
Capturing Contextual Variability in i* Models

Alexei Lapouchnian1 and John Mylopoulos2

1 Department of Computer Science, University of Toronto, Canada

alexei@cs.toronto.edu
2 Department of Information Engineering and Computer Science, University of Trento, Italy

jm@disi.unitn.it

Abstract. Exploration and analysis of alternatives is one of the main activities

in requirements engineering, both in early and in late requirements phases.

While i* and i*-derived modeling notations provide facilities for capturing cer-

tain types of variability, domain properties (and other external influences) and

their effects on i* models cannot be easily modeled. In this paper, we propose

to explore how our previous work on context-dependent goal models can be ex-

tended to support i*. Here, we examine how i* modeling can benefit from both

monitorable (i.e., defined through real-world phenomena) and non-monitorable

(e.g., viewpoints, versions, etc.) contexts defined using our context framework.

1 Introduction

i* is an agent-oriented modeling framework that centers on the notions of intelligent

actor and intentional dependency. The Strategic Dependency (SD) model of i* focus-

es on representing the relevant actors in the organization together with their intention-

al dependencies, while the Strategic Rationale (SR) model captures the rationale be-

hind the processes in organizations from the point of view of participating actors.

Variability in requirements and in design has been identified as crucial for develop-

ing future software systems [4,5]. Moreover, flexible, robust, adaptive, mobile and

pervasive applications are expected to account for the properties of (as well as to

adapt to changes in) their environments. Thus, modeling variability in the system

environment and its effects on requirements and on other types of models is a highly

desirable feature of a modeling framework. However, i* does not support capturing of

how domain variations affect its diagrams. This leads to two situations. First, an over-

simplification of the diagrams through the assumption of domain uniformity with the

hope of producing an i* model that is adequate for the most instances of a problem.

Second, the production of multiple i* models to accommodate all domain variations.

The former case leads to models that fail to account for the richness of domain varia-

tions, while the latter introduces serious model management problems due to the need

to oversee large numbers of models as well as to capture their relationships. In this

paper, we adapt the ideas from [3] to the i* modeling framework and propose an ap-

proach that uses contexts to structure domain variability and to concisely represent

and analyze the variations in i* models resulting from this domain variability as well

as from other external factors such as viewpoints, etc. Using the proposed approach,

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

96

we are able to capture in a single context-parameterized model how varying domain

characteristics affect stakeholders, their goals, and their intentional dependencies.

2 Research Objectives

While i* has capabilities to represent certain types of variations in it diagrams, they

are not adequate to capture the effects of domain variability on the models. In SD

models, one cannot state that the actors and dependencies appear in the model only in

certain circumstances. E.g., if we look at a system where a Distributor accepts orders

from Customers, fulfills them through Suppliers, and then ships those orders through

Shipping companies, it is not possible to capture in a single SD diagram the fact that

in the case of an international order, another actor comes in, the Customs Broker,

through which the Distributor clears the order before shipping it.

In SR models, OR decompositions (or means-ends links) are the tools to represent

variation points. Still, they are not enough to capture all the possible effects that do-

main variations can have on SR models, such as varying sets of top-level actor goals,

different goal refinements, and changing evaluations of alternatives w.r.t. softgoals.

We propose to adapt the ideas of [3] to i* and use contexts as a way to parameter-

ize i* models in order identify changes due to such external factors. A context is an

abstraction over relevant domain properties. internationalOrder, largeOrder, im-

portantCustomer are examples of contexts that influence the i* diagrams modeling

the Distributor system. Additionally, we show how related contexts can be organized

into inheritance hierarchies and how this simplifies the modeling process as well as

discuss the notion of visibility of model elements as a way to combine model variants.

