
Extracting Argumentative Dialogues from the Neural Network that Computes the
Dungean Argumentation Semantics

Yoshiaki Gotou
Niigata University, Japan

gotou@cs.ie.niigata-u.ac.jp

Takeshi Hagiwara
Niigata University, Japan

hagiwara@ie.niigata-u.ac.jp

Hajime Sawamura
Niigata University, Japan

sawamura@ie.niigata-u.ac.jp

Abstract
Argumentation is a leading principle both founda-
tionally and functionally for agent-oriented comput-
ing where reasoning accompanied by communication
plays an essential role in agent interaction. We con-
structed a simple but versatile neural network for neu-
ral network argumentation, so that it can decide which
argumentation semantics (admissible, stable, semi-
stable, preferred, complete, and grounded semantics)
a given set of arguments falls into, and compute ar-
gumentation semantics via checking. In this paper,
we are concerned with the opposite direction from
neural network computation to symbolic argumenta-
tion/dialogue. We deal with the question how various
argumentation semantics can have dialectical proof
theories, and describe a possible answer to it by ex-
tracting or generating symbolic dialogues from the
neural network computation under various argumen-
tation semantics.

1 Introduction
Much attention and effort have been devoted to the symbolic
argumentation so far [Rahwan and Simari, 2009][Prakken and
Vreeswijk, 2002][Besnard and Doutre, 2004], and its applica-
tion to agent-oriented computing. We think that argumenta-
tion can be a leading principle both foundationally and func-
tionally for agent-oriented computing where reasoning accom-
panied by communication plays an essential role in agent in-
teraction. Dung’s abstract argumentation framework and argu-
mentation semantics [Dung, 1995] have been one of the most
influential works in the area and community of computational
argumentation as well as logic programming and non-monotonic
reasoning.

In 2005, A. Garcez et al. proposed a novel approach to ar-
gumentation, called the neural network argumentation [d’Avila
Garcez et al., 2005]. In the papers [Makiguchi and Sawamura,
2007a][Makiguchi and Sawamura, 2007b], we dramatically de-
veloped their initial ideas on the neural network argumentation to
various directions in a more mathematically convincing manner.
More specifically, we illuminated the following questions which
they overlooked in their paper but that deserve much attention
since they are beneficial for understanding or characterizing the
computational power and outcome of the neural network argu-
mentation from the perspective of the interplay between neural
network argumentation and symbolic argumentation.

1. Can the neural network argumentation algorithm deal with
self-defeating or other pathological arguments?

2. Can the argument status of the neural network argumenta-
tion correspond to the well-known status in symbolic argu-
mentation framework such as in [Prakken and Vreeswijk,
2002]?

3. Can the neural network argumentation compute the fixpoint
semantics for argumentation?

4. Can symbolic argumentative dialogues be extracted from
the neural network argumentation?

The positive solutions to them helped us deeply understand
relationship between symbolic and neural network argumenta-
tion, and further promote the syncretic approach of symbolism
and connectionism in the field of computational argumentation
[Makiguchi and Sawamura, 2007a][Makiguchi and Sawamura,
2007b]. They, however, paid attention only to the grounded
semantics for argumentation in examining relationship between
symbolic and neural network argumentation.

Ongoingly, we constructed a simple but versatile neural net-
work for neural network argumentation, so that it can decide
which argumentation semantics (admissible, stable, semi-stable
semantics, preferred, complete, and grounded semantics) [Dung,
1995][Caminada, 2006] a given set of arguments falls into,
and compute argumentation semantics via checking [Gotou,
2010]. In this paper, we are concerned with the opposite direc-
tion from neural network computation to symbolic argumenta-
tion/dialogue. We deal with the question how various argumen-
tation semantics can have dialectical proof theories, and describe
a possible answer to it by extracting or generating symbolic dia-
logues from the neural network computation under various argu-
mentation semantics.

The results illustrate that there can exist an equal bidirectional
relationship between the connectionism and symbolism in the
area of computational argumentation. And also they lead to a
fusion or hybridization of neural network computation and sym-
bolic one [d’Avila Garcez et al., 2009][Levine and Aparicio,
1994][Jagota et al., 1999].

