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Abstract

The sub-symbolical representation often corre-
sponds to a pattern that mirrors the way the bio-
logical sense organs describe the world. Sparse bi-
nary vectors can describe sub-symbolic representa-
tion, which can be efficiently stored in associative
memories. According to the production system the-
ory, we can define a geometrically based problem-
solving model as a production system operating on
sub-symbols. Our goal is to form a sequence of as-
sociations, which lead to a desired state represented
by sub-symbols, from an initial state represented
by sub-symbols. We define a simple and universal
heuristics function, which takes into account the re-
lationship between the vector and the correspond-
ing similarity of the represented object or state in
the real world.

Newell, 1990. In this context, symbols do not by themselves,
represent any utilizable knowledge. They cannot be used for
a definition of similarity criteria between themselves. The
use of symbols in algorithms which imitate human intelligent
behavior led to the famous physical symbol system hypothe-
sis by Newell and Simon (197¢Newell and Simon, 1976

The necessary and sufficient condition for a physical system
to exhibit intelligence is that it be a physical symbol system.
We do not agree with the physical symbol system hypothesis.
Instead we state that the actual perception of the world and
manipulation in the world by living organisms lead to the in-
vention or recreation of an experience, which at least in some
respects, resembles the experience of actually perceiving and
manipulating objects in the absence of direct sensory stimula-
tion. This kind of representation is called sub-symbolic. Sub-
symbolic representation implies heuristic functions. Symbols
liberate us from the reality of the world although they are em-

bodied in geometrical problem solving through the usage of
additional heuristics functions. Without the use of heuristic
1 Introduction functions real world problems become intractable.

One form of distributed representation corresponds to a pat- 1he paper is organized a follows: We review the represen-
tern that mirrors the way the biological sense organs describ@tion principles of objects by features as used in cognitive
the world. Sense organs sense the world by receptors. By tt&ience. In the next step we indicate how the perception-
given order of the receptors the living organisms experiencériented representation is build on this approach. We define
the reality as a simple Euclidian geometrical world. Changeshe sparse sub-symbolical representation. Finally, we will in-
in the world correspond to the changes in the distributed reptroduce the sub-symbolical problem solving which relies on
resentation. Prediction of these changes by the nervous sya-sensorial representation of the reality.

tem corresponds to a simple geometrical reasoning process.

Mental imagery problem solving is an example for a complex

geometrical problem- solving. It is described by a sequenc@ Sub-symbols

of associations, which progressively change the mental im-

agery until a desired solution of a problem is formed. ForPerception-oriented representation is an example of sub-
example, do the skis fit in the boot of my car? Mental rep-symbolical representation, such as the representation of num-
resentations of images retain the depictive properties of thbers by the Oksapmin tribe of Papua New Guinea. The Ok-
image itself as perceived by the eli¢osslyn, 1994 The  sapmin tribe of Papua New Guinea counts by associating a
imagery is formed without perception through the construcnumber with the position of the bodyancy, 1983. The

tion of the represented object from memory. Symbols on thesub-symbolical representation often corresponds to a pattern
other hand are not present in the world; they are the conthat mirrors the way the biological sense organs describe the
structs of human mind to simplify the process of problemworld. Vectors represent patterns. A vector is only a sub-
solving. Symbols are used to denote or refer to somethingymbol if there is a relationship between the vector and the
other than them, namely other things in the world (accordcorresponding similarity of the represented object or state in
ing to the pioneering work of TarsKirarski, 1954). They the real world through sensors or biological senses. Feature
are defined by their occurrence in a structure and by a formdlased representation is an example of sub-symbolical repre-
language, which manipulates these struct8son, 1991; sentation.
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Objectscan be described by a set of discrete features, such %
as red, round and sweefTversky, 1977; McClelland and
Rumelhart, 1985 The similarity between them can be de-
fined as a function of the features they have in common
[Osherson, 1995; Sun, 1995; Goldstone, 1999; Gilovich,
1999. The contrast model of TverskiyTversky, 1977is one
well-known model in cognitive psychologyfSmith, 1995;
Opwis and Plotzner, 1996vhich describes the similarity be- Wit Wy Wy Wy
tween two objects which are described by their features. An L? %T) %T) %)
object is judged to belong to a verbal category to the extent