3 The Context Framework for i*

3.1 Visibility of Model Elements, Contexts, and Context Inheritance

The main idea of our context framework [3] is that models (e.g., ER and i* diagrams,

or knowledge bases) are viewed as collections of elements (i.e ., nodes, edged, facts),

some associated with conditions that describe when the elements are visible � i.e.,

present in the model. These conditions are captured through (possibly many) sets of

contextual tags assigned to model elements. The tags model the (many) contexts in

which the elements are valid. E.g., the tag assignment {{largeOrder}, {mediumOrder,

importantCustomer}} indicates that some model element is visible either when the

order is large or with a medium-sized order from an important customer. The absence

of any condition indicates that a model element is valid in all contexts (visible in all

model variants). Each contextual tag has a definition describing when it is active.

Thus, a set of tags can be viewed as a propositional DNF formula. Through their defi-

nitions, contexts can be monitored in the environment of the system to determine

when they are active. Therefore, a context-parameterized model will be changing as

the environment conditions change. In [3], which presents the details of this formal

visibility framework, we applied the framework to goal models, while here we do so

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

97

for i*. We are interested in capturing the effects of two types of external factors on i*

models: monitorable contexts and changes due to viewpoints, model versions, etc.

For added flexibility, the formal context framework supports non-monotonic inher-

itance of contextual tags. This way, the modeler can declare that a new contextual tag

(e.g., mediumOrder) inherits from an existing one (e.g., substantialOrder). Thus,

model elements tagged with mediumOrder (i.e., valid/visible in that context) are au-

tomatically tagged with substantialOrder. Additional model elements can be explicit-

ly assigned the derived tag, while others, to which the parent tag had been previously

applied, can be excluded from the derived tag (hence the non-monotonicity of the

inheritance). This mechanism is a means for structuring the domain and supports in-

cremental development of context-dependent models through tag reuse.

The framework states that an element is visible in the model if the DNF formula

derived by substituting contextual tags with their definitions (and also taking into

account contextual tag inheritance) holds. So, given a domain in some state, we eval-

uate the tag definitions to determine which ones are active and then conclude which

model elements are visible in the current domain state. Since this framework is mod-

el-agnostic and does not take into consideration the syntax/semantics of the i* model-

ing framework, we need to create a method to process context-parameterized i* mod-

els and produce, for each model element, the expression that determines its visibility.

3.2 Applying the Framework to i* Models

To apply the above-described contextual framework to i*, we need to associate con-

textual constraints to i* model elements (actors, goals, dependencies, and so on). We

use contextual annotations to specify that certain i* model elements are only visible

in particular contexts, thus taking domain variability into account. Once these annota-

tions are applied to SD/SR diagrams, an algorithm similar to the one presented in [3]

for goal models will process these diagrams and the context hierarchies that accom-

pany them, propagate appropriate contextual tags (see below) and generate for each

model element a contextual tag expression defining when they are visible. Due to

space constraints, we do not present the algorithm in this paper.

In SD diagrams, actor nodes and dependencies can both be parameterized with

contextual annotations. For instance, Fig. 1A shows that the Customs Broker agent and

its incoming dependency from Distributor are only visible in the context of international

orders (we are using a simplified form of contextual annotations compared to [3]).

To avoid dangling dependencies, if there is a dependency Dep from actor A1 to ac-

tor A2, and these are parameterized with context annotations CD, CA1, and CA2 respec-

tively (Fig. 1B), then the dependency visibility is defined by the conjunction of these

annotations since for a dependency to appear in the model, its own context and the

contexts for its source and destination actors have to be active (they have to be in the

model). This illustrates that one of the annotations in Fig. 1A is, in fact, redundant.

Overall, we are utilizing the hierarchical nature of i* (i.e., the decompositions) as well

as its navigational rules (through dependencies) to minimize the number and size of

contextual annotations that are needed. So, for the dependency in Fig. 1B, the com-

plete visibility constraint can be automatically generated from up to three annotations.

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

98

CA2

...