The paper is organized as follows. In the next section, we
explicate our basic ideas on the neural network checking argu-
mentation semantics by tracing an illustrative example. In Sec-
tion 3, with our new construction of neural network for argu-
mentation, we develop a dialectical proof theory induced by the
neural network argumentation for each argumentation semantics
by Dung [Dung, 1995]. In Section 4, we describe some related
works although there is no work really related to our work except
for Garcez et al.’s original one and our work. The final section
discusses the major contribution of the paper and some future
works.

28

2 Basic Ideas on the neural argumentation
Due to the space limitation, we will not describe the technical
details for constructing a neural network for argumentation and
its computing method in this paper (see [Gotou, 2010] for them).
Instead, we illustrate our basic ideas by using a simple argumen-
tation example and following a neural network computation trace
for it. We assume readers are familiar with the Dungean seman-
tics such as admissible, stable, semi-stable, preferred, complete,
and grounded semantics [Dung, 1995][Caminada, 2006].

Let us consider an argumentation network on the left side
of Figure 1 that is a graphic presentation of the argumen-
tation framework AF =< AR, attacks >, where AR =
{i, k, j}, and attacks = {(i, k), (k, i), (j, k)}.

i k j

io ko jo

ih2
kh2

jh2

ih1
kh1

jh1

ii ki ji

weight is a

weight is -b

weight is -1

Figure 1: Graphic representation of AF (left) and Neural net-
work translated from the AF (right)

According to the Dungean semantics [Dung, 1995][Cami-
nada, 2006], the argumentation semantics for AF is determined
as follows: Admissible set = {∅, {i}, {j}, {i, j}}, Complete ex-
tension = {{i, j}}, Preferred extension = {{i, j}}, Semi-stable
extension = {{i, j}}, Stable extension = {{i, j}}, and Grounded
extension = {{i, j}}.

Neural network architecture for argumentation
In the Dungean semantics, the notions of ‘attack’, ‘defend (ac-
ceptable)’ and ‘conflict-free’ play the most important role in
constructing various argumentation semantics. This is true
in our neural network argumentation as well. Let AF =<
AR, attacks > be as above, and S be a subset of AR, to be
examined. The argumentation network on the left side of Figure
1 is first translated into the neural network on the right side of
Figure 1. Then, the network architecture consists of the follow-
ing constituents:
• A double hidden layer network: It is a double hidden layer

network and has the following four layers: input layer, first
hidden layer, second hidden layer and output layer, which
have the ramified neurons for each argument, such as αi,
αh1 , αh2 and αo for the argument α.

• A recurrent neural network (for judging grounded exten-
sion): The double hidden layer network like on the right
side of Figure 1 is piled up high until the input and output
layers converge (stable state) like in Figure 2. The symbol
τ represents the pile number (τ ≥ 0) which amounts to the
turning number of the input-output cycles of the neural net-
work. In the stable state, we set τ = converging. Then,
Sτ=n stands for a set of arguments at τ = n.

• A feedforward neural network (except judging grounded
extension): When we compute argumentation semantics ex-
cept grounded extension with a recurrent neural network, it

surely converges at τ = 1. Hence, the first output vector
equals to second output vector. We judge argumentation
semantics by using only first input vector and converged
output vector. As a result we can regard a recurrent neu-
ral network as a feedforward neural network except judging
grounded extension.

• The vectors of the neural network: The initial input vector
for the neural network is a list consisting of 0 and a that rep-
resent the membership of a set of arguments to be examined.
For example, it is [a, 0, 0] for S = Sτ=0 = {i} ⊆ AR. The
output vectors from each layer take as the values only “-a”,
“0”, “a” or “-b”.1 The intuitive meaning of them for each
output vector are as follows:

Output layer
– “a” in the output vector from the output layer repre-

sents membership in
S′

τ = {X ∈ AR | defends(Sτ , X)}2 and the argu-
ment is not attacked by S′

τ .
– “-a” in the output vector from the output layer rep-

resents membership in S′+
τ .3

– “0” in the output vector from the output layer repre-
sents the argument belongs to neither S′

τ nor S′+
τ .

