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Abstract

The sub-symbolical representation often corre-
sponds to a pattern that mirrors the way the bio-
logical sense organs describe the world. Sparse bi-
nary vectors can describe sub-symbolic representa-
tion, which can be efficiently stored in associative
memories. According to the production system the-
ory, we can define a geometrically based problem-
solving model as a production system operating on
sub-symbols. Our goal is to form a sequence of as-
sociations, which lead to a desired state represented
by sub-symbols, from an initial state represented
by sub-symbols. We define a simple and universal
heuristics function, which takes into account the re-
lationship between the vector and the correspond-
ing similarity of the represented object or state in
the real world.

1 Introduction
One form of distributed representation corresponds to a pat-
tern that mirrors the way the biological sense organs describe
the world. Sense organs sense the world by receptors. By the
given order of the receptors the living organisms experience
the reality as a simple Euclidian geometrical world. Changes
in the world correspond to the changes in the distributed rep-
resentation. Prediction of these changes by the nervous sys-
tem corresponds to a simple geometrical reasoning process.
Mental imagery problem solving is an example for a complex
geometrical problem- solving. It is described by a sequence
of associations, which progressively change the mental im-
agery until a desired solution of a problem is formed. For
example, do the skis fit in the boot of my car? Mental rep-
resentations of images retain the depictive properties of the
image itself as perceived by the eye[Kosslyn, 1994]. The
imagery is formed without perception through the construc-
tion of the represented object from memory. Symbols on the
other hand are not present in the world; they are the con-
structs of human mind to simplify the process of problem
solving. Symbols are used to denote or refer to something
other than them, namely other things in the world (accord-
ing to the pioneering work of Tarski[Tarski, 1956]). They
are defined by their occurrence in a structure and by a formal
language, which manipulates these structures[Simon, 1991;

Newell, 1990]. In this context, symbols do not by themselves,
represent any utilizable knowledge. They cannot be used for
a definition of similarity criteria between themselves. The
use of symbols in algorithms which imitate human intelligent
behavior led to the famous physical symbol system hypothe-
sis by Newell and Simon (1976)[Newell and Simon, 1976]:
The necessary and sufficient condition for a physical system
to exhibit intelligence is that it be a physical symbol system.
We do not agree with the physical symbol system hypothesis.
Instead we state that the actual perception of the world and
manipulation in the world by living organisms lead to the in-
vention or recreation of an experience, which at least in some
respects, resembles the experience of actually perceiving and
manipulating objects in the absence of direct sensory stimula-
tion. This kind of representation is called sub-symbolic. Sub-
symbolic representation implies heuristic functions. Symbols
liberate us from the reality of the world although they are em-
bodied in geometrical problem solving through the usage of
additional heuristics functions. Without the use of heuristic
functions real world problems become intractable.

The paper is organized a follows: We review the represen-
tation principles of objects by features as used in cognitive
science. In the next step we indicate how the perception-
oriented representation is build on this approach. We define
the sparse sub-symbolical representation. Finally, we will in-
troduce the sub-symbolical problem solving which relies on
a sensorial representation of the reality.

2 Sub-symbols

Perception-oriented representation is an example of sub-
symbolical representation, such as the representation of num-
bers by the Oksapmin tribe of Papua New Guinea. The Ok-
sapmin tribe of Papua New Guinea counts by associating a
number with the position of the body[Lancy, 1983]. The
sub-symbolical representation often corresponds to a pattern
that mirrors the way the biological sense organs describe the
world. Vectors represent patterns. A vector is only a sub-
symbol if there is a relationship between the vector and the
corresponding similarity of the represented object or state in
the real world through sensors or biological senses. Feature
based representation is an example of sub-symbolical repre-
sentation.
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2.1 Feature Approach

Objectscan be described by a set of discrete features, such
as red, round and sweet[Tversky, 1977; McClelland and
Rumelhart, 1985]. The similarity between them can be de-
fined as a function of the features they have in common
[Osherson, 1995; Sun, 1995; Goldstone, 1999; Gilovich,
1999]. The contrast model of Tversky[Tversky, 1977] is one
well-known model in cognitive psychology[Smith, 1995;
Opwis and Plötzner, 1996] which describes the similarity be-
tween two objects which are described by their features. An
object is judged to belong to a verbal category to the extent
that its features are predicted by the verbal category[Osher-
son, 1987]. The similarity of a categoryC and of a feature
setF is given by the following formula, which is inspired by
the contrast model of Tversky[Tversky, 1977; Smith, 1995;
Opwis and Plötzner, 1996],

Sim(C, F ) =
|C ∩ F |

|C|
∈ [0, 1] (1)

|C| is the number of the prototypical features that define
the categorya. The present features are counted and normal-
ized so that the value can be compared. This is a very simple
form of representation. A binary vector in which the positions
represent different features can represent the set of features.
For each category a binary vector can be defined. Overlaps
between stored patterns correspond to overlaps between cat-
egories.

