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Abstract. Cardiotocography is widely used, all over the world, for fetal
heart rate and uterine contractions monitoring before (antepartum) and
during (intrapartum) labor, regarding the detection of fetuses in dan-
ger of death or permanent damage. However, analysis of cardiotocogram
tracings remains a large and unsolved issue. State-of-the-art monitor-
ing systems provide quantitative parameters that are difficult to assess
by the human eye. These systems also trigger alerts for changes in the
behavior of the signals. However, they usually take up to 10 min to
detect these different behaviors. Previous work using machine learning
for concept drift detection has successfully achieved faster results in the
detection of such events. Our aim is to extend the monitoring system
with memory-less fading statistics, which have been successfully applied
in drift detection and statistical tests, to improve detection of alarming
events.

1 Introduction

Cardiotocography is widely used, all over the world, for fetal heart rate (FHR)
and uterine contractions (UC) monitoring before (antepartum) and during (in-
trapartum) labor, regarding the detection of fetuses in danger of death or per-
manent damage [1]. However, analysis of both FHR and UC tracings remains a
large and unsolved issue [5].

1.1 Cardiotocography monitoring systems

State-of-the-art monitoring systems, like Omniview-SisPorto [4], provide quanti-
tative parameters that are difficult to assess by the human eye. The system also
triggers alerts for changes in the behavior of the signals. Moreover, in the normal
stage of tracings, four different patterns may be considered [11]. However, they
usually take up to 10 min to detect these different behaviors. All these features
are associated with possible damage to the fetus, which is usually assessed by
the Apgar score. The Apgar score is usually determined 1 and 5 minute after
birth by evaluating the newborn and ranges from zero to ten.



1.2 Machine learning in healthcare

The application of data mining and machine learning techniques to medical
knowledge discovery tasks is now a growing research area. These techniques vary
widely and are based on data-driven conceptualizations, model-based definitions
or on a combination of data-based knowledge with human-expert knowledge [14].
Also, the definition of clinical decision support systems is now a major topic
since it may help the diagnosis, the prognosis of rate of mortality, the prog-
nosis of quality of life, or even treatment selection. However, the complicated
nature of real-world biomedical data has made it necessary to look beyond tra-
ditional biostatistics [13] without loosing the necessary formality. For example,
naive Bayesian approaches are closely related to logistic regression [19]. Hence,
those systems could be implemented applying methods of machine learning [14],
since new computational techniques are better at detecting patterns hidden in
biomedical data, and can better represent and manipulate uncertainties [19].
In cardiotocography monitoring, previous work using machine learning has suc-
cessfully been applied, achieving faster results in the detection of behavioral
changes [20], and successfully clustering fetal heart rate tracings [18].

1.3 Aim and outline

The aim of this work is to extend the cardiotocography monitoring system with
memory-less fading statistics [17] in order to improve the detection of change of
behavior and classifying apgar score. Specifically, we intend to:

– define fading statistics for fetal heart rate and uterine contractions;
– define fading statistics for association between the two tracings;
– assess the relevance of fading statistics evolution for detecting changes of

behavior in tracings;
– assess the relevance of fading statistics evolution in the prediction of newborn

outcome through the apgar score at 1 and 5 minutes.

The paper is organized as follows. Next section presents background knowl-
edge on cardiotocography monitoring systems, learning from data streams and
fading statistics. Section 3 ends the exposition with some expected impact.

2 Background

This work is related with three different areas of research: cardiotocography
monitoring systems, learning from data streams, and fading statistics.

2.1 Computer-based systems for cardiotocography analysis

Cardiotocography is a technique for continuous recording of fetal heart rate
(FHR) and uterine contractions that is widely used to reduce in birth asphyxia
that results in death or permanent damage to the newborn. However, there are



important inconsistences in interpretation by experts of cardiotocograms and
subsequent clinical decision [2]. Computer analysis of cardiotocograms provides
quantitative parameters that are difficult to assess by the human eye overcom-
ing the observer variability in interpretation of cardiotocograms. A program for
automated analysis of tracings, developed over the last 15 years in University of
Porto, Omniview SisPorto, provides visual and sound alerts for non reassuring
fetal state [4]. However, it usually takes up to 10 min to trigger these alerts and so
forth new methods are needed to improve the detection of non reassuring fetal
state. Omniview-SisPorto system also provides the following quantitative pa-
rameters useful to medical interpretation of cardiotocograms and to subsequent
clinical decision: the FHR baseline, the number of accelerations, the percentage
of tracing with abnormal short-term variability (STV) and long-term variability
(LTV) and the average STV and LTV.