Second hidden layer
– “a” in the output vector from the second hidden

layer represents membership in S′
τ and the argument

is not attacked by S′
τ .

– “0” in the output vector from the second hidden
layer represents membership not in S′

τ or the argu-
ment is attacked by S′

τ .
Fisrt hidden layer

– “a” in the output vector from the first hidden layer
represents membership in Sτ and the argument is
not attacked by Sτ .

– “-b” in the output vector from the first hidden layer
represents the membership in S+

τ .
– “0” in the output vector from the first hidden layer

represents the others.
Input layer

– “a” in the output vector from the input layer repre-
sents membership in Sτ .

– “0” in the output vector from the input layer repre-
sents the argument does not belong to S.

A trace of the neural network
Let us examine to which semantics S = {i} belongs in AF on
the left side of Figure 1 by tracing the neural network compu-
tation. The overall visual computation flow is shown in Figure
2.

Stage1. Operation of input layer at τ = 0
Sτ=0 = S = {i}. Hence, [a, 0, 0] is given to the input layer
of the neural network in Figure 1. Each input neuron computes
its output value by its activation function (see the graph of the
activation function, an identity function, on the right side of the
input layer of Figure 2). The activation function makes the input

1Let a,b be positive real numbers and they satisfy
√

b > a > 0.
2Let S⊆AR and A∈AR. defends(S, A) iff ∀B ∈ AR(attacks(B,

A) → attacks(S, B)).
3Let S ⊆ AR. S+ = {X ∈ AR | attacks(S, X)}.

29

neuron

output value

input value
threshold θ

weight is a

weight is -b

weight is -1

io ko jo

a a-a

ii ki ji
a 00

a 00

a 00

a2
0-ab

ih1 kh1 jh1

a -b 0

a2+b -a-ab 0

ih2 kh2 jh2

a a0

a2 a2-2a

a a-a

1st output vector

1st input vector

θi θk θj

a2

a

-a

-a

input value into Xo

0

output value from Xo

θX

a

0
input value into Xh2

output value from Xh2

1

1

0
input value into Xi

output value from Xi

-b

-b
a

0
input value into Xh1

output value from Xh1

a2

X belongs to {i, k, j}

θi=a2+b

θk=a2+2b

θj=0

io ko jo

a a-a

ii ki ji
a a-a

a a0

a a-a

a2
a2-2ab

ih1 kh1 jh1

a -b a

a2+b -2a-ab a2

ih2 kh2 jh2

a a0

a2 a2-2a

a a-a

2nd output vector

2nd input vector

θi θk θj

Sτ=1 = { i, j }

S+
τ=1={ k }

S’τ=1={ i, j }

S’+τ=1={ k }

Sτ=0 = { i }

S+
τ=0={ k }

S’τ=0={ i, j }

S’+τ=0={ k }

Figure 2: A trace of the neural network for argumentation with S = {i} and activation functions

layer simply pass the value to the hidden layer. The input layer
thus outputs the vector [a, 0, 0].

In this computation, the input layer judges Sτ=0 = {i} and
inputs a2 to ih1 through the connection between ii and ih1 whose
weight is a. At the same time, the input layer inputs −ab to kh

through the connection between ii and kh1 whose weight is −b
so as to make the first hidden layer know that i ∈ Sτ=0 attacks k
(in symbols, attacks(i, k)). Since the output values of ki and ji

are 0, they input 0 to other first hidden neurons.
In summary, after the input layer receives the input vector

[a, 0, 0], it turns out to give the hidden layer the vector [a · a
+ 0·(−b), a · (−b) + 0 · a + 0 · (−b), 0 · a]= [a2,−ab, 0].

Stage 2. Operation of first hidden layer at τ = 0
Now, the first hidden layer receives a vector [a2,−ab, 0] from
the input layer. Each activation function of ih1 , kh1 and jh1 is a
step function as put on the right side of the first hidden layer in
Figure 2. The activation function categorizes values of vectors
which are received from the input layer into three values as if
the function understand each argument state. Now, the following
inequalitis hold: a2 ≥ a2, −ab ≤ −b, −b ≤ 0 ≤ a2. Accord-
ing to the activation function, the first hidden layer outputs the
vector [a,−b, 0].