2.2 The Lernmatrix

The Lernmatrix, also simply called “associative memory”
was developed by Steinbuch in 1958 as a biologically in-
spired model from the effort to explain the psychological phe-
nomenon of conditioning[Steinbuch, 1961; 1971]. Later this
model was studied under biological and mathematical aspects
by Willshaw [Willshaw et al., 1969] and G. Palm [Palm,
1982; 1990].

Associative memory is composed of a cluster of units.
Each unit represents a simple model of a real biological neu-
ron. The Lernmatrix was invented in by Steinbuch, whose
goal was to produce a network that could use a binary version
of Hebbian learning to form associations between pairs of bi-
nary vectors, for example each one representing a cognitive
entity. Each unit is composed of binary weights, which corre-
spond to the synapses and dendrites in a real neuron. They are
described bywij ∈ {0, 1} in Figure 1.T is the threshold of
the unit. We call the Lernmatrix simplyassociative memoryif
no confusion with other models is possible[Anderson, 1995a;
Ballard, 1997].

The patterns, which are stored in the Lernmatrix, are rep-
resented by binary vectors. The presence of a feature is indi-
cated by a ‘one’ component of the vector, its absence through
a ‘zero’ component of the vector. A pair of these vectors is
associated and this process of association is called learning.
The first of the two vectors is called thequestion vectorand
the second, theanswer vector. After learning, the question
vector is presented to the associative memory and the answer
vector is determined by the retrieval rule.
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Figure 1: The Lernmatrix is composed of a set of units which
represent a simple model of a real biological neuron. The unit
is composed of weights, which correspond to the synapses
and dendrites in the real neuron. In this figure they are de-
scribed bywij ∈ {0, 1} where1 ≤ i ≤ m and1 ≤ j ≤ n. T
is the threshold of the unit.

Learning In the initialization phase of the associative mem-
ory, no information is stored. Because the information is rep-
resented in weights, they are all initially set to zero. In the
learning phase, pairs of binary vector are associated. Let~x be
the question vector and~y the answer vector, the learning rule
is:

wnew
ij

{

1 if yi · xj = 1
wold

ij otherwise. (2)

This rule is called the binary Hebbian rule[Palm, 1982].
Every time a pair of binary vectors is stored, this rule is used.

Retrieval In theone-stepretrieval phase of the associative
memory, a fault tolerant answering mechanism recalls the
appropriate answer vector for a question vector~x. For
the presented question vector~x, the most similar learned
~xl question vector regarding the Hamming distance is
determined and the appropriate answer vector~y is identified.
For the retrieval rule, the knowledge about the correlation
of the components is sufficient. The retrieval rule for the
determination of the answer vector~y is:

yi =

{

1
∑n

j=1 wijxj ≥ T
0 otherwise.

(3)

whereT is the threshold of the unit. The threshold is set as
proposed by[Palmet al., 1997] to the maximum of the sums
∑n

j=1 wijxj :

T := max
1≤i≤m

{

n
∑

j=1

wijxj

}

. (4)

Only the units that are maximal correlated with the ques-
tion vector are set to one.
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Storage capacity For an estimation of the asymptotic num-
ber of vectorpairs(~x, ~y) which can be stored in an associative
memory before it begins to make mistakes in retrieval phase,
it is assumed that both vectors have the same dimension n.
It is also assumed that both vectors are composed of M 1s,
which are likely to be in any coordinate of the vector. In
this case it was shown[Palm, 1982; Hecht-Nielsen, 1989;
Sommer, 1993] that the optimum value for M is approxi-
mately

M
.
= log2(n/4) (5)

and that approximately[Palm, 1982; Hecht-Nielsen, 1989]

