
Abstract 

We present a compact – yet expressive – Multi-
purpose, distributed binding mechanism, which is 
useful for encoding complex symbolic knowledge 
and computation, using Artificial Neural Networks 
(ANNs) or using Satisfiability (SAT) solvers. The 
technique is demonstrated by encoding unrestricted 
First Order Logic (FOL) unification problems as 
Weighted Max SAT problems and then translating 
the later into ANNs (or learning them). It is capa-
ble of capturing the full expressive power of FOL, 
and of economically encoding a large Knowledge 
Base either as long term synapses or as clamped 
units in Working Memory. Given a goal, the mech-
anism is capable of retrieving from the synaptic 
knowledge just what is needed, while creating nov-
el, compound structures in the Working Memory. 
Two levels of size reduction are shown. First, we 
build a Working Memory, using a pool of multi-
purpose binders, based on the assumption that the 
number of bindings that are actually needed is far 
less than the number of all theoretically possible 
bindings. The second level of compactness is due 
to the fact that, in many symbolic representations, 
when two objects are bound, there is a many-to-one 
relationship between them. This happens because, 
frequently, either only one value is pointed by vari-
able or only one variable point to a value. A cross-
bar binding network of n × k units with such re-
striction, can be transformed into an equivalent 
neural structure of size O(n log(k)).  We show that, 
for performing unrestricted FOL unifications, the 
Working Memory created is only log dependent on 
the KB size; i.e., O(n log(k)). The variable binding 
technique described is inherently fault tolerant as 
there are no fatal failures, when some random neu-
rons become faulty and the ability to cope with 
complex structures decays gracefully.  Processing 
is distributed and there is no need for a central con-
trol even to allocate binders. The mechanism is 
general, and can further be used for other applica-
tions, such as language processing, FOL inference 
and planning. 

1 Introduction 

1.1 The Binding Problem 

Human cognition is capable of producing combinatorial 
structures. The general binding problem concerns how items 
that are encoded in distinct circuits of a massively parallel 
computing device (such as the brain or ANN) can be com-
bined in complex ways for perception, reasoning or for ac-
tion [Feldman 2010].  Consider for example, a planning 
problem, where the task is to pick up an object and move it 
from its current position to another place. In order to meet a 
goal, a “brain”-like device, must be able to represent the 
object, its properties, its position and the ways to manipulate 
it, in such a way that the goal is achieved. The object and its 
properties must be bound together, and this rather complex 
structure should also be used in conjunction with other enti-
ties and rules, such as the action consequences (e.g., moving 
X from Y to Z clears position Y while occupying position 
Z). In another example, consider the sentence: “Sally ate”: 
In language processing, the verb “EAT” is a predicate with 
at least two roles - EAT(“Sally”,X). The noun “Sally” 
should be bound to the first role, while an existentially 
quantified variable (representing “something”) should be 
bound to the second role.  Once we get the information that 
“Sally ate salad”, and knowing the rule: EAT(Y,X)⇒ DI-
GESTED(X) we should reason that “the salad is digested”. 
In order to do that, we must bind the variable X to the noun 
“salad”, while X must be bounded to both EAT(,X) and 
DIGESTED(X). 
  

1.2 Connectionism and Variable Binding 

During the years, connectionist systems have been criticized 
for “Propositional Fixation” [McCarthy 1988]. In  [Fodor, 
Phylyshyn 1988] connectionism was criticized for lacking 
abilities to construct combinatorial representations and for 
performing processes that are sensitive to complex structure.  
Exactly how compositionality can occur is a fundamental 
question in cognitive science and the binding aspect of it has 
been identified as a key to any neural theory of language 
[Jackendoff 2002]. Several attempts have been made to ap-
proach the variable binding problem in a connectionist 
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framework [Shastri, Ajjanagadde 1993], [Browne, Sun 
2000], [Zimmer et al. 2006], [Van der Velde, Kamps, 
Kamps 2006], [Barret et al. 2008], [Velik 2010]; yet, virtu-
ally all these suggestions, have limitations, related to either 
limited expressiveness, size and memory requirements, cen-
tral control demands, lossy information, etc.   
 
For example, compositionality can be provided using Hol-
lographic Reduced Represenations [Plate 1995]; however, 
the convolution operation used, is lossy and errors are intro-
duced as structures become more complex or as more opera-
tions are done.  The BlackBoard Architecture [Van der 
Velde, Kamps, Kamps 2006] can form complex structures 
but does not manipulate those structures to perform cogni-
tion. Shastri’s temporal binding has only limited FOL ex-
pressiveness and no mechanism for allocating temporal 
binders. Finally, all the above systems need neurons in 
numbers that is at best linear in the KB; while some use 
much more neurons than that.