Next, the first hidden layer inputs a2 + b into the second
hidden neuron ih2 through the connections between ih1 and ih2

whose weight is a, kh1 and ih2 whose weight is −1, so that the
second hidden layer can know attacks(k, i) with i ∈ Sτ=0. At
the same time, the first hidden layer inputs −a − ab into kh2

through the connections between ih1 and kh2 whose weight is
−1, kh1 and kh2 whose weight is a, so that the second hidden
layer can know attacks(i, k) with k ∈ S+

τ=0 and inputs 0 into
jh2 so that the second hidden layer can know the argument j is
not attacked by any arguments with j ̸∈ Sτ=0.

In summary, after the first hidden layer received the vector
[a2,−ab, 0], it turns out to pass the output vector [a2 +b,−a−
ab, 0] to the second hidden neurons.

Stage 3. Operation of second hidden layer at τ = 0
The second hidden layer receives a vector [a2,−ab, 0] from first
hidden layer. Each activation function of ih2 , kh2 and jh2 is a
step function as put on the right side of the first hidden layer in
Figure 2 with its threshold, θi = a2 + b, θk = a2 + 2b and
θj = 0 respectively.

These thresholds are defined by the ways of being attacked as
follows:

• If an argument X can defend X only by itself (in Figure
1, such X is i since defends({i}, i)), then the threshold of
Xh2 (θX) is a2+tb (t is the number of arguments bilaterally
attacking X).

• If an argument X can not defend X only by it-
self and is both bilaterally and unilaterally attacked
by some other argument (in Figure 1, such X is
k since ¬defends({k}, k)&attacks(j, k)&attacks(i, k)),
then the threshold of Xh2 (θX) is a2 + b(s + t) (s(t) is the
number of arguments unilaterally(bilaterally) attacking X).
Note that l=m=1 for the argument k in Figure 1.

• If an argument X is not attacked by any other arguments (in
Figure 1, such X is j), then the threshold of Xh (θXh

) is 0.

• If an argument X can not defend X only by itself and is
just unilaterally attacked by some other argument, then the
threshold of Xh2 (θX) is bs (s is the number of arguments
unilaterally attacking X).

By these thresholds and their activation functions (step func-
tions), if S defends X then Xh2 outputs a. Otherwise, Xh2

30

outputs 0 in the second hidden layer. As the result, the second
hidden layer judges either X ∈ S′

τ or X ̸∈ S′
τ by two output

values (a and 0). In this way, the output vector in the second
hidden layer yields [a, 0,a]. This vector means that the second
hidden layer judges that the arguments i and j are defended by
Sτ=0, resulting in S′

τ=0 = {i, j}.
Next, the second hidden layer inputs a2 into the output neu-

rons io and jo through the connections between ih2 and io, jh2

and jo whose weights are a,so that the output layer can know
i, j ∈ Sτ=0 and i, j ∈ S′

τ=0. At the same time, the second hid-
den layer inputs −2a into ko through the connections between
ih2 and ko, jh2 and ko whose weights are −1,so that output layer
can know attacks(i, k) and attacks(j, k) with k ∈ S′+

τ=0.
Furthermore, it should be noted that another role of the second

hidden layer lies in guaranteeing that S′
τ is conflict-free4. It is

actually true since the activation function of the second hidden
layer makes Xh2 for the argument X attacked by Sτ output 0.
The conflict-freeness is important since it is another notion for
characterizing the Dungean semantics.

In summary, after the second hidden layer received the vec-
tor [a2 + b,−a − ab, 0], it turns out to pass the output vector
[a2,−2a,a2] to the second hidden neurons.

Stage 4. Operation of output layer at τ = 0

The output layer now received the vector [a2,−2a,a2] from the
second hidden layer. Each neuron in the output layer has an ac-
tivation function as put on the right side of the output layer in
Figure 2.

This activation function makes the output layer interpret any
positive sum of input values into the output neuron Xo as X ∈
S′

τ , any negative sum as X ∈ S′+
τ , and the value 0 as X ̸∈ S′

τ
and X ̸∈ S′+

τ . As the result, the output layer outputs the vector
[a,−a,a].