FHR baseline was defined using a complex algorithm developed to identify
the mean FHR during stable segments, in the absence of fetal movements and
uterine contractions. Accelerations are defined as increases in the FHR above
the baseline, lasting 15-120 seconds and reaching a peak of at least 15 beats
per minute (bpm). Abnormal STV is identified when the difference to adjacent
FHR signals is less than 1 bpm and abnormal LTV is identified whenever the
difference between maximum and minimum FHR values of a sliding 60 seconds
window centered on them, does not exceed 5 bpm [4]. Figure 1 presents plots of
the usual monitoring features extrated from cardiotocography, for two different
cases (one normal and one abnormal).

2.2 Machine learning from data streams

What distinguishes current data from earlier one are automatic data feeds. We do
not just have people who are entering information into a computer. Instead, we
have computers entering data into each other [15]. Thus, there are applications
in which the data is modeled best not as persistent tables but rather as transient
data streams.

A data stream is an ordered sequence of instances that can be read only once
or a small number of times using limited computing and storage capabilities.
The data elements in the stream arrive online, being potentially unbounded in
size. Once an element from a data stream has been processed it is discarded or
archived. It cannot be retrieved easily unless it is explicitly stored in memory,
which is small relative to the size of the data streams. These sources of data are
characterized by being open-ended, flowing at high-speed, and generated by non
stationary distributions [8,9]. Learning techniques which operate through fixed
training sets and generate static models are obsolete in these contexts. Faster
answers are usually required, keeping an anytime data model and enabling better
decisions, possibly forgetting older information.

The sequences of data points are not independent, and are not generated
by stationary distributions. We need dynamic models that evolve over time and
are able to adapt to changes in the distribution generating examples [8]. If the
process is not strictly stationary (as most of real-world applications), the target
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Fig. 1. Plots of monitoring features usual extrated from cardiotocography, for a normal
patient (left) with Apgar scores equal to 10 (both at 1 and 5 minutes after birth) and
an abnormal patient (right) with Apgar scores equal to 4 (1 minute after birth) and 7
(5 minutes after birth). Plots present the fetal heart rate (top), the STV (top middle),
the LTV (top bottom) and the uterine contractions (bottom).



concept may gradually change over time. Hence data stream mining is an incre-
mental task that requires incremental learning algorithms that take drift into
account [7]. Previous work using stream learning for concept drift detection has
successfully been applied to cardiotocography monitoring and achieved faster
results in the detection of behavior changes [20].

2.3 Stream summarization using window models

In most streaming applications, recent data is the most relevant one [8]. To
target this subset of data, a popular approach consists of defining a time window
covering the most recent data. Actually, time windows are a commonly used
approach to solve queries in open-ended data streams. Instead of computing
an answer over the whole data stream, the query (or operator) is computed,
eventually several times, over a finite subset of tuples. In this model, a time
stamp is associated with each tuple. The time stamp defines when a specific
tuple is valid (e.g. inside the window) or not. Several window models have been
used in the literature. The most relevant are: landmark, sliding and time-biased
windows.

Landmark windows [10] identify relevant points (the landmarks) in the data
stream and the aggregate operator uses all record seen so far after the landmark.
Successive windows share some initial points and are of growing size. In some
applications, the landmarks have a natural semantic. For example, in daily basis
aggregates the beginning of the day is a landmark.

Most of the time, we are only interested in computing statistics in the strictly
recent past. The simplest approach are sliding windows of fixed size w. These
type of windows are similar to first in, first out data structures: whenever an
element xi is observed and inserted in the window, another element xi−w is
forgotten. This is probably the most common approach to algorithms focusing
on evolving recent data. However, due to the need to forget old observations, we
need to maintain in memory all the observations inside the window. A recent
work showed that, when dealing with evaluation of stream learning algorithms,
the window size does not matter too much: the prequential error estimated over
a sliding-window always converges fast to the holdout estimate, being on the
other hand better suited for data streams [9].

Previous windows models use a catastrophic forget, that is, any past observa-
tion either is in the window or it is not inside the window. Usually in streaming
settings, the concept generating data evolves smoothly, so old data is less but
still important [7]. A smoother approach are tilted time windows, where time
scale is compressed. The most recent data are stored inside the window at the
finest detail (granularity). Oldest information is stored at a coarser detail, in an
aggregated way, with the level of granularity depending on the application.