that its features are predicted by the verbal cate§Osher- y
son, 1987. The similarity of a categor¢’ and of a feature
setF' is given by the following formula, which is inspired by
the contrast model of TverskjTversky, 1977; Smith, 1995; Figure 1: The Lernmatrix is composed of a set of units which
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Opwis and Plotzner, 1996 represent a simple model of a real biological neuron. The unit
is composed of weights, which correspond to the synapses
) |C'NF and dendrites in the real neuron. In this figure they are de-

Sim(C, F) = T8l €[0,1] (1)  scribed byw;; € {0,1} wherel <i <mandl <j<n.T

is the threshold of the unit.
|C| is the number of the prototypical features that define
the category:. The present features are counted and normaI-L

ized so that the value can be compared. This is a very simpl earning Inthe initialization phase of the associative mem-

form of representation. A binary vector in which the ositionsgry’ no information is stored. Because the information is rep-
P ’ y P resented in weights, they are all initially set to zero. In the

represent different features can represent the set of featurqgaming phase, pairs of binary vector are associateds bet

For each category a binary vector can be defined. Overlaqﬁe guestion vector anglthe answer vector, the learning rule
between stored patterns correspond to overlaps between cal:

egories.

2.2 Thelernmatrix new J 1 if yi-xj=1

. . - Wis { we®  otherwise. 2)
The Lernmatrix, also simply called “associative memory”
was developed by Steinbuch in 1958 as a biologically in- This rule is called the binary Hebbian rulealm, 1982

spired model from the effort to explain the psychological phe-Every time a pair of binary vectors is stored, this rule is used.
nomenon of conditioningSteinbuch, 1961; 1911Later this

model was studied under biological and mathematical aspects

by Willshaw [Willshaw et al, 1969 and G. Palm[Palm, Retrieval In the one-stegetrieval phase of the associative

1982; 1990. memory, a fault tolerant answering mechanism recalls the
Associative memory is composed of a cluster of units.appropriate answer vector for a question vector For

Each unit represents a simple model of a real biological neuthe presented question vect@r the most similar learned

ron. The Lernmatrix was invented in by Steinbuch, Whos%ﬁ question vector regarding the Hamming distance is

goal was to produce a network that could use a binary versiogetermined and the appropriate answer vegtsridentified.
of Hebbian learning to form associations between pairs of biFor the retrieval rule, the knowledge about the correlation

nary vectors, for example each one representing a cognitivgf the components is sufficient. The retrieval rule for the
entity. Each unitis composed of binary weights, which corre-getermination of the answer vectgpis:

spond to the synapses and dendrites in a real neuron. They are
described byw;; € {0,1} in Figure 1.7 is the threshold of 1 Y wya; > T
the unit. We call the Lernmatrix simpgssociative memoiif/ Y = { g=1 0T =
no confusion with other models is possibfnderson, 1995a;

Ballard, 199T. whereT is the threshold of the unit. The threshold is set as

The patterns, which are stored in the Lernmatrix, are repproposed byPalmet al., 1997 to the maximum of the sums
resented by binary vectors. The presence of a feature is mdv%—:ﬂ Wiy
J:

cated by a ‘one’ component of the vector, its absence throug

®)

0 otherwise.

a ‘zero’ component of the vector. A pair of these vectors is n
associated and this process of association is called learning. T := max {Z wijxj}. 4)
The first of the two vectors is called tlyiestion vectoand Isism i

the second, thanswer vectar After learning, the question
vector is presented to the associative memory and the answerOnly the units that are maximal correlated with the ques-
vector is determined by the retrieval rule. tion vector are set to one.