Summarizing the computation at τ = 0, the neural network
received the vector [a, 0, 0] in the input layer and outputted
[a,−a,a] from the output layer. This output vector means that
the second hidden layer judged S′

τ=0 = {i, j} and guaranteed
its conflict-freeness. With these information passed to the output
layer from the hidden layer, the output layer judged S′+

τ=0 = {k}.

Stage 5. Inputting the output vector at τ = 0 to the
input layer at τ = 1 (shift from τ = 0 to τ = 1)
At τ = 0, the neural network computed S′

τ=0 = {i, j} and
S′+

τ=0 = {k}. We continue the computation recurrently by con-
necting the output layer to the input layer of the same neural
network, setting first output vector to second input vector. Thus,
at τ = 1, the input layer starts its operation with the input vector
[a,−a,a]. We, however, omit the remaining part of the opera-
tions starting from here since they are to be done in the similar
manner.

Stage 6. Convergence to a stable state
We stop the computation immediately after the time round τ = 1
since the input vector to the neural network at τ = 1 coincides
with the output vector at τ = 1. This means that the neural
network amounts to having computed a least fixed point of the
characteristic function that was defined with the acceptability of
arguments by Dung [Dung, 1995].

4A set S of arguments is said to be conflict-free if there are no argu-
ments A and B in S such that A attacks B.

Stage 7. Judging admissible set, complete extension
and stable extension
Through the above neural network computation, we have ob-
tained S′

τ=0 = {i, j} and S′+
τ=0 = {k} for Sτ=0 = {i}, and

S′
τ=1 = {i, j} and S′+

τ=1 = {k} for Sτ=1 = {i, j}. Moreover,
we also have such a result that both the sets {i} and {i, j} are
conflict-free.

The condition for admissible set says that a set of arguments S
satisfies its conflict-freeness and ∀X ∈ AR(X ∈ S → X ∈ S′).
Therefore, the neural network can know that the sets {i} and
{i, j} are admissible since it confirmed the condition at the time
round τ = 0 and τ = 1 respectively.

The condition for complete extension says that a set of ar-
guments S satisfies its conflict-freeness and ∀X ∈ AR(X ∈
S ↔ X ∈ S′). Therefore, the neural network can know that
the set {i, j} satisfies the condition since it has been obtained at
τ = converging. Incidentally, the neural network knows that
the set {i} is not a complete extension since it does not appear in
the output neuron at τ = converging.

The condition for stable extension says that a set of arguments
S satisfies ∀X ∈ AR(X ̸∈ S → X ∈ S′+). The neural network
can know that the {i, j} is a stable extension since it confirmed
the condition from the facts that Sτ=1 = {i, j}, S′

τ=1 = {i, j}
and S′+

τ=1 = {a}.

Stage 8. Judging preferred extension, semi-stable
extension and grounded extension
By invoking the neural network computation that was stated from
the stages 1-7 above for every subset of AR, and AR itself as an
input set S, it can know all admissible sets of AF , and hence
it also can know the preferred extensions of AF by picking up
the maximal ones w.r.t. set inclusion from it. In addition, the
neural network can know semi-stable extensions by picking up a
maximal S ∪ S+ where S is a complete extension in AF . This
is possible since the neural network already has computed S+.

For the grounded extension, the neural network can know that
the grounded extension of AF is S′

τ=converging when the com-
putation stopped by starting with Sτ=0 = ∅. This is due to the
fact that the grounded extension is obtained by the iterative com-
putation of the characteristic function that starts from ∅ [Prakken
and Vreeswijk, 2002].

Readers should refer to the paper [Gotou, 2010] for the sound-
ness theorem of the neural network computation illustrated so
far.

3 Extracting Symbolic Dialogues from the
Neural Network

In this section, we will address to such a question as if symbolic
argumentative dialogues can be extracted from the neural net-
work argumentation. The symbolic presentation of arguments
would be much better for us since it makes the neural net argu-
mentation process verbally understandable. The notorious criti-
cism for neural network as a computing machine is that connec-
tionism usually does not have explanatory reasoning capability.
We would say our attempt here is one that can turn such criticism
in the area of argumentative reasoning.

