
Interpreting streaming biosignals: in search of best ap-

proaches to augmenting mobile health monitoring with 

machine learning for adaptive clinical decision support 
 

V.M. Jones1, R. Batista1, R.G.A. Bults1, H. op den Akker1,2, I. Widya1, H. Her-

mens
1,2

, R. Huis in’t Veld
2
, T. Tonis

2
, M. Vollenbroek-Hutten

1,2
. 

1
 Faculty of Electrical Engineering, Mathematics and Computer Science, Univer-

sity of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands 
2 Roessingh Research and Development, Roessinghsbleekweg 33b, 7522 AH En-

schede, The Netherlands 
v.m.jones@utwente.nl 

Abstract. We investigate Body Area Networks for ambulant patient monitor-

ing. As well as sensing physiological parameters, BAN applications may pro-

vide feedback to patients. Automating formulation of feedback requires real-

time analysis and interpretation of streaming biosignals and other context and 

knowledge sources. We illustrate with two prototype applications: the first is 

designed to detect epileptic seizures and support appropriate intervention. The 

second is a decision support application aiding weight management; the goal is 

to promote health and prevent chronic illnesses associated with over-

weight/obesity. We begin to explore extending these and other m-health appli-

cations with generic AI-based decision support and machine learning. Monitor-

ing success of different behavioural change strategies could provide a basis for 

machine learning, enabling adaptive clinical decision support by personalising 

and adapting strategies to individuals and their changing needs. Data mining 

applied to BAN data aggregated from large numbers of patients opens up possi-

bilities for discovery of new clinical knowledge.  

Keywords Telemonitoring, mobile health, Body Area Networks, biosignals, 
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1   Introduction 

We research the use of Body Area Networks (BANs) and wireless communications to 

provide remote monitoring and treatment services to patients. Depending on the re-

quirements of the specific clinical application, these mobile applications may provide 

real-time feedback and advice to the (mobile) patient as well as performing sensing of 

physiological parameters. Recognition of alarm conditions and automatic formulation 

of feedback and advice may require real-time analysis and interpretation of biosignal 

data streams together with data from other context and knowledge sources. Section 2 

below presents a short overview of our research on mobile health systems.  Section 3 

presents in more detail two contrasting applications involving analysis and interpreta-

tion of biosignal data streams together with data from other context and knowledge 

sources. Section 4 raises the question of how best to extend the approach with ma-

chine learning (to achieve adaptive CDS) and with data mining (to enable discovery 

of new clinical knowledge). Section 5 presents some discussion and future directions. 

2   Health BANs for telmonitoring/teletreatment 

At the University of Twente we have been researching mobile health systems based 

on Body Area Networks (BANs) since 2001 [1]. We define a health BAN as a net-

work of communicating devices worn on, around or in the body which provides mo-

bile health services to the user. In our generic architecture a BAN consists of an MBU 

(Mobile Base Unit, handling communication, storage and local processing) and a set 

of BAN connected devices (e.g. sensors, actuators, positioning devices). The MBU 

has been implemented on various PDA and smart phone platforms. Sensor data is col-

lected, processed and transmitted to a remote healthcare location via the MBU. The 

generic architecture, a first prototype health BAN and a number of variants of the 

BAN for different clinical applications were prototyped and trialled during IST Mo-

biHealth [2-3]. In MobiHealth BAN data was transmitted over GPRS and UMTS to 

hospitals and a health call centre. The nine trials included telemonitoring of patients 

with cardiac arrhythmias, COPD patients, pregnant women and casualties in trauma 

care. BAN development continued and new variants of the BAN for different clinical 

applications including epilepsy and chronic pain were developed in the Dutch 

FREEBAND Awareness project [4-5] European eTen project HealthService24 [6], 

the European eTen project MYOTEL [7-8] and the Dutch project FOVEA [9]. The 

MobiHealth BAN applications simply transmitted and displayed biosignals remotely 

whilst Awareness introduced analysis and interpretation of biosignals in the light of 

context data. By including feedback loops, BAN telemonitoring was augmented in 

Myotel with teletreatment services to provide information, advice, coaching and 

(bio)feedback to patients.  

Each clinical application requires a specific set of sensors as well as development 

of application-specific software and user interfaces. Sensors which have been inte-

grated into the BAN to date include electrodes for measuring ECG and EMG, pulse 



oxymeter, motion sensors (step counters, 3D accelerometers), temperature and respi-

ration sensors. Apart from sensors, other devices which have been incorporated into 

different variants of the BAN include positioning devices, alarm buttons and a multi-

modal biofeedback device. 