Storagecapacity For an emation of the asymptotic num-

each cell. A simple code would indicate if a cell is active or

ber of vectorpair$z, ) which can be stored in an associative not. One indicates active, zero not active. Eoells we could
memory before it begins to make mistakes in retrieval phaséandicate this information by a binary vector of dimensian

it is assumed that both vectors have the same dimension Ror an image of size x y a cell covers the imag& times.

It is also assumed that both vectors are composed of M 1%\ binary vector that describes that image using the cell repre-
which are likely to be in any coordinate of the vector. In sentation has the dimensiorx X. For example gray images
this case it was showr{Palm, 1982; Hecht-Nielsen, 1989; of the sizel28 x 96 resulting in vectors of dimensici2288
Sommer, 199Bthat the optimum value for M is approxi- can be covered with:

mately
M = logy(n/4) (5)
and that approximatelyPalm, 1982; Hecht-Nielsen, 1989
L= (In2)(n?/M?) 6)

of vector pairs can be stored in the associative memory. This
value is much greater then n if the optimal value for M is
used. In this case, the asymptotic storage capacity of the
Lernmatrix model is far better than those of other associa-
tive memory models, namely 69.31%. This capacity can be
reached with the use of sparse coding, which is produced
when very small number of 1s is equally distributed over
the coordinates of the vectdiRalm, 1982; Stellmann, 1992

For example an optimal code is defined as following; in the
vector of the dimension n=100000M=18 ones should be
used to code a pattern. The real storage capacity value is
lower when patterns are used which are not sparse or are
strongly correlated to other stored patterns. Usually subop-
timal sparse codes a sufficiently good to be used with the as-
sociative memory. An example of a suboptimal sparse code
is the representation of words by context-sensitive letter units
[Wickelgren, 1969; 1977; Rumelhart and McClelland, 1986;
Bentzet al, 1989. The ideas for the used robust mecha-
nism come from psychology and biologyickelgren, 1969;
1977; Rumelhart and McClelland, 1986; Beetzal., 1989.
Each letter in a word is represented as a triple, which con-

sists of the letter itself, its predecessor, and its successor. For

example, six context-sensitive letters encode the wlessrt
namely: _de, des, ese, ser, ert,_rtThe character” marks

3072 masks M of the size of a si2e& 2 resulting in a bi-
nary vector that describes that image has the dimension
c1 x 3072, X1 = 3072 (see Figure 2 (a)).

768 masks M of the size of a siZex 4 resulting in a bi-
nary vector that describes that image has the dimension
co X 768, Xo = 768 (see Figure 2 (b)).

e 192 masks M of the size of a si&ex 8 resulting in a bi-

nary vector that describes that image has the dimension
c3 x 192, X3 = 192 (see Figure 3 (a)).

48 masks M of the size of a si2é x 16 resulting in a bi-
nary vector that describes that image has the dimension
cy X 48, X4 = 48 (see Figure 3 (b)).
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Figure 2: (a) Two examples of of squared maskof a size

the wordbeginning and ending. Because the alphabet is com? X 2. (b) Two examples of squared mask&of a sized x
posed of 26+1 characterz7® different context-sensitive let- 4. The masks were learned using simple k-means clustering

ters exist. In the&7® dimensional binary vector each position algorithm.

corresponds to a possible context-sensitive letter, and a word
is represented by indication of the actually present context-
sensitive letters. We demonstrate the principle of sparse cod-
ing by an example of the visual system and visual scene rep-
resentation.