In our former paper [Makiguchi and Sawamura, 2007b], we
have given a method to extract symbolic dialogues from the
neural network computation under the grounded semantics, and
showed its coincidence with the dialectical proof theory for the
grounded semantics. In this paper, we are concerned with the

31

question how other argumentation semantics can have dialecti-
cal proof theories. We describe a possible answer to it by ex-
tracting or generating symbolic dialogues from the neural net-
work computation under other more complicated argumentation
semantics. We would say this is a great success that was brought
by our neural network approach to argumentation since dialec-
tical proof theories for various Dungean argumentation seman-
tics have not been known so far except only some works (e. g.,
[Vreeswijk and Prakken, 2000], [Dung et al., 2006]).

First of all, we summarize the trace of the neural network com-
putation as have seen in Section 2 as in Table 1, in order to make
it easy to extract symbolic dialogues from our neural network.
Wherein, SPRO,τ=k and SOPP,τ=k denote the followings re-
spectively: At time round τ = k(k ≥ 0) in the neural network
computation, SPRO,τ=k = S

′

τ=k, and SOPP,τ=k = S
′+
τ=k (see

Section 2 for the notations).

Table 1: Summary table of the neural network computation
SPRO,τ=k SOPP,τ=k

τ = 0 input S {}
output

τ = 1 input
output

...
...

Table 2: Summary table of the neural network computation
in Fig. 2

SPRO,τ=k SOPP,τ=k

τ = 0 input {i} {}
output {i, j} {k}

τ = 1 input {i, j} {k}
output {i, j} {k}

For example, Table 2 is the table for S = {i} summarized
from the neural network computation in Fig. 2

We assume dialogue games are performed by proponents
(PRO) and opponents (OPP) who have their own sets of argu-
ments that are to be updated in the dialogue process. In advance
of the dialogue, proponents have S(= Sτ=0) as an initial set
SPRO,τ=0, and opponents have an empty set {} as an initial set
SOPP,τ=0.

We illustrate how to extract dialogues from the summary table
by showing a concrete extraction process of dialogue moves in
Table 2:

1. P(roponent, speaker): PRO declares a topic as a set of be-
liefs by saying {i} at τ = 0. OPP just hears it with no
response {} for the moment. (dialogue extraction from the
first row of Table 2)

2. P(roponent, or speaker): PRO further asserts the incre-
mented belief {i, j} because the former beliefs defend j,
and at the same time states the belief {i, j} conflicts with
{k} at τ = 0. (dialogue extraction from the second row of
Table 2)

3. O(pponent, listener or audience): OPP knows that its belief
{k} conflicts with PRO’s belief {i, j} at τ = 0. (dialogue
extraction from the second row of Table 2)

4. No further dialogue moves can be promoted at τ = 1, re-
sulting in a stable state. (dialogue termination by the third
and fourth rows of Table 2)

Thus, we can view P(roponent, speaker)’s initial belief {i} as
justified one in the sense that it could have persuaded O(pponent,
listener or audience) under an appropriate Dungean argumenta-
tion semantics. Actually, we would say it is admissibly justified
under admissibly dialectical proof theory below. Formally, we
introduce the following dialectical proof theories, according to
the respective argumentation semantics.

Definition 1 (Admissibly dialectical proof theory) The admis-
sibly dialectical proof theory is the dialogue extraction pro-
cess in which the summary table generated by the neural net-
work computation satisfies the following condition: ∀A ∈
SPRO,τ=0 ∀k ≥ 0(A ∈ SPRO,τ=k), where SPRO,τ=0 is the
input set at τ = 0.

Intuitively, the condition says every argument in SPRO,τ=0 is
retained until the stable state as can be seen in Table 2. It should
be noted that the condition reflects the definition of ‘admissible
extension’ in [Dung, 1995].

Definition 2 (Completely dialectical proof theory) The com-
pletely dialectical proof theory is the dialogue extraction pro-
cess in which the summary table generated by the neural network
computation satisfies the following conditions: let SPRO,τ=0 be
the input set at τ = 0.

