
SHERLOCK - An Inteface for Neuro-Symbolic Networks∗

Ekaterina Komendantskaya and Qiming Zhang
Schoool of Computing, University of Dundee, Dundee, Scotland

Abstract
We propose SHERLOCK - a novel problem-
solving application based on neuro-symbolic net-
works. The application takes a knowledge base and
rules in the form of a logic program, and compiles
it into a connectionist neural network that performs
computations. The network’s output signal is then
translated back into logical form. SHERLOCK al-
lows to compile logic programs either to classical
neuro-symbolic networks (the “core method”), or
to inductive neural networks (CILP) — the latter
can be trained using back-propagation methods.

1 Introduction
We take the ideas of neuro-symbolic integration to the level
of software engineering and design. That is, we do not con-
sider theoretical aspects of neuro-symbolic integration here,
but take its synthetic principle to be our main software engi-
neering principle. So, which methods could software engi-
neering borrow from the area of neuro-symbolic integration?
Here, we offer one possible answer, but see also [Cloete and
Zurada, 2000].

Declarative programming languages, and especially logic
programming, have one important underlying idea — they
are designed to be syntactically similar to the way people rea-
son. Logic programming, for example, is one of the easiest
languages to teach students with non-technical background or
general public alike. Also, it is feasible to parse natural lan-
guage into logic programming syntax. Therefore, the strength
of logic programming from the software engineering point of
view is that it makes for a general and easily accessible inter-
face for users with diverse backgrounds.

Neural networks, on the other hand, offer both massive par-
allelism and ability to adapt. However, it would seem almost
impossible to imagine that a person with non-technical back-
ground easily masters neural networks as part of his working
routine, alongside with a web-browser or a text editor. It is
common that industrial applications of neural networks are
designed and maintained by specialists, while non-specialist
users do not have ways to edit the applications. This is why

∗The work was supported by EPSRC, UK; Postdoctoral Fellow
research grant EP/F044046/2.

neural network applications are often problem-specific. Such
applications could be made more general and user-friendly if
the users were given a nice easy interface to manipulate neu-
ral networks at a level of natural language.

For example, consider a police officer who has just come
to a crime scene and wishes to record all evidence available.
To be efficient, the police officer uses a small portable com-
puter that has a problem-solving assistant. What should this
assistant be like? Neural network software would come in
handy, because it can be trained as new evidence is obtained;
also – it can be fast due to parallelism. On top of this neural
software, though, it is best to have an easy interface allowing
the officer to enter data in the form of a natural language.

We propose SHERLOCK — an application that allows
the user to type in the knowledge base in the language
close to the natural language, and then rely on the com-
piler that transforms the problem into a suitable neural net-
work. The network will attempt to solve the problem; and
once the solution is found — it outputs the answer in a
logical form. Thus, SHERLOCK successfully implements
the full neuro-symbolic cycle, [Hammer and Hitzler, 2007;
d’Avila Garcez et al., 2008].

Additionally, as we show in the poster and Section 3,
SHERLOCK can be embedded into a bigger knowledge-
refining cycle. In this case, we rely upon the backpropagation
learning that CILP (cf. [d’Avila Garcez et al., 2002]) offers.

SHERLOCK software relates to the work of [Gruau et al.,
1995] proposing a neural compiler for PASCAL; and the pro-
gramming languages AEL, NETDEF [Siegelmann, 1994] de-
signed to be compiled by neural networks. SHERLOCK dif-
fers from the previous similar work in two respects. It is
the first fully automated neural compiler for declarative lan-
guages we know of. Also, in the cited works the main em-
phasis was on building a fully functional complier for a pro-
gramming language; here our emphasis is not on creating a
neural compiler for PROLOG per se; but building a compiler
sufficient to handle knowledge bases and reason over them.

2 Design of SHERLOCK
SHERLOCK provides an editor which allows to write and
edit information in logical form; it then transforms the infor-
mation into connectionist neural network; finally, it translates
the outcome of the neural-symbolic system back to the logic
programming syntax.