1
 For FOL compositionality in 

ANNs see [Ballard 1986], [Pinkas 1992],  [Shastri 1999], 
[Lima 2000], [Garcez, Lamb 2006]. For partial-FOL encod-
ings in Satisfiability, see [Domingos 2008], [Clark et al. 
2001].  
 
The ability to represent combinatorial structures and reason-
ing with them, still presents challenges to theories of neuro-
cognition [Marcus 2001], while the variable binding prob-
lem is fundamental to such ability [Feldman 2010]. 
  

1.3 Unification 

In conventional computing, unification is a key operation 
for realizing inference, reasoning, planning and language 
processing.  It is the main vehicle for conventional symbolic 
systems to match rules with facts, or rules with other rules.  
In unification, two or more distinct hierarchical entities 
(terms) are merged, to produce a single, unified, tree-like 
structure. This unified structure adheres to the constraints of 
both the original entities. Formally, unification is an opera-
tion which produces from two or more logic terms, a set of 
substitutions, which either identifies the terms or makes the 
terms equal modulo some equational theory. For connec-
tionist approaches to unification see [Hölldobler 1990], 
[Weber 1992], [Komendantskaya 2010]. 
 For easiness of reading, we have chosen to demonstrate 
our compact variable binding mechanism on the more fun-
damental unification function, rather than on full FOL infer-
ence.   

1.4 Artificial Neural Networks and SAT 

ANNs may be seen as constraint satisfaction networks, 
where neuron-units stand for Boolean variables, and where 
the synapse weights represent constraints imposed on the 
variables.  Any ANN may be seen as such a constraint net-

                                                 
1 The BlackBoard architecture uses billions of neurons to rep-

resent thousands of atomic concepts; HRR Production systems 

[Stewart, Elliasmith 2008] needs about one million neurons.  

work; yet, for ANNs with symmetric weights (e.g. Hopfield, 
Boltzmann Machines, MFT) a simple conversion has been 
shown for translating any Weighted MAX SAT problem 
into symmetric ANN and vice-versa [Pinkas, 1991].  Any 
such SAT problem could be compiled into an ANN, which 
performs stochastic gradient descent on an energy function 
that basically counts the number of unsatisfied logical con-
straints. The size of the generated network is linear in the 
size of the original formula, though additional hidden units 
may be required. In addition to compilation, the logical con-
straints of a network could be PAC learnt using Hebbian-
like rule [Pinkas 1995], thus, for small-size constraints, a 
network can efficiently learn its weights and structure from 
a training set that is composed of the satisfying models. The 
performance efficiency of this neural mechanism can be 
attributed to the similarities of symmetric ANNs to stochas-
tic local search algorithms, such as WALKSAT [Kautz et al 
2004]. Due to the tight relationship between ANNs and 
Weighted Max SAT, our methodology is to specify an ANN 
designed for certain symbolic computation (e.g. unification), 
using a set of Boolean variables (the visible units) and a set 
of constraints; i.e., Boolean formulae designed for restrict-
ing the values of the visible units. The constraints specified 
are used to force the visible units to converge to a valid so-
lution that satisfies as many (weighted) formulae as possi-
ble. We have written a compiler that translates such specifi-
cations into either weighted CNF (for Weighted Max SAT 
Solvers) or for ANN with symmetric weights. 
 

We believe that our fault tolerant mechanism and meth-
ods for dynamically forming recursive structures will scale 
and be useful for both the engineering of massively parallel 
devices, and for modeling of high-level cognitive processes. 

2 Improving CrossBar Binding 

The simplest, most naïve binding techniques is CrossBar 
binding. The term was mentioned in [Barrett et al. 2008], 
yet it was intuitively used by many connectionist systems in 
the past [Ballard 1986], [Anandan 1989] and in many SAT 
reductions; e.g.,  [Kautz, at el 2006]. Formally, we define 
crossbar binding as a Boolean matrix representation of a 
relation between 2 sets of items, using Characteristic Matrix 
of the relation; i.e., if A contains m objects and B contains n 
objects, then the characteristic matrix R has m lines and n 
columns, containing m × n Boolean variables (neurons). We 
say that item i is bound to item j iff R(i,j)=1. In this naïve, 
binding mechanism, a neuron should be allocated for each 
possible binding, and all theoretic combinations of two 
items must be pre-enumerated as rows and columns of the 
matrix. A crossbar matrix, that needs to represent a complex 
tree or a graph, must bind together not just simple constitu-
ents, but all the compounded entities representing partial 
trees (or sub-graphs). It is possible to represent a FOL KB 
this way at the cost of using an enormous number of neu-
rons, and with an extremely localist approach. Even more 
frustrating is the fact that this technique will not be suitable 
for dynamically creating novel, nested structures upon de-
mand. The number of theoretic bindings, for all possible tree 
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structures, grows exponentially with the number of constitu-
ent items and must be computed in advance. 
We improve this simplistic binding mechanism in several 
steps: 