3   Two Example Applications 

The first example is a healthcare application for telemonitoring of patients with 

temporal lobe epilepsy. This was one of three prototype applications developed dur-

ing the Awareness project. The second example is a wellbeing application designed to 

support weight management with the goal of preventing chronic illnesses associated 

with overweight and obesity. This prototype is under development in the FOVEA pro-

ject. These contrasting examples are selected to illustrate the wide range of clinical 

applications and resulting BAN designs which our approach covers whilst being 

based on a generic architecture and common middleware. The epilepsy and weight 

management applications represent a chronic healthcare application and a health and 

wellbeing application respectively. The former includes emergency scenarios while 

the latter does not. They use different devices and have different application function-

ality and different interface and dialogue requirements. Both involve analysis and in-

terpretation of biosignals in combination with other knowledge and context sources. 

3.1   Epilepsy monitoring  

The epilepsy scenario involves processing and analysis of biosignals and context in-

formation, including positioning of patient and carers, to identify medical emergen-

cies (seizures) and facilitate appropriate response. The scenario was used primarily to 

explore the possibilities of the technology and to experiment with adding context 

awareness to BAN applications. An experimental seizure detection algorithm was de-

signed to run on the BAN. The algorithm applies data fusion to changes in heart rate 

and posture and activity information in order to attempt to discriminate between heart 

rate changes due to epileptic seizure and those due to other causes including physical 

activity.  

Fig. 1. shows the components of the Epilepsy BAN. It incorporates an Xsens MT9-

B inertial sensor sensing 3D acceleration, three electrodes (Ag/AgCl contact elec-

trodes) measuring ECG and the Mobi8-MT9 sensor front-end. The MBU is imple-

mented on a smart phone (in this case an HTC P3600). The electrodes are placed on 

the patient one centimetre below the right extremitas sternalis, on the fourth left rib 

below the armpit and at the spinal cord at C7 (reference electrode). In this design, 

simple rule based decisions are made on the basis of biosignal data. When the patient 

has a zero or very low activity level and heart rate increase reaches a predefined 

threshold, the event is labelled as a possible seizure. If posture is lying, or changes to 

lying, the probability that the patient is having a seizure is revised upwards. Heart rate 

is derived from the ECG signal, sampled at 1024 Hz, by RTop detection (algorithm 

adopted from [10]). The beat to beat heart rate is converted to heart rate change by 

calculating the difference between the mean heart rate in two moving time windows 



of 10 and 120 seconds. 3D accelerometer data is sampled at 128 Hz. Activity level 

[11] and posture (lying or not, detected by reference to the earth’s gravitational field) 

are calculated every 10 seconds. The internal GPS device of the HTC P3600, together 

with cell-ID information, is used for location determination so that appropriate assis-

tance can be dispatched if a seizure is detected. The specialist is notified in case of a 

detected seizure and can view the patient’s biosignals and location.  
 

 

Fig. 1. Epilepsy BAN: electrodes and activity sensor 

Fig. 2. shows the display of biosignals on the m-health portal. Three traces are dis-

played against a time axis: ECG, activity level and heart rate (derived from ECG). At 

the right hand side numeric readouts for activity and heart rate are displayed.  
 

 

Fig. 2. The m-health portal displaying three biosignal traces: ECG, activity and heart rate 

The professional can also view location information. Fig. 3. shows the map display 

showing the position of the patient and the positions and status (availability) of all the 

informal carers who are registered for that patient. The nearest available carer can be 



dispatched and guided to the patient using GPS positioning and a map display on the 

carer’s mobile device.  
 

 

Fig. 3. Awareness Epilepsy application: location display when a seizure is detected 

This BAN application was trialled (on healthy volunteers only) during Awareness in 

order to evaluate the technical performance of the system. Algorithms for derivation 

of heart rate and activity level were implemented on the BAN but the seizure detec-

tion algorithm could only be tested offline (on data from healthy subjects) due to 

computational limitations of the PDA. The detection algorithm still needs to be 

tested on data from epileptic patients before specificity, sensitivity etc. can be estab-

lished. However the experiments with healthy subjects showed some false positives. 