CA1

internationalOrder

...
internationalOrder

Distributor Customer
Customs

Broker

D

Supply

Products

DD

D

Clear

Customs

DD

A2A1 DepD D

A

B
CD

Dependency Visibility:

CA1 CD CA2

Fig. 1. Applying contexts to SD models

In [3], we described how contextual annotations could be applied to goal models,

which are, in essence, actor-less, SR models. The main idea was that a contextual

annotation applied to a (soft)goal node is automatically propagated to the subtree

rooted at that node (i.e., its refinement). This greatly reduces the number of annota-

tions one needs to apply. Moreover, multiple annotations within the same subtree are

combined in a way shown in Fig. 2A: when the annotation C2 is applied to a node G1

within the subtree already adorned by C1, both contexts must be active for G1 and its

descendants to be visible in the model. For context-parameterized SR models, re-

source and task nodes are handled similarly. Annotations can also be applied to soft-

goal contribution links to capture the fact that the evaluation of alternatives can be

different in different contexts. E.g., the automatic approval of orders may have a

negative contribution to the softgoal Minimize Risk (Fig. 2B) for low-risk customers,

but in the case of a high-risk one, the contribution is changed to break.

C2

C1

C1, C2

C1

G1 G2

GA

propagated context

C2

C1

G1 G2

G

highRisk

Customer

lo
w

R
isk

C
u
sto

m
e
r

Approve

Order

Automatically

Approve

Manually

Approve

Minimize Risk

� --

B
+

CD CG2CG1

CA2CA1

...
A1

G1

...
A2

G2DepD D

Dependency Visibility:

CA1 CG1 CD CA2 CG2

!

Fig. 2. Context propagation (A); contextual annotations applied to contribution links (B);

(C) Context-parameterized dependencies in SR diagrams

The key additions to SR diagrams compared to goal models of [3] are actor bub-

bles and dependencies. Since some actors may be present only in certain contexts

(e.g., the Customs Broker in the context of an international order), in SR models they

too can be annotated with contexts. Such annotations are implicitly applied to all the

model elements within that actor�s bubble. The actor�s context will be combined with

other context annotations within the bubble as shown in Fig. 2A. This way, whenever

the context associated with the actor node is not active, the whole bubble disappears.

When looking at a context-parameterized intentional dependency at the SR level,

we treat its edges together with the dependum as a single model element parameter-

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

99

ized with a context. The contexts for its source node, its target node, and the depend-

ency itself must be active for the dependency to be visible in the model (see Fig. 2C).

3.3 Using Context-Parameterized i* models

With the above approach, we produce a context-parameterized i* model, in which

each model element is associated with a visibility condition (this, in fact, combines

into a single model many different model variations). Evaluating these conditions in

some domain state produces a model variant with only a subset of the elements. Thus,

in effect, contexts act as filters on i* models by removing irrelevant model fragments.

Context: small

national order

largeOrder

localOrder

internationalOrder

Distributor Customer
Customs

Broker

DD

Clear

Customs

DD

Products

PaymentD D

Supplier

D
D

Products

Local

Courier

Ship Order

D

D

Shipping

Co.

Ship Order

D
D

Credit

Agency

Evaluate

Credit Rating

D
D

Minimize

Risk

D

D

Distri

butor
Cust

omer

DD Produ

cts

Paym

ent
D D

Suppl

ier

DD Produ

cts

Shipp

ing

Co.

Ship

Order

D
D

B1

A

Distri

butor
Custo

mer

Custo

ms

Broke

r

DD

Clear

Customs DD

Produ

cts

Payme

nt
D D

Suppl

ier

D
D Produ

cts

Shipp

ing

Co.

Ship Order

D
D

Credit

Agen

cy

Evaluate

Credit

Rating

D

D

Minimize

Risk

D

D

B2

Context: large

international order

Fig. 3. Using contexts as filters on SD models

Given the context definitions that are rooted in real-world phenomena (i.e., mon-

itorable contexts), i* models can be dynamically adapted to changing domain condi-

tions. E.g., the context-parameterized SD model for the distributor scenario in Fig. 3A

is seen differently in the context of a small national order (Fig. 3B1) compared to the

context of a large international order (Fig. 3B2). Note that these two models are no

longer parameterized with contexts � their contextual variability has been bound.

