
Towards an i*-based Architecture Derivation Approach

Diego Dermeval1, Monique Soares1, Fernanda Alencar2, Emanuel Santos1, João

Pimentel1, Jaelson Castro1, Márcia Lucena3, Carla Silva
4

, Cleice Souza1

1Universidade Federal de Pernambuco - UFPE, Centro de Informática, Recife, Brazil

{ddmcm,mcs4,ebs,jhcp,jbc,ctns}@cin.ufpe.br
2Universidade Federal de Pernambuco - UFPE, Departamento de Eletrônica e Sistemas,

Recife, Brazil,

fernanda.ralencar@ufpe.br
3Universidade Federal do Rio Grande do Norte - UFRN, Departamento de Informática e

Matemática Aplicada Natal, Brazil,

marciaj@dimap.ufrn.br
4Universidade Federal da Paraíba - UFPB, Centro de Ciências Aplicadas e Educação, Rio

Tinto, Brazil

carla@dce.ufpb.br

Abstract. Goal orientation, in particular the i* (iStar) framework, offers

expressive models that support requirements engineering. On the other hand,

the understanding of how requirements models are related to architectural

design is still somewhat limited. In the past years, we have been investigating

how to derive architectural models from i* (iStar) models, focusing on

modularity. As a result we proposed a Strategy for Transition between

Requirements and Architectural Models � STREAM. In this paper, we

summarize the current state-of-the-art of the STREAM approach, point out its

challenging aspects and describe current ongoing research. Our challenge is to

support a broader set of architectural decisions as well as to provide means for

partially automating the models transformations.

Keywords: iStar, Requirements Engineering, Architectural design, Architecture

Documentation, Architectural Decisions, Automation, Model Transformations

1 Introduction

Despite Requirements Engineering and Architectural Design being strongly related

activities, there is a lack of techniques and methods handling the integration of these

activities. Therefore, one of the major research challenges in software engineering is

to provide systematic methods for designing software architecture from requirements

models [2] [3]. The STREAM (Strategy for Transition between Requirements and

Architectural Models) process [4] [14] presents a model-driven approach for

generating initial architectures - in Acme [7] - from i* requirements models [13]. The

STREAM approach consists of the following steps: (i) Prepare Requirements Models,

(ii) Generate Architectural Solutions, (iii) Choose an architectural solution, and (iv)

Derive Architecture. Horizontal and vertical model-transformation rules were

proposed in order to perform the steps (i) and (ii), respectively. Non-Functional

Requirements are used in the step (iii) to guide the selection of alternatives in the

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

66

architecture. Lastly, in the step (iv) the architecture is refined by using architectural

refinement patterns.

Based on the generic STREAM process, some others extensions were proposed:

STREAM-Adaptive [11] and F-STREAM [5]. The STREAM-Adaptive approach

supports the generation of architectures for self-adaptive systems. This is achieved by

enriching the i* models with information required to perform the reasoning related to

adaptation, which is performed by pre-defined components. The F-STREAM [5]

(Flexible STREAM) uses Software Product Lines principles aiming to make it easier

to integrate the STREAM approach with other approaches that are able to handle

some specific NFRs.

However, there are still some limitations. For example, only one of the possible

architectural views [1] is supported. In addition, no support is given to document the

different types of architectural decisions [9]. Finally, the model transformations are

not yet automated. Hence, in this paper, we show how we intend to improve the

family of STREAM approaches in order to face the last two shortcomings: supporting

and documenting a broader set of architectural decisions and automating the model

transformations required in the process.

This paper is organized as follows. Section 2 presents the goals of the research.

Section 3 describes our proposals towards these goals. Section 4 presents the

conclusions while Section 5 points out ongoing and future research.

2 Objectives of the Research

The general goal of this research is to enhance the STREAM approach, allowing it to

be more complete and viable for industrial use. Therefore, we propose two specific

objectives. Firstly, we derive an architectural specification that encompasses the

documentation of a broader set of architectural decisions. Secondly, we intend to

provide tool support to automate the transformations presented in the STREAM

approach and its extensions. Thus, we aim to facilitate and promote the use of those

approaches. As a side effect, we contribute to the improvement of the modularity and

understandability of i* models.

3 Scientific Contributions

This section presents the proposed approaches to satisfy the research goals. Section

3.1 describes how we intend to include architectural decisions in STREAM, while

Section 3.2 presents how we plan to automate its model transformations.

3.1 Architectural Decisions in the STREAM Process

Based on the classification scheme of architectural decisions proposed by [9], we

noticed that the STREAM process only allows the decision-making of a subset of

architectural decisions types. In this way, we are extending the STREAM approach in

order to support two specific kinds of architectural decisions: the existential and

technology decisions. So, to systematize the specification of architectural decisions in

the extended STREAM process, we combined the step (iii) and (iv) into a single

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

67

activity named Refine Model with Architectural Decisions that encapsulates the

design choices of the former steps in the classification scheme (existential and

technological decisions) that we are using. Moreover, we renamed the steps (i) and

(ii) to, respectively, Requirements Refactoring and Generate Architectural Model

(Fig. 1).