3.2 Sustainable weight management 

Overweight and obesity are associated with increased morbidity and mortality and are 

on the increase around the world. Many governments, HMOs and other organizations 

are attempting to promote healthier lifestyles, with weight management as a major 

goal. However, even when public awareness of the health consequences of unhealthy 

eating and drinking has been raised, this knowledge has had little effect on consumer 

behavior in terms of lasting change in dietary and exercise patterns. Achieving and 

maintaining weight management goals requires more than intellectual recognition; in-

terventions need to be informed by behavioural change theory as well as nutrition 

education theory. How best to effect sustainable behavioural change, critical to the 

success of many health promotion initiatives, has been an area of research for some 

years.  

Partners in the Dutch project FOVEA study how to change consumer behaviour in 

the direction of a healthier lifestyle by applying behavioural theory with support from 

ICT, including ambulatory monitoring technology. The aim is to support sustainable 

behavioural change with respect to food and drink consumption and exercise in order 

to improve health and wellbeing and prevent chronic illness. The approach is to pro-



vide real-time personalised feedback and advice at the point of decision making. The 

advice is tailored to the individual's weight management goals and stage of change. 

As a use case, we target the inclined abstainer who is an external eater in the Action 

stage of the Stages of Change model [12-13]. The Restaurant of the Future (RoF) 

[14], a company restaurant in Wageningen, The Netherlands, provides an instru-

mented environment which is used in this and other projects as a testbed for interac-

tive research in a real life setting. The RoF insfrastructure includes video cameras for 

behavioural observation, weight-scales at the checkouts and automatic registration of 

individuals’ food and drink consumption at the point of sale terminals. It also offers 

possibilities for altering the ambient environment in order to investigate effects on 

physiology and behaviour of subtle changes in environmental factors.  

A prototype of the FOVEA system, integrating components from the RoF infra-

structure with the food database of the canteen supplier, has been developed. The 

FOVEA system includes a mobile system designed to give real time monitoring and 

personalized feedback. The University of Twente is responsible for developing this 

mobile system. The FOVEA mobile system conforms to our BAN architecture; in this 

case the BAN consists of a smart phone and a single sensor: the smart phone’s on 

board accelerometer. The FOVEA system, including the mobile system, is being tri-

alled in 2011 at the RoF on 60 trial subjects selected from regular visitors to the RoF 

who have BMI 25.00-29.99 (WHO classification “overweight, pre-obese” [15]). A di-

etician formulates a plan with each user, including up to five lunch compositions 

(each with up to five food items) to match the user’s personal goals and preferences.  

The mobile part of the FOVEA system is implemented as a smart phone applica-

tion on a Samsung Galaxy S running Android. Food and drink consumption is regis-

tered, physical activity is monitored and feedback is given in real time. The mobile 

application detects the different self service buffets (using Bluetooth or UMTS) in the 

RoF. By means of indoor positioning, a map of the layout of the RoF, connection with 

the food database and knowledge of the individual’s targets, the mobile application is 

able to guide the user away from less healthy options (using a cue avoidance strategy) 

and towards healthier options and balanced meal compositions. Fig. 4 shows example 

screenshots, in this case a user profile and the layout of the RoF. Icons indicate the 

entrance (red arrow), food buffets (e.g. bread, hot meals, salads, soup etc.) and the 

point of sale terminals (which are linked into the RoF information systems). 

The FOVEA mobile system stores the user’s profile and keeps track of their energy 

balance throughout the day. In the RoF it can be used to display the food and bever-

age selections on offer that day, allowing the user to check an item before making a 

selection. “Good” and “bad” selections are highlighted to help the user make healthy 

consumption decisions. Fig. 5 shows more example screenshots, here displaying the 

list of buffets and the options for warm beverages. The "compliant" and "non compli-

ant" items (for this user) are highlighted in green and orange respectively. Compliant 

means that this item is part of the lunch composition selected by the user on this occa-

sion. In this case we see that koffie verkeerd (coffee made with milk) and thee (tea) 

are compliant with the current lunch composition. 

Energy values of food and beverage items in the RoF are stored in the food data-

base and are used to track total kilocalories of items selected. Registration of food and 

drink consumption on the phone enables real time estimation of energy intake and 

helps the user to manage their daily energy budget. Fig. 6 shows the energy screen, 



and the impact of consuming one item (a mueslibol) on energy balance. (A mueslibol 

is a sweet bread roll containing muesli.) The screen shows that a mueslibol contains 

150 KiloCalories and is not compliant with the current lunch composition.  

Real-time measurement of physical activity (using the smart phone’s on-board 3-

axis accelerometer) is used to estimate energy expenditure (EE) in real time. The EE  
 

 

Fig. 4. FOVEA mobile system screenshots: user profile and restaurant layout. 