Thus, they can be analyzed using conventional goal model or i* analysis techniques.

The same framework can be used to integrate a number of variations of the same

model, each capturing a particular model version, a viewpoint, etc. In this case, view-

points, versions, etc. are represented by contexts that are not monitored, but can be

manually turned on or off (e.g., version1 = true). These contexts can also be orga-

nized into inheritance hierarchies to better facilitate incremental model development

and even to mimic approaches like [2]. The idea of context-based visibility can like-

wise be employed to label alternative sets of leaf-level nodes in SR models (i.e., strat-

egies for achieving high-level goals) with contexts, and then turning these contexts

�on� or �off�, and running analysis algorithms on the resulting model variations.

4 Ongoing and Future Work

We are working on the flexible implementation of the context framework to sup-

port various flavours of i*-based and goal modeling notations. This will also help

with the validation of the approach. In addition, we are exploring the links between

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

100

contexts and business rules. We also plan to identify synergies with the approach of

[1], which while having a lot of similarities with our proposal, has a different focus.

We currently view contexts as global and thus shared among actors. However, in

some applications, it may be beneficial model contexts on per-actor basis, which im-

plies that in that case, the context-parameterized models would capture the actors�

possibly incompatible viewpoints on the system. Also, there may be flavours of i*

modeling, which do not comply with the handling of dependencies in SR models

illustrated in Fig. 2C. We are looking into a number of context propagation customi-

zations to accommodate these modeling techniques.

Contexts can be thought of as specifying dynamically loadable model fragments.

When the formula defining the context holds, the context becomes active and the

model elements that are �in� context become visible in (or loaded into) the model. We

plan to explore the idea of context encapsulation as a way to improve scalability in i*.

5 Conclusions

In this paper, we applied to i* a context mechanism based on the flexible idea of

model elements� visibility defined by external factors such as domain characteristics,

viewpoints, etc. With the proposed framework, we are able to capture the effects of

domain variability on a system using a single context-parameterized i* model and to

automatically produce variations of that model based on the currently active contexts.

In essence, contexts here act as filters on i* models by removing model elements not

applicable in the current state of the domain. Contextual variability is thus bound, so

conventional goal analysis techniques can be utilized with the generated models. The

framework can be used for both monitorable and non-monitorable contexts. Context

inheritance is another feature of the approach. It allows for adding structure to domain

models, for context reuse, and for incremental i* model development.

The context framework�s aim is not to address the scalability/complexity issues in

i* � it is to help integrate multiple model variations into a single diagram. Here, one

has to balance the need for and the benefits of adjusting the model to different domain

characteristics and thus the need to have a large number of system variations against

the complexity of eliciting and maintaining this large number of system variants.

References

1. R. Ali, F. Dalpiaz, P. Giorgini. A Goal-based Framework for Contextual Requirements

Modeling and Analysis. REJ, 15(4):439-459, 2010.

2. S. M. Easterbrook. Domain Modelling with Hierarchies of Alternative Viewpoints. In

Proc. RE'93, San Diego, January 1993.

3. A. Lapouchnian and J. Mylopoulos. Modeling Domain Variability in Requirements Engi-

neering with Contexts. In Proc. ER 2009, Gramado, Brazil, Nov 9-12, 2009.

4. A. Lapouchnian, Y. Yu, S. Liaskos, J. Mylopoulos. Requirements-Driven Design of Auto-

nomic Application Software. In Proc. CASCON 2006, Toronto, Canada, Oct 16�19, 2006.

5. S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, J. Mylopoulos. On Goal-based Variability Ac-

quisition and Analysis. In Proc. RE�06, Minneapolis, USA, Sep 11-15, 2006.

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

101

