural compiler for PASCAL; and the pro-
gramming languages AEL, NETDEF [Siegelmann, 1994] de-
signed to be compiled by neural networks. SHERLOCK dif-
fers from the previous similar work in two respects. It is
the first fully automated neural compiler for declarative lan-
guages we know of. Also, in the cited works the main em-
phasis was on building a fully functional complier for a pro-
gramming language; here our emphasis is not on creating a
neural compiler for PROLOG per se; but building a compiler
sufficient to handle knowledge bases and reason over them.

2 Design of SHERLOCK
SHERLOCK provides an editor which allows to write and
edit information in logical form; it then transforms the infor-
mation into connectionist neural network; finally, it translates
the outcome of the neural-symbolic system back to the logic
programming syntax.
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Figure 1: SHERLOCK’s interface.

SHERLOCK consist of the following components:

1. A code editor, in which the users can write a general
logic program in a prolog-like declarative language;

2. A translator, which can analyse syntax and semantics of
the logic program to set up neural-symbolic systems ac-
cording to the logic program;

3. A model of the “core method” neural networks [Ham-
mer and Hitzler, 2007], and a model of CILP-neural net-
works [d’Avila Garcez et al., 2002];

4. An interpreter;

5. An output reader.

The Figure 1 shows SHERLOCK’s interface together with
a data base written in syntax similar to logic programming.
The answer would be all the names that satsify the rule for
“Criminal”.

3 Knowledge Refining using SHERLOCK
Knowledge refining is one of the important features in hu-
man reasoning. We wish to insert background (or “coarse”)
knowledge into a neural network and obtain refined knowl-
edge by learning with example data. CILP is suitable to do
knowledge refining: it has the capability to present back-
ground knowledge into neural networks, and it can use back-
propagation to get networks trained with examples.

We propose a novel approach to build knowledge refining
systems based on SHERLOCK:

1. Coarse knowledge is obtained from the trained neural
network using one of the standard extraction techniques.

2. Then it is expressed in the first order language in SHER-
LOCK.

3. A CILP neural network is obtained.

4. CILP is trained with the data, and the embedded knowl-
edge is refined.

We test this model on the famous cancer data set from the
UCI Machine Learning Repository. The final neural network

has a performance of 96.7%. The performance of the final
neural network cannot be improved by setting a better training
goal while a general neural network can. This implies the
knowledge embedded in the CILP neural network is sensitive
to certain kinds of data.

We summarise the properties of this model as follows:
1. It provides a methodology to obtain knowledge in any

domain by using both induction and deduction.
2. If the knowledge obtained in Step 1 is reasonable, the

final neural network will remain a clear structure, which
could be interpreted to symbolic knowledge. Otherwise,
the neural network is just an ordinary supervised trained
neural network.

3. The final neural network has a very good performance
in terms of learning. Besides, it seems that the neural
network owns an ability to detect some faulty data due
to the knowledge embedded in it.

Sherlock software and its user
manual can be downloaded from
http://www.computing.dundee.ac.uk/staff/katya/sherlock/
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