 

Fig. 5. Screenshots: buffet list and warm beverage options 

algorithm was developed during the project and is being calibrated against validated 

methods including a commercially available step counter (the OMRON Walking 



Style Pro). Two different methods of calculating basal metabolic rate (BMR) are 

used: Harris Benedict (HB) and Miffin and St Jeor (MJ). Hence two versions of the 

Temporary Energy Balance are displayed. The yellow smiley in Fig. 6 indicates that 

at least one of the two versions of Temporary Energy Balance will go from positive to 

negative if the user consumes this item (i.e. cumulative energy intake will exceed cu-

mulative energy expenditure if this item is consumed). If both Temporary Energy Bal-

ances would remain above zero the smiley would be green. In case at least one of the 

previous energy balances was already below zero the smiley would be red. Even if the 

item is not compliant with the predetermined lunch composition, or sends the Tempo-

rary Energy Balance negative, the user is free to purchase the item and register their 

selection by pressing Add.  
 

 

Fig. 6. Screenshots: energy screen, and impact of one item on energy balance. HB - Harris Be-

nedict method of estimating BMR; MJ - Miffin and St Jeor method. 

The activity monitoring and feedback mechanisms developed in FOVEA could also 

be applied in a number of other applications, e.g. optimizing daily physical activity 

patterns in COPD, cardiac rehabilitation and chronic pain management. 

4. Machine learning and data mining for adaptive CDS and 

knowledge discovery 

Two contrasting applications, for healthcare and health and wellbeing respectively, 

are presented as illustrative examples of mobile monitoring and feedback applica-

tions. Both involve analysis and interpretation of (streaming) physiological signals in 

combination with other knowledge and context sources.  



FOVEA is an example of a mobile monitoring and feedback application which 

would benefit by being augmented with more intelligent decision support. We believe 

the system can be more effective if it can monitor and learn from the effectiveness of 

various behavioural change strategies and thus adapt to the individual user, so im-

proving chances of success in reaching and maintaining personal lifestyle goals. 

We propose that in future the FOVEA mobile application be extended to monitor 

individual performance in terms of adherence to weight management guidelines and 

(changing) personal diet and exercise plans, and so be able to adapt to those strategies 

which prove to be more successful for the individual in both the short and longer 

term. We expect that the resulting augmented application will provide more intelli-

gent and personalised adaptive decision support. 

Furthermore, data mining techniques applied to aggregations of BAN data from 

large numbers of patients opens up possibilities for discovery of new clinical knowl-

edge. Epileptic seizures are rare but serious clinical events which moreover have far 

reaching consequences for patients’ daily living. Routine collection of biosignal and 

context data on a large population over time by means of ambulatory monitoring 

would yield a large dataset which could serve medical research purposes. We surmise 

that the epilepsy case could possibly benefit from applying machine learning and data 

mining to accumulated biosignal and context data from many patients, possibly un-

covering new medical knowledge which could potentially improve the detection of 

ongoing seizures and ability to predict upcoming seizures. 

5. Discussion and Future Work 

The ability in general to automate delivery of feedback and advice implies theory-

based clinical decision support functionality which in turn relies on real-time interpre-

tation and analysis of streaming biosignals together with other context and knowledge 

sources. The examples of monitoring and feedback applications discussed above are 

offered as a basis for discussion of possible approaches for extending health BAN ap-

plications with theory-based adaptive clinical decision support delivered on a mobile 

platform in an ambulatory setting. In many clinical applications monitoring the suc-

cess of different behavioural change strategies in the short and longer term can pro-

vide a basis for machine learning, enabling personalisation and adaptation of strate-

gies to the individual and their changing needs over time.  

The early prototype of the FOVEA mobile system is a proof of concept and applies 

some pragmatic solutions. It can be extended and improved in numerous ways; for 

example by connecting to other environments to give the user decision support, bol-

ster motivation and apply cue management in other contexts, e.g. at home, in other 

restaurants or when shopping for food. This early prototype can be said to deliver de-

cision support, however this is a behavioural description; the system does not (yet) 

apply AI techniques associated with (clinical) decision support. In this respect it re-

sembles some of the early expert systems which were classed by some user communi-

ties as “expert” systems on the grounds that their behaviour emulated some aspects of 

human “expert” behaviour (ie on grounds of outcome). The AI community however 

focuses on developing underlying models and mechanisms, for example for knowl-



edge representation and reasoning, to support the process of expert reasoning and de-

cision making. Our future ambitions therefore also include the intention to develop a 

generic framework for (clinical) decision support, including data mining and machine 

learning mechanisms, which can be implemented on mobile platforms so that future 

BAN applications are well-grounded in generic and sound AI-based approaches.  