1. SPRO,τ=0 satisfies the condition of Definition 1.

2. ∀A ̸∈ SPRO,τ=0 ∀k(A ̸∈ SPRO,τ=k)

Intuitively, the second condition says that any argument that does
not belong to SPRO,τ=0 does not enter into SPRO,τ=t at any
time round t up to a stable one k. Those conditions reflect the
definition of ‘complete extension’ in [Dung, 1995].

Definition 3 (Stably dialectical proof theory) The stably di-
alectical proof theory is the dialogue extraction process in which
the summary table generated by the neural network computation
satisfies the following conditions: let SPRO,τ=0 be the input set
at τ = 0.

1. SPRO,τ=0 satisfies the conditions of Definition 2.

2. AR = SPRO,τ=n ∪ SOPP,τ=n, where AF =<
AR, attacks > and n denotes a stable time round.

Intuitively, the second condition says that PRO and OPP cover
AR exclusively and exhaustively. Those conditions reflect the
definition of ‘stable extension’ in [Dung, 1995].

For the dialectical proof theories for preferred [Dung, 1995]
and semi-stable semantics [Caminada, 2006], we can similarly
define them taking into account maximality condition. So we
omit them in this paper.

As a whole, the type of the dialogues in any dialectical proof
theories above would be better classified as a persuasive dialogue
since it is closer to persuasive dialogue in the dialogue classifi-
cation by Walton [Walton, 1998].

4 Related Work
Garcez et al. initiated a novel approach to argumentation, called
the neural network argumentation [d’Avila Garcez et al., 2005].
However, the semantic analysis for it is missing there. That is,
it is not clear what they calculate by their neural network argu-
mentation. Besnard et al. proposed three symbolic approaches
to checking the acceptability of a set of arguments [Besnard and
Doutre, 2004], in which not all of the Dungean semantics can be
dealt with. So it may be fair to say that our approach with the
neural network is more powerful than Besnard et al.’s methods.

32

Vreeswijk and Prakken proposed a dialectical proof theory for
the preferred semantics [Vreeswijk and Prakken, 2000]. It is
similar to that for the grounded semantics [Prakken and Sartor,
1997], and hence can be simulated in our neural network as well.

In relation to the neural network construction and computa-
tion for the neural-symbolic systems, the structure of the neural
network is a similar 3-layer recurrent network, but our neural
network computes not only the least fixed point (grounded se-
mantics) but also the fixed points (complete extension). This is a
most different aspect from Hölldobler and his colleagues’ work
[Hölldobler and Kalinke, 1994].

5 Concluding Remarks
It is a long time since connectionism appeared as an alterna-
tive movement in cognitive science or computing science which
hopes to explain human intelligence or soft information process-
ing. It has been a matter of hot debate how and to what ex-
tent the connectionism paradigm constitutes a challenge to clas-
sicism or symbolic AI. In this paper, we showed that symbolic
dialectical proof theories can be obtained from the neural net-
work computing various argumentation semantics, which allow
to extract or generate symbolic dialogues from the neural net-
work computation under various argumentation semantics. The
results illustrate that there can exist an equal bidirectional rela-
tionship between the connectionism and symbolism in the area
of computational argumentation. On the other hand, much effort
has been devoted to a fusion or hybridization of neural net com-
putation and symbolic one [d’Avila Garcez et al., 2009][Levine
and Aparicio, 1994][Jagota et al., 1999]. The result of this pa-
per as well as our former results on the hybrid argumentation
[Makiguchi and Sawamura, 2007a][Makiguchi and Sawamura,
2007b] yields a strong evidence to show that such a symbolic
cognitive phenomenon as human argumentation can be captured
within an artificial neural network.

The simplicity and efficiency of our neural network may be
favorable to our future plan such as introducing learning mecha-
nism into the neural network argumentation, implementing the
neural network engine for argumentation, which can be used
in argumentation-based agent systems, and so on. Specifically,
it might be possible to take into account the so-called core
method developed in [Hölldobler and Kalinke, 1994] and CLIP
in [d’Avila Garcez et al., 2009] although our neural-symbolic
system for argumentation is much more complicated due to the
complexities and varieties of the argumentation semantics.

References
[Besnard and Doutre, 2004] Philippe Besnard and Sylvie

Doutre. Checking the acceptability of a set of arguments. In
10th International Workshop on Non-Monotonic Reasoning
(NMR 2004, pages 59–64, 2004.