Even within a sliding window, the most recent data point is usually more
important than the last one which is about to be discarded. This way, a simple
approach could consider giving weights to data points depending on their age
within the sliding window. Given its particular characteristics, a good approach
for data streams uses an exponential approach, where the weight of a data point



decreases exponentially with time: α-weighted window [17]. The main advantages
of this window model are two-fold. First, compared to traditional sliding win-
dows, more importance is given to recent data points, as the weight of each obser-
vation decreases exponentially with time. Second, compared to other weighting
approaches, it can be maintained on the fly. The main feature of the weighted
sliding window model is the use of smooth forgetting. Hence, the computation
of statistics over weighted windows raises several advantages when compared to
statistics computed over simple sliding windows [17].

To avoid keeping all data in the window when computing statistics which
are based on sums of the data points, and in order to include a smooth forget-
ting of information, the previous approach can be applied to achieve an approxi-
mated value for the elementary statistics on a data stream. Using the exponential
weights introduced in the weighted window model, but applying then to all data
points seen so far, the α-fading window model is created, and similar statistics
can be computed, to which we call fading statistics. A recent work showed that
it is possible to use fading statistics as a error-bounded estimate of statistics
computed over a weighted window [17].

The application of fading factors (which approximate the α-fading window
model) has been used in recent works. For example, given the fact that the
prequential error [6] is based on the sum of errors along the stream, fading fac-
tors can be applied to achieve a memory-less approach to its computation over
a sliding window. In a recent work, the authors have shown that the fading
prequential error converges to the holdout estimate and is equivalent to the pre-
quential error on a sliding window [9]. Also, on the same recent work, the authors
also embedded fading factor techniques on statistical tests for comparing stream
classification problems and change detection. Overall, the authors reported that
the use of fading factors on the McNemar and Page-Hinkley tests gave results
similar to the use of sliding windows [9].

3 Computing cardiotocography fading statistics

Any statistic that can be computed based on sums and counts (which are sums
of variables taking values on {0, 1}) can be computed as a fading statistic, with
the corresponding exponential bias towards recent examples [17]. The precise
domain of cardiotocography monitoring possess characteristics that direct the
search for relevant statistics.

3.1 α-fading statistics

For a single continuous variable, two simple statistics are the average and stan-
dard deviation, but we can also compute a histogram to approximate the vari-
ables distribution. In streaming settings, these should take into account the age of
the data points, so we should compute moving statistics in order to be adapted
to the most recent data. Using the α-fading window model, with 0 < α < 1,
these statistics need to be defined slightly differently. Previous work [17] has



presented definitions for α-fading statistics including increments, sums and av-
erages. Considering i the number of current observations of a given variable X,
when possible, we will use the recursive forms to illustrate its applicability to
online systems:

– The α-fading increment is a weighted count of observations, defined as

Nα(i) =

{
1, i = 1

1 + α×Nα(i− 1), i > 1
(1)

with lim
i→∞

Nα(i) = 1
(1−α) (proof in [17]).

– The α-fading sum is a weighted sum of the observations, where

Sx,α(i) =

{
x1, i = 1

xi + α× Sx,α(i− 1), i > 1
(2)

with the α-fading increment being the total amount of weight given to ob-
servations in the α-fading sum (proof in [17]).

– The α-fading average is a weighted average of observations, where

Mx,α(i) =
Sx,α(i)

Nα(i)
, (3)

with the α-fading average approximating the α-weighted average with a max-
imum error of 2εR, where ε is the allowed proportion of weight given to ob-
servations outside the weighted window, and R the range of the variable [17].

Similar approaches can be made for α-fading variance (hence, standard devi-
ation) and α-fading correlation, where the sufficient statistics needed to compute
the final measure are kept as α-fading sums.

– The α-fading variance is computed as (the fading factor can make the
second term higher than the first one, hence the need for the absolute value):

Vx,α(i) =

∥∥∥∥Sx2,α(i)

Nα(i)
− Sx,α(i)2

Nα(i)2

∥∥∥∥ . (4)

– Given its possible computation as an algebraic operation of sums, we can
define the α-fading correlation coefficient as

Cx,y,α(i) =
Sxy,α(i)− Sx,α(i)Sy,α(i)

Nα(i)√∥∥∥Sx2,α(i)− Sx,α(i)2

Nα(i)

∥∥∥√∥∥∥Sy2,α(i)− Sy,α(i)2

Nα(i)

∥∥∥ . (5)

Another frequently used summary are online histograms. The histogram is
defined by a set of k non-overlapping intervals I1, . . . , Ik in the range of the
random variable, and a set of frequency counts F1(i), . . . , Fk(i). For each ob-
servation i of a given variable X, the online histogram counts are updated by



making Fl(i) = Fl(i − 1) + 1, if xi ∈ Il, or Fl(i) = Fl(i − 1) otherwise, with
l = 1..k. In the fading window model, each α-fading frequency is computed
as

Fα,l(i) = cli + α× Fα,l(i− 1), (6)

where cli is 1 if xi ∈ Il, and 0 otherwise. Hence, the α-fading frequency is a α-
fading sum of a variable taking only values in {0, 1}. The collection of α-fading
frequencies creates the α-fading histogram.