2.3 Sparsefeatures

In hierarchical models of the visual syst¢Riesenhuber and
Poggio, 1999[Fukushima, 198 [Fukushima, 1989 [Car-
doso and Wichert, 201@he neural units have a local view
unlike the common fully-connected networks. The receptive
fields of each neuron describe this local view. During the
categorization the network gradually reduces the information
from the input layer through the output layer. Integrating lo-
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cal features into more global features does this. Supposed Eigure 3: (a) Two examples of of squared maskwf a size

the lower layer tow cells recognize two categories at neigh
boring position, and these two categories are integrated into
more global category. The first cell is namedhe secong.
The numerical code fax ands may represent the position of

8 x 8. (b) Two examples of squared masksof a sizel6 x
. The masks were learned using simple k-means clustering
algorithm.



The idealc value fa a sparse code is related fd = earlier decisions. Those decisions are rated utilizing prefer-

log,(n/4). ences and added to the stack by chosen rules. Preferences
X =logy(X - ¢/4) are determined together with the rules by an observer using
x knowledge about a problem.
20 =X-c/d According to the production system theory, we can define
4.9X a geometrically based problem-solving model as a produc-

c

X (7)  tion system operating on vectors of fixed dimensions. Instead
. . . . of rules, we use associations and vectors represent the states.

The ideal value forc grows exponentially in relation t&. oy goalis to form a sequence of associations, which lead to a
Usually the used value fof is much lower then the ideal egired state represented by a vector, from an initial state rep-
value resulting in a suboptimal sparse code. The represefagented by a vector. Each association changes some parts of
tation of images by masks results in a suboptimal code. The,q yector. In each state, several possible associations can be
optimal code is approached with the size of masks, the biggetyacyted, but only one has to be chosen. Otherwise, conflicts
the mask, the smaller the value & The number of pixels iy the representation of the state would occur. To perform
|ns_|de a mask grows quad_ra_tlc. A b|gge_r mask_s 'mp"e_s thehese operations, we divided a vector representing a state into
ability to represent more distinct categories, which implies &y, yectors. An association recognizes some sub-vectors in
blggerc. . . ! the vector and exchanges them for different sub-vectors. It is

An ideal value for is possible, if the value fak' << 100.  composed of a precondition of fixed arranged m sub-vectors
Instead of covering an image by masks, we indicate theynqa conclusion. Suppose a vector is divided into n sub-
present objects. ijects and their position in the visual field,actors withn, > m. An association recognizes m different
can represent a visual scene. A sub-vector of the vector regy, vectors and exchanges them for different m sub-vectors.
resenting the visual scene represents each object. For exafy; recognize m sub-vectors out of n sub-vectors we perform
ple, if there is a total o0 objects, thec value is409. To 4 hermutation p(n,m) and verify if each permutation corre-
represent09 different categories of objects at different posi- sponds to a valid precondition of an association. For exam-
tions resulting in 441980 dimensional binary vector. This vectoryje ' if there is a total of 7 elements and we are selecting a
could represent 5=,y different visual states of the world.  gequence of three elements from this set, then the first selec-
The storage capacity of the associative memory in this casgon is one from 7 elements, the next one from the remaining
would be around 59500 patterns, which i28 times bigger 6, and finally from the remaining 5, resultingin 7 * 6 * 5 =
as the number of the units (4090). 210, see Figure 4.

2.4 Problem Solving
Human problem solving can be described by a problem- e ’—‘. AV

behavior graph constructed from a protocol of the person  pemuatons Associative E
talking aloud, mentioning considered moves and aspects of mAle] memory E
the situation. According to the resulting theory, searching \- A |:|}

whose state includes the initial situation and the desired situ-

ation in a problem spad&ewell, 1990;?] solves problems. (= Alo] nnn

This process can be described by the production system the- \ m Ao \ pramisss desorbes

ory. The production system in the context of classical Ar- . Cognitve eniites

tificial Intelligence and Cognitive Psychology is one of the .