L
.
= (ln 2)(n2/M2) (6)

of vector pairs can be stored in the associative memory. This
value is much greater then n if the optimal value for M is
used. In this case, the asymptotic storage capacity of the
Lernmatrix model is far better than those of other associa-
tive memory models, namely 69.31%. This capacity can be
reached with the use of sparse coding, which is produced
when very small number of 1s is equally distributed over
the coordinates of the vectors[Palm, 1982; Stellmann, 1992].
For example an optimal code is defined as following; in the
vector of the dimension n=1000000M=18 ones should be
used to code a pattern. The real storage capacity value is
lower when patterns are used which are not sparse or are
strongly correlated to other stored patterns. Usually subop-
timal sparse codes a sufficiently good to be used with the as-
sociative memory. An example of a suboptimal sparse code
is the representation of words by context-sensitive letter units
[Wickelgren, 1969; 1977; Rumelhart and McClelland, 1986;
Bentz et al., 1989]. The ideas for the used robust mecha-
nism come from psychology and biology[Wickelgren, 1969;
1977; Rumelhart and McClelland, 1986; Bentzet al., 1989].
Each letter in a word is represented as a triple, which con-
sists of the letter itself, its predecessor, and its successor. For
example, six context-sensitive letters encode the worddesert,
namely: de, des, ese, ser, ert, rt. The character “” marks
the wordbeginning and ending. Because the alphabet is com-
posed of 26+1 characters,273 different context-sensitive let-
ters exist. In the273 dimensional binary vector each position
corresponds to a possible context-sensitive letter, and a word
is represented by indication of the actually present context-
sensitive letters. We demonstrate the principle of sparse cod-
ing by an example of the visual system and visual scene rep-
resentation.

2.3 Sparse features
In hierarchical models of the visual system[Riesenhuber and
Poggio, 1999],[Fukushima, 1980], [Fukushima, 1989], [Car-
doso and Wichert, 2010] the neural units have a local view
unlike the common fully-connected networks. The receptive
fields of each neuron describe this local view. During the
categorization the network gradually reduces the information
from the input layer through the output layer. Integrating lo-
cal features into more global features does this. Supposed in
the lower layer tow cells recognize two categories at neigh-
boring position, and these two categories are integrated into a
more global category. The first cell is namedα the secondβ.
The numerical code forα andβ may represent the position of

each cell. A simple code would indicate if a cell is active or
not. One indicates active, zero not active. Forc cells we could
indicate this information by a binary vector of dimensionc.
For an image of sizex × y a cell covers the imageX times.
A binary vector that describes that image using the cell repre-
sentation has the dimensionc×X . For example gray images
of the size128 × 96 resulting in vectors of dimension12288
can be covered with:

• 3072 masks M of the size of a size2×2 resulting in a bi-
nary vector that describes that image has the dimension
c1 × 3072, X1 = 3072 (see Figure 2 (a) ).

• 768 masks M of the size of a size4× 4 resulting in a bi-
nary vector that describes that image has the dimension
c2 × 768, X2 = 768 (see Figure 2 (b) ).

• 192 masks M of the size of a size8× 8 resulting in a bi-
nary vector that describes that image has the dimension
c3 × 192, X3 = 192 (see Figure 3 (a) ).

• 48 masks M of the size of a size16×16 resulting in a bi-
nary vector that describes that image has the dimension
c4 × 48, X4 = 48 (see Figure 3 (b) ).

(a)

(b)

Figure 2: (a) Two examples of of squared masksM of a size
2 × 2. (b) Two examples of squared masksM of a size4 ×
4. The masks were learned using simple k-means clustering
algorithm.

(a)

(b)

Figure 3: (a) Two examples of of squared masksM of a size
8 × 8. (b) Two examples of squared masksM of a size16 ×
16. The masks were learned using simple k-means clustering
algorithm.
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The idealc value for a sparse code is related toM
.
=

log2(n/4).
X = log2(X · c/4)

2X = X · c/4

c =
4 · 2X

X
(7)

The ideal value forc grows exponentially in relation toX .
Usually the used value forc is much lower then the ideal
value resulting in a suboptimal sparse code. The represen-
tation of images by masks results in a suboptimal code. The
optimal code is approached with the size of masks, the bigger
the mask, the smaller the value ofX . The number of pixels
inside a mask grows quadratic. A bigger masks implies the
ability to represent more distinct categories, which implies a
biggerc.