2.1 Using Binders as “pointers” to form Graphs 

First, we introduce
2
  a special kind of entities called Gen-

eral Purpose Binders (GPBs). GPBs are similar to pointers 
except for the fact that a single GPB can point to several 
objects, as the crossbar paradigm permits implementation of 
arbitrary relations between binders and objects. In the spe-
cial case where binders point to binders, arbitrary directed 
graphs can be built. In this scenario, we can interpret each 
GPB as a node in the graph, and the crossbar, as specifying 
the arcs of the graph (adjacency matrix). In such graph in-
terpretation, each node may be labeled using a labeling 
crossbar, that ties together binders, with symbols such as, 
predicates, functions or constants in FOL. Arcs can also be 
labeled, as the binder-to-binder crossbar, may have a third 
dimension which relates one or more labels to each arc. This 
enables the formation of arbitrary complex graph structures, 
that can be used to represent language constituents and in 
particular, FOL terms, predicates, literals and clauses. Un-
like in the naïve crossbar approach, unrestricted graphs can 
be built directly out of simple constituents, with GPB as the 
mechanism for gluing them together.  

Because the binders are general-purpose entities, we can 
construct a working memory out of a pool of such binders. 
As long as GPBs remain unallocated, they can be used for 
dynamic creation of novel, goal oriented structures. To do 
so, the “right” constraints should be embedded in the synap-
ses, forcing binders first to be allocated and then to assume 
a desired structure for solving the goal. These constraints, 
stored at the synaptic weights, are the driving force that 
causes the visible units to converge to the needed graph-like 
structures. 

 
Using this technique, we show that arbitrary KB of size k, 

can be encoded in a working Memory (WM) with O(k) 
binders and with  a total size of  O(k

2
). Unfortunately, when 

the KB tends to grow, the WM and the set of constraints 
may become too large for the mechanism to be used in real 
applications.

 3
 

2.2 Using a pool of binders “As Needed” 

Luckily, we can reduce that size requirement, drastically, as 
we can assume that, at a certain time, only few binders are 
actually needed for the processing of a given goal. This is 
supported by cognitive studies [Cowan 1981] and consti-
tutes a common assumption of several connectionist sys-
tems [Shastri, Ajjanagadde 1993], [Barrett et al 2008]. We 
therefore can design a Working Memory of neural units, 
which uses only a pool of General Purpose Binders, labeled 
and nested within each other; i.e., a small set of binders, for 

                                                 
2 The method was suggested in [Pinkas 1992] and used in [Li-

ma 2000], [Lima 2007] for clamping a KB in Working Memory. 
3 O(k3) constraints are needed for  unification in this paradigm. 

representing only those graphs that are actually needed for 
computing the goal. It turns out that this approach is con-
sistent with cognitive theories, where a large KB is stored in 
synapses (long term memory); and a smaller size working 
memory is used for retrieving only few KB items at a time. 
Only those items that are necessary to the process

4
 get to be 

retrieved from the synaptic KB. For example, if our purpose 
is to find a plan for a goal, expressed in FOL, we need to 
design the WM with enough binders to represent a valid 
plan. We retrieve the facts and rules of the world from that 
KB only if they are required by the plan we desire to make.  
  To implement a pool of binders for FOL unification, the 
WM should contain three crossbar matrices: One for label-
ing nodes by symbols (predicates, functions, constants). The 
second is for nesting of the nodes in Graphs and labeling the 
arcs according to slots of the predicates and functions. The 
third crossbar is for retrieving items from the long term 
memory where the KB is stored (e.g., terms, literals or 
clauses). This third matrix ties a binder to a KB item and 
triggers the constraints of that item to be activated so that 
the binder node is forced to assume the structure of the KB 
item retrieved.  The mechanism starts working as goal acti-
vated constraints cause some binders to be tied to KB items 
and activate some KB constraints. Those constraints, in 
turn, activate other constraints, till the WM converges to a 
valid solution. When we implement unification problems, 
the size of the WM is O(n ×k) where n is the maximal num-
ber of nodes in a solution; k is the size of the KB and n<<k. 
This constitutes a drastic improvement, as the WM size is 
linear in the size of the KB, instead of being quadratic.