39



Figure 1: SHERLOCK’s interface.

SHERLOCK consist of the following components:

1. A code editor, in which the users can write a general
logic program in a prolog-like declarative language;

2. A translator, which can analyse syntax and semantics of
the logic program to set up neural-symbolic systems ac-
cording to the logic program;

3. A model of the “core method” neural networks [Ham-
mer and Hitzler, 2007], and a model of CILP-neural net-
works [d’Avila Garcez et al., 2002];

4. An interpreter;

5. An output reader.

The Figure 1 shows SHERLOCK’s interface together with
a data base written in syntax similar to logic programming.
The answer would be all the names that satsify the rule for
“Criminal”.

3 Knowledge Refining using SHERLOCK
Knowledge refining is one of the important features in hu-
man reasoning. We wish to insert background (or “coarse”)
knowledge into a neural network and obtain refined knowl-
edge by learning with example data. CILP is suitable to do
knowledge refining: it has the capability to present back-
ground knowledge into neural networks, and it can use back-
propagation to get networks trained with examples.

We propose a novel approach to build knowledge refining
systems based on SHERLOCK:

1. Coarse knowledge is obtained from the trained neural
network using one of the standard extraction techniques.

2. Then it is expressed in the first order language in SHER-
LOCK.

3. A CILP neural network is obtained.

4. CILP is trained with the data, and the embedded knowl-
edge is refined.

We test this model on the famous cancer data set from the
UCI Machine Learning Repository. The final neural network

has a performance of 96.7%. The performance of the final
neural network cannot be improved by setting a better training
goal while a general neural network can. This implies the
knowledge embedded in the CILP neural network is sensitive
to certain kinds of data.

We summarise the properties of this model as follows:
1. It provides a methodology to obtain knowledge in any

domain by using both induction and deduction.
2. If the knowledge obtained in Step 1 is reasonable, the

final neural network will remain a clear structure, which
could be interpreted to symbolic knowledge. Otherwise,
the neural network is just an ordinary supervised trained
neural network.

3. The final neural network has a very good performance
in terms of learning. Besides, it seems that the neural
network owns an ability to detect some faulty data due
to the knowledge embedded in it.

Sherlock software and its user
manual can be downloaded from
http://www.computing.dundee.ac.uk/staff/katya/sherlock/

References
[Cloete and Zurada, 2000] I. Cloete and J. M. Zurada.

Knowledge-Based Neurocomputing. MIT Press, 2000.
[d’Avila Garcez et al., 2002] Arthur d’Avila Garcez, K. B.

Broda, and D. M. Gabbay. Neural-Symbolic Learning
Systems: Foundations and Applications. Springer-Verlag,
2002.

[d’Avila Garcez et al., 2008] Arthur d’Avila Garcez, L. C.
Lamb, and D. M. Gabbay. Neural-Symbolic Cogni-
tive Reasoning. Cognitive Technologies. Springer-Verlag,
2008.

[Gruau et al., 1995] Frédéric Gruau, Jean-Yves Ratajszczak,
and Gilles Wiber. A neural compiler. Theor. Comput. Sci.,
141(1&2):1–52, 1995.

[Hammer and Hitzler, 2007] B. Hammer and P. Hitzler. Per-
spectives of Neural-Symbolic Integration. Studies in Com-
putational Intelligence. Springer Verlag, 2007.

[Siegelmann, 1994] H. Siegelmann. Neural programming
language. Conf. of AAAI, 1994.

40


	09-tosatto.pdf
	The Simulator
	Translation process
	Neural Network
	Case Study
	Rules of the RoboCup
	Adding dynamism in the system


	00-frontmatter.pdf
	Programme Committee

	00-frontmatter.pdf
	Programme Committee

	00-frontmatter.pdf
	Programme Committee

	00-frontmatter.pdf
	Programme Committee