An ideal value forc is possible, if the value forX << 100.
Instead of covering an image by masks, we indicate the
present objects. Objects and their position in the visual field
can represent a visual scene. A sub-vector of the vector rep-
resenting the visual scene represents each object. For exam-
ple, if there is a total of10 objects, thec value is409. To
represent409 different categories of objects at different posi-
tions resulting in 4090 dimensional binary vector. This vector
could represent 409!

(409−20)! different visual states of the world.
The storage capacity of the associative memory in this case
would be around159500 patterns, which is28 times bigger
as the number of the units (4090).

2.4 Problem Solving
Human problem solving can be described by a problem-
behavior graph constructed from a protocol of the person
talking aloud, mentioning considered moves and aspects of
the situation. According to the resulting theory, searching
whose state includes the initial situation and the desired situ-
ation in a problem space[Newell, 1990;?] solves problems.
This process can be described by the production system the-
ory. The production system in the context of classical Ar-
tificial Intelligence and Cognitive Psychology is one of the
most successful computer models of human problem solv-
ing. The production system theory describes how to form a
sequence of actions, which lead to a goal, and offers a com-
putational theory of how humans solve problems[Anderson,
1995b]. Production systems are composed of if-then rules
that are also called productions. A rule [contains several if
patterns and one or more then patterns. A pattern in the con-
text of rules is an individual predicate, which can be negated
together with arguments. A rule can establish a new asser-
tion by the then part (its conclusion) whenever the if part (its
premise) is true. One of the best-known cognitive models,
based on the production system, is SOAR. The SOAR state,
operator and result model was developed to explain human
problem-solving behavior[Newell, 1990]. It is a hierarchical
production system in which the conflict-resolution strategy
is treated as another problem to be solved. All satisfied in-
stances of rules are executed in parallel in a temporary mode.
After the temporary execution, the best rule is chosen to take
action. The decision takes place in the context of a stack of

earlier decisions. Those decisions are rated utilizing prefer-
ences and added to the stack by chosen rules. Preferences
are determined together with the rules by an observer using
knowledge about a problem.

According to the production system theory, we can define
a geometrically based problem-solving model as a produc-
tion system operating on vectors of fixed dimensions. Instead
of rules, we use associations and vectors represent the states.
Our goal is to form a sequence of associations, which lead to a
desired state represented by a vector, from an initial state rep-
resented by a vector. Each association changes some parts of
the vector. In each state, several possible associations can be
executed, but only one has to be chosen. Otherwise, conflicts
in the representation of the state would occur. To perform
these operations, we divided a vector representing a state into
sub-vectors. An association recognizes some sub-vectors in
the vector and exchanges them for different sub-vectors. It is
composed of a precondition of fixed arranged m sub-vectors
and a conclusion. Suppose a vector is divided into n sub-
vectors withn > m. An association recognizes m different
sub-vectors and exchanges them for different m sub-vectors.
To recognize m sub-vectors out of n sub-vectors we perform
a permutation p(n,m) and verify if each permutation corre-
sponds to a valid precondition of an association. For exam-
ple, if there is a total of 7 elements and we are selecting a
sequence of three elements from this set, then the first selec-
tion is one from 7 elements, the next one from the remaining
6, and finally from the remaining 5, resulting in 7 * 6 * 5 =
210, see Figure 4.2 1 0 p o s s i b l ep e r m u t a t i o n s

A s t a t e r e p r e s e n t e d b ys e v e n c o g n i t i v e e n t i t i e s

A s s o c i a t i v em e m o r yp r e m i s s e d e s c r i b e sc o r r e l a t i o n b e t w e e nc o g n i t i v e e n t i t i t e s
Figure 4: To recognize one learned association permutations
are formed. For example, if there is a total of 7 elements
and we are selecting a sequence of three elements from this
set, then the first selection is one from 7 elements, the next
one from the remaining 6, and finally from the remaining 5,
resulting in 7 * 6 * 5 = 210. In our example, all possible three-
permutations sub-vectors of seven sub-vectors are formed to
test if the precondition of an association is valid.