5
 Ac-

tually, we can do even better: 
 

2.3 Crossbars with n*log(k) size complexity 

In the next size improvement, we further reduce the size of 
many crossbar matrices from O(n*k)  to O(n* log(k)). Thus, 
in our unification example, a WM of O(n* log (k)) is creat-
ed, where n is the maximal size of a unification tree and k is 
the size of the KB. This means that the WM size is only log 
dependent

6
  on the KB size; rather than linearly as in previ-

ous section. 
 The key to this log-reduction, is the fact that frequently, 
binding relationships have many-to-one or one-to-many 
restrictions. For example, the crossbar matrix for node label-
ing, allows for a binder to point only to a single symbol 
(whereas many binders could point to the same symbol). 
This many-to-one relationship causes the rows of the cross-
bar labeling matrix to be Winner-Takes-All (WTA) arrays, 
where only one neural unit (if any) may fire. Normally, we 
need mutual exclusion constraints to force the rows of the 
matrix to be either all-zeros or have a single variable set to 
one. In such a scenario, however, we can replace each WTA 

                                                 
4 When an item is already in WM, no retrieving is needed. 
5 The number of constraints needed for unification is O(n2k); 

linear in the KB size, when n<<k. 
6 Even, if occurs check is used, the WM size is still linear in 

the KB size when n<<k. 
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line (with k-variables), with a much smaller size line of only 
O(log(k)) variables. Each such line of log(k) variables (neu-
rons), represents an index (or a signature) to the target label. 
Therefore, if a binder may point to just a single object (out 
of k possible objects), we may use only log(k) bit signa-
tures. Fig 1 illustrates, how one binder with WTA line that 
points to object 6 (out of 15 objects) is reduced to only 4 
bits LOG WTA array, representing the signature of that 
item. This signature, once it emerges in a binder’s row, acti-
vates a set of constraints associated with the bounded object. 
These constraints force the binder to get the retrieved item’s 
structure and may cause a chain reaction of more con-
straints, retrieving more KB items and so forth.  

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

 
1 2 3 4 

0 1 1 0 

 

Figure 1.  On top: A Standard WTA pointing to the 6th object; 

Bellow: a LOG WTA array with a binary value of 6 representing 

the 6th object’s signature ‘0110’. 

 

It should be noted that, once a LOG WTA encoding is used 
instead of the standard WTA, the constraints imposed on 
WM might need to be adjusted. 

7
 

 
 

3   Fault Tolerance  

 

The variable binding mechanism suggested and its applica-
tion to unification are inherently fault tolerant, if each varia-
ble is allocated a processing unit (a neuron).  Small random 
damage to the neurons does not radically affect the unifica-
tion process (if at all). For example, if a single neuron relat-
ed to a binder, in one of the crossbar matrices, becomes 
faulty and stops firing, then the binder cannot point to a cer-
tain symbol; however, other binders from the pool can be 
used for pointing to that symbol if such is needed. In the 
meantime, this “faulty” binder may still be used, as it can be 
allocated to point to other symbols. Even if the faulty neu-
ron starts firing constantly, it may still participate in the 
process if the symbol that is pointed by that “faulty” binder 
happens to be needed. The binder will simply not be used, if 
that symbol is irrelevant to the goal.  If the damage to the 
WM neurons is more widespread, so that a binder cannot 
take part in the process, then this binder will not be allocat-
ed, and therefore will not be used in the graph construction. 
This may shorten the number of available GPB nodes in the 
largest graph but will not destroy the ability of the WTA to 
unify less complex terms (shallower trees).

8
  

                                                 
7 E.g., mutual exclusion constraints -  for  enforcing WTA are 

eliminated. Long OR constraints of O(k) size, become only of 

log(k) length.  
8 This property may help in supporting neuro-linguistic theo-

ries that relate certain symptoms of aphasia, with loosing abilities 

4 Conclusions  

We have shown a general purpose binding mechanism that 
uses a pool of general purpose binders, and allocates them to 
KB items, only when they are necessary for achieving the 
goal. A large KB may be stored in long term connections 
rather than in the Working Memory. KB constraints are ac-
tivated only upon need, and only if they are supportive for 
achieving the goal. We then showed that further log reduc-
tion is possible if the binding represents a many-to-one rela-
tionship. The size of a crossbar matrix is then reduced from 
O(n*k) to O(n*log(k)) and the number of constraints is also 
reduced.

9
 We demonstrated the use of the suggested binding 

technique in ANN that performs FOL unification with size
10

 
that is O(n×log(k)). The mechanism is distributed since 
there is no central control and even binder allocation is done 
in a totally distributed way. It is also inherently robust, as no 
fatal failures occur when neurons “die”. We have performed 
initial experiments with the GPB pool mechanism (without 
the LOG WTA reduction), these experiments indicate the 
feasibility of the approach on rather complex unification 
tasks including multi-instance parallel-unification and recur-
sive occurs checking. LOG WTA and fault tolerance exper-
iments are the subject of ongoing work. The mechanism 
described is general and can further be used for other appli-
cations such as: language processing, FOL inference and 
planning. We are working on extending the techniques, for 
full FOL inference and conjecture that these techniques will 
also improve other SAT encodings that use crossbar-like 
bindings, e.g. as in [Kautz, et al 2006]. 
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