most successful computer models of human problem solv-

ing. The production system theory describes how to form a olo|O|

sequence of actions, which lead to a goal, and offers a com-

putational theory of how humans solve probldiaderson, <

1995H. Production systems are composed of if-then rules A state represented by
that are also called productions. A rule [contains several if E @ @ E @ @ @ seven cognitive entities
patterns and one or more then patterns. A pattern in the con-
text of rules is an individual predicate, which can be negated

together with arguments. A rule can establish a new assefijgure 4: To recognize one learned association permutations
tion by the then part (its conclusion) whenever the if part (itsare forned. For example, if there is a total of 7 elements
premise) is true. One of the best-known cognitive modelsgnd we are selecting a sequence of three elements from this
based on the production system, is SOAR. The SOAR stateet, then the first selection is one from 7 elements, the next
operator and result model was developed to explain humagne from the remaining 6, and finally from the remaining 5,
problem-solving behavidiNewell, 1990. Itis a hierarchical  resultingin 7 * 6 * 5 = 210. In our example, all possible three-
production system in which the conflict-resolution strategypermutations sub-vectors of seven sub-vectors are formed to
is treated as another problem to be solved. All satisfied intest if the precondition of an association is valid.

stances of rules are executed in parallel in a temporary mode.

After the temporary execution, the best rule is chosen to take

action. The decision takes place in the context of a stack of Out of several possible associations, we chose the one,
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. Figure 6: The computation can be improved by a simple and
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universl heuristics function, which takes into account the re-
N ' lationship between the vector and the corresponding similar-
ity of the represented object or states in the real world as ex-
. pressed by Equation 1 for binary vectors. The heuristics func-
E o @ tion makes a simple assumption that the distance between the
states in the problem space is related to the distance between
) ) the sub-symbols representing the visual states. The distance
Figure 5: The simplest method corresponds to a randoretween the states in the problem space is related to the dis-
choice,and does not offer any advantage over simple symgnce between the visual state. An example of visual planning
bolical representation. An example of visual planning of thegf the tower building task of three blocks using hill climbing
tower building task of three blocks using the random choiceysing the similarity function, see Equation 1. The upper left

is shown. The upper left pattern represents the initial stateyattern represents the initial state; the bottom right pattern,
the bottom right pattern, the desired state. the desired state.

which modifies the state in such a way that it becomes morgbsence of direct sensory stimulation. This kind of represen-
similar to the desired state according to the Equation 1. Theation is called sub-symbolic. Sub-symbolic representation
desired state corresponds to the category of Equation 1, ea@fplies heuristic functions. The assumption that the distance
feature represents a possible state. The states are represerigélveen states in the problem space is related to the similar-
by sparse features. With the aid of this heuristic hill climb- ity between the sub-symbols representing the states is only
ing is performed. Each element represents an object. Objecigilid in simple cases. However, simple cases represent the
are represented by some dimensions of the space and fornn#gjority of exiting problems in domain. Sense organs sense
sub-space by themselves, see Figure 4. the world by receptors which a part of the sensory system
The computation can be improved by a simple and uniand the nervous system. Sparse binary vectors can describe
versal heuristics function, which takes into account the relasub-symbolic representation, which can be efficiently stored
tionship between the vector and the corresponding similarin associative memories. A simple code would indicate if a
ity of the represented states see Figure 5 and Figure 6. Theceptor is active or not. One indicates active, zero not active.
heuristics function makes a simple assumption that the disFor ¢ receptors we could indicate this information by a binary
tance between the states in the problem space is related to thector of dimensior with only one "1”, the bigger the c, the
similarity of the vectors representing the states. sparser the code. For receptorsiirpositions the sparse code
The similarity between the corresponding vectors can inresults inc x X dimensional vector witbX ones.
dicate the distance between the sub-symbols representing the
state. Empirical experiments in popular problem-solving do-
mains of Artificial Intelligence, like robot in a maze, block Acknowledgments
world or 8-puzzle indicated that the distance between thehis work was supported by Fundao para a Cencia e Tec-

states in the problem space is actually related to the similarityiologia (FCT) (INESC-ID multiannual funding) through the
between the images representing the stiifdéishert, 2001; PIDDAC Program funds.
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