Out of several possible associations, we chose the one,
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Figure 5: The simplest method corresponds to a random
choice,and does not offer any advantage over simple sym-
bolical representation. An example of visual planning of the
tower building task of three blocks using the random choice
is shown. The upper left pattern represents the initial state;
the bottom right pattern, the desired state.

which modifies the state in such a way that it becomes more
similar to the desired state according to the Equation 1. The
desired state corresponds to the category of Equation 1, each
feature represents a possible state. The states are represented
by sparse features. With the aid of this heuristic hill climb-
ing is performed. Each element represents an object. Objects
are represented by some dimensions of the space and form a
sub-space by themselves, see Figure 4.

The computation can be improved by a simple and uni-
versal heuristics function, which takes into account the rela-
tionship between the vector and the corresponding similar-
ity of the represented states see Figure 5 and Figure 6. The
heuristics function makes a simple assumption that the dis-
tance between the states in the problem space is related to the
similarity of the vectors representing the states.

The similarity between the corresponding vectors can in-
dicate the distance between the sub-symbols representing the
state. Empirical experiments in popular problem-solving do-
mains of Artificial Intelligence, like robot in a maze, block
world or 8-puzzle indicated that the distance between the
states in the problem space is actually related to the similarity
between the images representing the states[Wichert, 2001;
Wichertet al., 2008; Wichert, 2009].

3 Conclusion
Living organisms experience the world as a simple. The ac-
tual perception of the world and manipulation in the world
by living organisms lead to the invention or recreation of an
experience that, at least in some respects, resembles the expe-
rience of actually perceiving and manipulating objects in the

Figure 6: The computation can be improved by a simple and
universal heuristics function, which takes into account the re-
lationship between the vector and the corresponding similar-
ity of the represented object or states in the real world as ex-
pressed by Equation 1 for binary vectors. The heuristics func-
tion makes a simple assumption that the distance between the
states in the problem space is related to the distance between
the sub-symbols representing the visual states. The distance
between the states in the problem space is related to the dis-
tance between the visual state. An example of visual planning
of the tower building task of three blocks using hill climbing
using the similarity function, see Equation 1. The upper left
pattern represents the initial state; the bottom right pattern,
the desired state.

absence of direct sensory stimulation. This kind of represen-
tation is called sub-symbolic. Sub-symbolic representation
implies heuristic functions. The assumption that the distance
between states in the problem space is related to the similar-
ity between the sub-symbols representing the states is only
valid in simple cases. However, simple cases represent the
majority of exiting problems in domain. Sense organs sense
the world by receptors which a part of the sensory system
and the nervous system. Sparse binary vectors can describe
sub-symbolic representation, which can be efficiently stored
in associative memories. A simple code would indicate if a
receptor is active or not. One indicates active, zero not active.
Forc receptors we could indicate this information by a binary
vector of dimensionc with only one ”1”, the bigger the c, the
sparser the code. For receptors inX positions the sparse code
results inc × X dimensional vector withX ones.
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Codierung. PhD thesis, Universität Ulm, Ulm, 1992.

[Sun, 1995] Ron Sun. A two-level hybrid architecture for
structuring knowledge for commonsense reasoning. In
Ron Sun and Lawrence A. Bookman, editors,Computa-
tional Architectures Integrating Neural and Symbolic Pro-
cessing, chapter 8, pages 247–182. Kluwer Academic Pub-
lishers, 1995.

[Tarski, 1956] Alfred Tarski. Logic, Seman-
tics,Metamathematics. Oxford University Press, London,
1956.

[Tversky, 1977] A. Tversky. Feature of similarity.Psycho-
logical Review, 84:327–352, 1977.

[Wichertet al., 2008] A. Wichert, J. D. Pereira, and P. Car-
reira. Visual search light model for mental problem solv-
ing. Neurocomputing, 71(13-15):2806–2822, 2008.

[Wichert, 2001] Andrzej Wichert. Pictorial reasoning with
cell assemblies.Connection Science, 13(1), 2001.

[Wichert, 2009] Andreas Wichert. Sub-symbols and icons.
Cognitive Computation, 1(4):342–347, 2009.

[Wickelgren, 1969] Wayne A. Wickelgren. Context-
sensitive coding, associative memory, and serial order in
(speech)behavior.Psychological Review, 76:1–15, 1969.

[Wickelgren, 1977] Wayne A. Wickelgren. Cognitive Psy-
chology. Prentice-Hall, 1977.

[Willshawet al., 1969] D.J. Willshaw, O.P. Buneman, and
H.C. Longuet-Higgins. Nonholgraphic associative mem-
ory. Nature, 222:960–962, 1969.

7