[Caminada, 2006] Martin Caminada. Semi-stable semantics. In
Paul E. Dunne and Trevor J. M. Bench-Capon, editors, Com-
putational Models of Argument: Proceedings of COMMA
2006, volume 144 of Frontiers in Artificial Intelligence and
Applications, pages 121–130. IOS Press, 2006.

[d’Avila Garcez et al., 2005] Artur S. d’Avila Garcez, Dov M.
Gabbay, and Luis C. Lamb. Value-based argumentation
frameworks as neural-symbolic learning systems. Journal of
Logic and Computation, 15(6):1041–1058, 2005.

[d’Avila Garcez et al., 2009] Artur S. d’Avila Garcez, Luı́s C.
Lamb, and Dov M. Gabbay. Neural-Symbolic Cognitive Rea-
soning. Springer, 2009.

[Dung et al., 2006] P. M. Dung, R. A. Kowalski, and F. Toni.
Dialectic proof procedures for assumption-based, admissible
argumentation. Artificial Intelligence, 170:114–159, 2006.

[Dung, 1995] P.M. Dung. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logics
programming and n-person games. Artificial Intelligence,
77:321–357, 1995.

[Gotou, 2010] Yoshiaki Gotou. Neural Networks calcu-
lating Dung’s Argumentation Semantics. Master’s
thesis, Graduate School of Science and Technology,
Niigata University, Niigata, Japan, December 2010.
http://www.cs.ie.niigata-u.ac.jp/Paper/
Storage/graguation_thesis_gotou.pdf.

[Hölldobler and Kalinke, 1994] Steffen Hölldobler and Yvonne
Kalinke. Toward a new massively parallel computational
model for logic programming. In Proc. of the Workshop
on Combining Symbolic and Connectionist Processing, ECAI
1994, pages 68–77, 1994.

[Jagota et al., 1999] Arun Jagota, Tony Plate, Lokendra Shas-
tri, and Ron Sun. Connectionist symbol processing: Dead or
alive? Neural Computing Surveys, 2:1–40, 1999.

[Levine and Aparicio, 1994] Daniel Levine and Manuel Apari-
cio. Neural Networks for Knowledge Representation and In-
ference. LEA, 1994.

[Makiguchi and Sawamura, 2007a] Wataru Makiguchi and Ha-
jime Sawamura. A Hybrid Argumentation of Symbolic and
Neural Net Argumentation (Part I). In Argumentation in
Multi-Agent Systems, 4th International Workshop, ArgMAS
2007, Revised Selected and Invited Papers, volume 4946 of
Lecture Notes in Computer Science, pages 197–215. Springer,
2007.

[Makiguchi and Sawamura, 2007b] Wataru Makiguchi and Ha-
jime Sawamura. A Hybrid Argumentation of Symbolic and
Neural Net Argumentation (Part II). In Argumentation in
Multi-Agent Systems, 4th International Workshop, ArgMAS
2007, Revised Selected and Invited Papers, volume 4946 of
Lecture Notes in Computer Science, pages 216–233. Springer,
2007.

[Prakken and Sartor, 1997] H. Prakken and G. Sartor.
Argument-based extended logic programming with de-
feasible priorities. J. of Applied Non-Classical Logics,
7(1):25–75, 1997.

[Prakken and Vreeswijk, 2002] H. Prakken and G. Vreeswijk.
Logical systems for defeasible argumentation. In In D. Gab-
bay and F. Guenther, editors, Handbook of Philosophical
Logic, pages 219–318. Kluwer, 2002.

[Rahwan and Simari, 2009] Iyad Rahwan and Guillermo
R. (Eds.) Simari. Argumentation in Artificial Intelligence.
Springer, 2009.

[Vreeswijk and Prakken, 2000] Gerard A. W. Vreeswijk and
Henry Prakken. Credulous and sceptical argument games
for preferred semantics. Lecture Notes in Computer Science,
1919:239–??, 2000.

[Walton, 1998] D. Walton. The New Dialectic: Conversational
Contexts of Argument. Univ. of Toronto Press, 1998.

33