Fig. 1 Extended STREAM Process

The aim of this new Refine Model with Architectural Decisions activity is to

sharpen up the generated architectural model by considering existential and

technology decisions. Moreover, through the documentation of these decisions using

some documentation template, it is possible to capture the context, rationale and other

relevant information about the decisions. A set of documented decisions are the

output of each decision-making activity. In this paper, we do not have sufficient space

to describe how we plan to record the architectural decisions, see [6] and [9].

Fig 2 illustrates the sub-process that presents the architecture refinement with

decisions. In the Make Existence Decisions activity, the architect defines elements or

artifacts that are required for the system�s design or implementation. This kind of

decision includes structural as well as behavioral decisions. For example, structural

decisions lead to the creation of subsystems, layers, partitions, components, etc.

Behavioral decisions are usually related to how the elements interact together to

provide functionality or to satisfy a non-functional requirement [9]. For instance, the

choice of a specific architecture pattern can be seen as an existence decision, so it is

specified in this activity of the process.

Fig. 2 Refine Model with Architectural Decisions Sub-process

The aim of the Refine Model with Existence Decisions activity is to refine the

architectural models to reflect the existence decisions made during the earlier activity.

Thus, the outputs of this activity include a refined ACME architectural model together

with the list of existence decisions made.

The executive decisions are the decisions that do not relate directly to the design

elements or their qualities, but are driven more by the business environment

(financial), the development process (methodology), the people (education and

training), the organization, and to a large extent the choices of the technologies and

tools [9]. There are different kinds of executive decisions, but at this time we will

focus only on technology decisions. So, the Make Technology Decisions activity

involves decisions that should be part of an architectural specification, mainly, to

guide the implementation of the architecture. Examples of technology decisions are

the choice of a programming language and the choice of a specific framework.

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

68

There is a need to assess if the selected technology architectural decision affects or

impacts the ACME architectural model. If this is the case, these decisions are

considered in the Refine Model with Technology Decisions activity to further refine

the ACME architectural model. For instance, selecting a specific API to be integrated

with the architecture. Otherwise, if the decision does not affect the architectural

model, the process is concluded. For example, the choice of a programming language.

 In the next subsection we examine another challenge: the need to provide some

degree of automation (tool support) for the approaches.

3.2 Automating Model Transformations

Some activities of the family of STREAM approaches can be time consuming. Hence,

we should examine if some kind of tool support could be provided, at least to partially

automate the processes. The (i) Prepare Requirement Models and (ii) Generate

Architectural Solutions steps of STREAM are amenable to some degree of

automation, since they rely on model transformations. The first activity relies on

horizontal rules to refactor the i* requirement models prior to the architectural model

generation. The second activity applies vertical rules to derive architectural models

from the refactored i* models.

These transformation rules can be precisely defined using the QVT transformation

language (Query/View /Transformation) [12], in conjunction with OCL (Object

Constraint Language) [10] to represent the constraints. The transformation process

requires the definition of transformation rules and metamodels for the source and

target languages. The horizontal rules that aims to refactor the i* models have the i*

language both as source and target language. On the other hand, recall that the vertical

rules are used to generate architectural models (in ACME) from modularized

requirements models (in i*). Hence, our vertical rules have i* as the source language

and ACME as target language. Once defined and specified using QVT and OCL, the

transformation rules could be incorporated in a tool, such as the iStarTool [8].

 Note that the iStarTool already has internal representation of the i* metamodel and

could be extended to allow the implementation of the new transformation rules. In

doing so, the Prepare Requirement Models activity could become semi-automatic.

The user would still need to select the candidate sub-set of elements to be factored

out. After this selection, all the other steps of the activity could be automated. As a

result, the refactored i* model could now be obtained with the press of a button.

The Generate Architectural Solutions activity generates candidate Acme models

from the modularized i* models. The alternative solutions are derived from the

inherent variability of i* models (e.g., due to the Means-Ends relationships). The

choice of the candidate solution can be influenced on softgoal or quality attributes

present in requirements models. Hence, we envisage including in the iStarTool the

ability to generate all possible set of candidate architectures. Moreover, the tool could

indicate the degree of satisfaction of a given set of softgoals for each architecture.

Furthermore, the generated Acme models are used in subsequent steps (iii) and (iv) of

the STREAM Approach. It remains to be studied how these steps could be partially

automated.

By automating the model transformations, several experiments can be performed to

evaluate different architectural models without additional costs.