One knowledge-based approach to augmenting mobile monitoring and treatment 

with adaptive real time CDS is visualized in Fig. 7. (Many other approaches are pos-

sible.) The red parts of Fig. 7 show the points of innovation over classical expert sys-

tems-based DSSs, namely: inclusion of streaming biosignals and context data; task 

knowledge relating to biosignal analysis and interpretation; ML applied to BAN data 

to effect individual adaptation; and data mining over data from large populations over 

time to enable discovery of new clinical knowledge. Subtracting the red parts of the 

figure reduces it to a depiction of a classical expert systems architecture. 
 

 

Fig. 7. One approach to adaptive CDS adding streaming data, ML and DM 

We have begun to experiment with an ML approach to improving compliance to 

feedback. By applying classical machine learning techniques to activity data and be-

havioural data gathered by mobile monitoring of various patient populations with 

chronic illnesses, Akker et al. [16] attempted to predict, based on personal historical 

usage data, a user's reaction to a given feedback message. From activity and feedback 

data for 95 patients, feedback compliance to each individual message was calculated 

and relevant context features were extracted. The features include timing information 

(e.g. time of day, day of week), information about the type of message sent to the pa-

tient, weather related features and features related to the history of usage. Compliance 

to individual feedback messages ('yes' or 'no') was the class. A number of supervised 

classifier schemes were tested; the rule-based Ridor classifier proved best over all in 

terms of accuracy. Results compared to baseline (ZeroR classification) were promis-

ing and a further analysis of optimal feature sets using Genetic Algorithms gives in-

sight into the most useful context information. Using this method, 86% classification 

accuracy was achieved on average over all patients that were included. During opera-

tion, whenever the machine learner or CDS component decides that compliance to 



feedback at this time is unlikely, the message output is delayed, reducing unnecessary 

burden on the patient by the system. This method translates well to any application in 

which the system initiates the interaction with the user, especially if the system is de-

signed to be used for sustained periods of time, as is necessary when a change in user 

behaviour is the ultimate goal. Wieringa et al [17] also demonstrated that other AI-

inspired methods are promising for generating the content of messages that are in-

tended to promote behavioural change in patients or users. In this experiment, mes-

sage content was generated by traversing a structured ontology of applicable motiva-

tional messages. Parts of the ontology were pruned by Boolean functions attached to 

the ontology entities. For example, the subtree of the ontology that specifies messages 

suggesting the user goes outdoors for some exercise has a Boolean function 

"isWeatherGood()" attached; that subtree is pruned if this function evaluates to false 

during operation. User preferences for specific messages or types of message are 

learned by storing user compliance to system-generated messages and using this in-

formation during traversal of the ontology to increase the chance of selecting mes-

sage-branches that had positive reactions in the past. 

Adding intelligence to these ambulant applications is made possible by the con-

tinuing miniaturization of hardware and increases in processing power available on 

smart phones and PDAs. Learning algorithms no longer need a bulky mainframe or 

server in order to run. Lightweight machine learning algorithms, and powerful support 

for multithreading built into current Android platforms, for example, make it feasible 

for mobile applications to run ever more sophisticated machine learning processes in 

the background. 

Amongst the immediate challenges and opportunities arising, we mention:  

• Incorporation of real time input and automated analysis of streaming biosig-

nals and context data into a clinical decision support system; 

• Selection of the best (generic) technical approaches and mechanisms for im-

plementing adaptive clinical decision support on a mobile platform; 

• Distribution of coherent clinical decision support functionality across a com-

plex fixed-and-mobile distributed environment; and 

• Maintenance of consistency of knowledge and beliefs in the distributed envi-

ronment. 

As Computer Science and Biomedical Engineering researchers involved in mobile 

healthcare and health and wellbeing applications we offer these ideas to the workshop 

with the expectation of stimulating discussion with experts in data stream mining and 

machine learning on best approaches to developing a sound AI-based framework for 

next generation mobile health applications with adaptive clinical decision support. 
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