3.2 Summarizing the cardiotocogram

It is known that a low fetal heart rate baseline or variability is an indicator of
problems to the fetus [3]. Hence, we shall monitor the α-fading average Mh,α(i)
and α-fading variance Vh,α(i) of the fetal heart rate signal (h).

When analysing both fetal heart rate (h) and uterine contractions (u) signals,
an increase of uterine contraction conjugated with a persistant decrease in fetal
heart rate is also a sign of potencial damage [3]. Hence, negative correlations
between the signals are alerting, so we shall monitor the α-fading correlation
Ch,u,α(i).

Empirically, changes in the distance between the two distributions could also
alarm for problems so we also plan to monitor the evolution of the distance
between the two α-fading histograms, using well-known metrics, such as the
Kullback-Leibler divergence [12].

Figure 2 presents plots of the usual monitoring features extrated from car-
diotocography, for two different cases (one normal and one abnormal), but using
fading statistics to improve visualization and analysis.

4 Concept drift detection using fading statistics

Several tests for change detection have been presented in the literature [7]. In
previous work, sliding-window-based detection has already been applied on car-
diotocography with good results [20]. Given the fact that the fading statistics
already define a window model, we could apply simple statistic-based approaches
to our problem.

One of the most referred is the Page-Hinkley Test (PHT), a sequential anal-
ysis technique typically used for monitoring change detection in signal process-
ing [16]. It allows efficient detection of changes in the normal behavior of a
process which is established by a model. This test maintains a cumulative vari-
able mT , defined as the cumulated difference between the observed values and
their mean till the current moment:

mT =

T∑
t=1

(xt − x̄T − δ), (7)

where x̄T = 1
T

t∑
t=1

xt and δ corresponds to the magnitude of changes that are al-

lowed. The minimum value of this variable is also computed: MT = min(mt, t =
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Fig. 2. Plots of monitoring features usual extrated from cardiotocography, for a normal
patient (left) with Apgar scores equal to 10 (both at 1 and 5 minutes after birth) and
an abnormal patient (right) with Apgar scores equal to 4 (1 minute after birth) and
7 (5 minutes after birth). Plots present the fetal heart rate α-fading average (top,
α = 0.980 approximating a window of 1 minute with 1% error), the fetal heart rate α-
fading stardard deviation (top middle, α = 0.316 approximating a window of 1 second
with 1% error), the fetal heart rate α-fading stardard deviation (top bottom, α = 0.980
approximating a window of 1 minute with 1% error) and the uterine contractions α-
fading average (bottom, α = 0.980 approximating a window of 1 minute with 1%
error).



1 . . . T ). As a final step, the test monitors the difference

PHT = mT −MT . (8)

When this difference is greater than a given threshold (λ) we alarm a change
in the distribution. The threshold λ depends on the admissible false alarm rate.
Increasing λ will entail fewer false alarms, but might miss or delay some changes.
To detect decreases, a similar test can be conducted. Previous work as shown
that this test could also be adapted to fading statistics [9], so we plan to use it
as concept drift detector for all the summaries defined in the previous section.

5 Available data and expected impact

A total of 31 antepartum FHR tracings obtained in a previously reported study
are available. These tracings were acquired in four hospitals located in Portugal,
Switzerland, Germany and Australia, in the context of a multicentre observa-
tional study [3]. Tracings were acquired using Hewlett-Packard M1350 fetal mon-
itors at a 4 Hz sampling rate in three hospitals, and with a Sonicaid 8000 fetal
monitor in the remaining hospital, using true beat to beat intervals. All tracings
were acquired in singleton pregnancies with no fetal malformations, and had at
least 30 minutes of duration and less than 15% signal loss. In ten tracings the
newborn outcome was bad (Apgar at first minute after born was less than 7).

As traditionally targeted, we expect to identify in cardiotocografic tracings
the non reassuring fetal state, predicting the newborn outcome, which is con-
sidered a bad newborn outcome when Apgar score measured 1 minute after the
birth is under 7. Moreover, given the application of fading statistics as low-pass
filter, we believe that the sole visualization of fading statistics evolution might
in fact improve the physicians accuracy and agreement in the diagnosis.
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