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

69

4 Discussion

In this paper, we have proposed two approaches aiming to improve the systematic

process that generates architectural models from i* models. We have presented an

approach to include support for recording architectural decisions in STREAM.

Furthermore, we have indicated how the horizontal and vertical model

transformations presented in the process could benefit from automation and tool

support.

The first approach improves the family of the STREAM approaches, by allowing

the rationale of the decisions made to be recorded. With this extension, it is possible

to specify a more complete architecture by defining a broader set of architectural

choices - for example, technology decisions. Moreover, by documenting the

architectural decisions, the information that underlies the context of a decision can be

recorded. However, such extra information may overload the refinement step of

STREAM with documentation activities. Nonetheless, we believe that the benefits of

documenting an architectural decision [6] far compensate the extra effort required for

recording the rationale. We also need to investigate if we can anticipate specific kinds

of decision-making that are common to these in earlier steps of the process.

The second improvement proposed in this paper minimizes the effort of applying

the model transformation rules manually. Besides, it eliminates the possibility of

making mistakes when manually applying these rules. Since the transformation

process could be automatically supported, another positive aspect of this improvement

is the increase of productivity, as it enables a simplification of the process and reduces

the amount of manual activities.

5 Ongoing and Future Work

We offer a family of a systematic method that derives (with semi-automatic support) a

candidate architectural design from i* models. With this in mind, we can describe

specific ongoing and future work for each approach presented in this work.

On one hand, we are evolving the approach to include architectural decisions. We

are defining how we will document the architectural choice. Our first attempt is to use

a template as the proposed by Garlan et al. [6]. Hence, we need to evaluate how the i*

models can guide or aid the documentation of the decisions. We are also investigating

where does design decisions take place in STREAM. As future works, we will specify

an extended STREAM approach that results in an architectural design that

encompasses both the architectural decisions and the representation views.

Furthermore, we need to further validate the approach with several case studies. We

also intend to integrate the new process with a tool to manage the artifacts produced

in the architectural design step.

On the other hand, we are extending the iStarTool [8] to support the horizontal

mapping rules which modularize the i* models. The rules are specified in QVT and

OCL. As future work, we plan to develop an iStarTool API to incorporate the vertical

mapping rules, which generates the initial model Acme from modularized i* models.

Last but not least, experiments are required to validate the family of STREAM

approaches as well as the new iStarTool functionalities.

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

70

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice (2nd Edition)

Addison-Wesley Professional, 2003.

2. Berry, D. M., Kazman, R., Wieringa, R.: Second international workshop on from software

requirements to architectures (straw�03). SIGSOFT Softw. Eng. Notes 29, 1�5, 2004.

3. Castro, J., Kramer, J.: From software requirements to architectures (STRAW�01).

SIGSOFT Software Eng. Notes 26, 49�51, 2001.

4. Castro, J., Lucena, M., Silva, C., Alencar, F., Santos, E., and Pimentel, J.: Changing

Attitudes Towards the Generation of Architectural Models. In: Journal of Systems and

Software, 2011 (Accepted for Publication).

5. Castro, J., Pimentel, J., Lucena, M., Santos, E., Dermeval, D.: F-STREAM: A Flexible

Process for Deriving Architectures from Requirements Models In: 9th International

Workshop on System/Software Architectures (IWSSA'11), 2011 (Accepted for

publication).

6. Garlan, D., Bachmann, F., Ivers, J., Stafford, J., Bass, L., Clements, P., Merson, P.:

Documenting Software Architectures: Views and Beyond, 2nd ed. Addison-Wesley

Professional, 2010.

7. Garlan, D., Monroe, R., Wile, D.: Acme: An Architecture Description Interchange

Language. In: Proc.CASCON�97, 1997. Toronto, Canada.

8. IStarTool Project: A Model Driven Tool for Modeling i* models. Available at

http://portal.cin.ufpe.br/ler/Projects/IstarTool.aspx, June (2011)

9. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural

knowledge. In QoSA, pp. 43�58, 2006.

10. OCL 2.0. Available in < http://www.omg.org/spec/OCL/>. Last access in 2011, June.

11. Pimentel, J., Lucena, M., Castro, J., Silva, C., Santos, E., Alencar, F.: Deriving Software

Architectural Models from Requirements Models for Adaptive Systems: The STREAM-A

approach. In: Requirements Engineering Journal, 2011 (Accepted for Publication).

12. QVT 1.0 - Query View Transformation. Available in < http://www.omg.org/spec/QVT/1.0/

>. Last access in 2011, June.

13. Yu, E.: Modeling Strategic Relationships for Process Reengineering. Ph.D. thesis.

Department of Computer Science, University of Toronto, Canada, 1995.

14. Lucena, M.: STREAM: A Systematic Process to Derive Architectural Models from

Requirements Models. Ph.D. Thesis, CIn, Federal University of Pernambuco, Recife, 2010.

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

71

