CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

Adding Functionality to openOME for Everyone

Ralf Laue, Arian Storch

Chair of Applied Telematics / e-Business, University of Leipzig, Germany
laue@ebus.informatik.uni-leipzig.de

Abstract. Adding new functionality to graphical editors like openOME
usually requires to become familiar with the programming environment
of the underlying framework.

We present an interface for Eclipse EMF/GMF-based modelling tools
that allows to add new functionality very quickly - without the need to
be familiar with Eclipse development.

1 Primary Features

The Eclipse Modeling Framework (EMF) and the Eclipse GMF (Graphical Mod-
eling Framework) are well-established frameworks for developing modelling tools.
An example for an EMF/GMF-based i* modelling tool is openOME [1].

We know from our own experience that often a lot of knowledge is required
before someone can actually start to add functionality to EMF/GMF-based ed-
itors. The aim of our Eclipse plugins - called Eclipse Modeling Toolbox - is to
make the task of extending editors like openOME as easy as possible. In this
section, we present the possibilities offered by our plugins.

1.1 User-Defined Attributes

An additional view for user-defined attributes allows to add own attributes to
model elements or to a model as a whole. Fig. 1 shows how user defined attributes
have been added to a task in an i* model. If a URL referring to a local or remote
file is used as an attribute value, this file can be opened by clicking on the
URL. This way, it is possible to associate additional files to a model element (for
example business process descriptions that are related to a task).

1.2 Export and Import

By using the Eclipse Modeling Toolbox, it is possible to create export and import
functionality for other file formats. This export and import is done by means of
XSLT transformations. So far, we have created transformations for exporting an
openOME model to a set of Prolog facts. We are currently working on an export
to the interchange format iStarML [2].

A new format can be supported by simply adding a new XSLT file and
inserting information about the export/import format to a configuration file.

169

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

\ .
e Actor N
do IT review ©
6 Agent
" o] = : Q Position pre
.Z_?. Tasks ! =] Proper‘ties| = Console“—_z_\ Problemsl 1 Model attribute view &3 l = i)
Attribut: | | Value: E Project|
Attribute Value
criticality low
tasktype manual

Fig. 1. User-defined attributes added to a task

1.3 Integrating Add-ons

We tried to make the integration of third-party programs into openOME as easy
as possible. We know from our own experience that often a lot of knowledge is
necessary before someone can actually do such integration. At least, the answers
to the following questions have to be known:

— How can we access the model data and transform them into the data format
expected by the third-party program?

— How can we start the third-party program from within the modeling tool?

— How can we transfer the answers given by the third-party program back into
the user interface of the modeling tool?

With our plugins , we provide easy-to-understand interfaces for dealing with
the above questions. The already mentioned export scripts can be used for ac-
cessing and transforming the model (including its user-defined attributes as de-
scribed in Sect. 1.2).

The information on how to start the external program can be added to a
configuration table at runtime, either manually or by importing an XML file
containing the necessary information. This creates a new menu item from which
the external program can be started.

Finally, we have to make sure that the results computed by the third-party
tool are transferred back into the openOME user interface. For this purpose, we
provide several interfaces. They abstract away Eclipse implementation details
and allow the external program

— to print information into the Eclipse console view,

— to add information about an error, warning or information to the Eclipse
problem view

— to add a visual marker to the graphical model element,

— to add, delete or change attributes of the modelling elements (which includes
existing attributes such as “name”, graphical attributes such as “element
size” and user-defined attributes)

With the described features, it is possible to integrate new functionality into
openOME without having to learn about Eclipse development. In the most cases,
new features can be added even without having to compile the sources.

170

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

_/ * | 5% Palette I
ReaoD- -
| O Acter
©) Agent
Adapt|= i E
AT apt & Position
Costomers ORole
Item Searching P T
Handled JJ@ A Goal can only be decomposed using Means-Ends Links)
T—rSottgoal
Help
Internet Orders O Task
N Catalog Baidled i [CIRescurce
(_Qu?ry 3 Consultin i
¢l T s =0 Dependency i
Z;Tasks ‘ = Propemasl & Console [E_\ Problems I O]
1 error, 2 warnings, 1 other
Deseription = Resource
@ Errors (1 item)
@ A Goal can only be decomposed using Means-Ends Links. Copy of 4 - 5l
@ Warnings (2 items)
& Consider to use a softgoal for: Increase Customer Satisfaction Copy of 4 - 51
& The model is not a coherent graph! Copy of 4 - 51
i Infos (L item)
i Number of nodes: 27 Copy of 4 - 51

Fig. 2. Results from the add-on “Extended Model Validation” in openOME

1.4 Validation

As an example for a useful openOME add-on, we have developed an add-on called
“Extended Model Validation”. It exports the information that is contained in the
model into a set of Prolog facts. Afterwards, SWI-Prolog is called for locating
modelling problems such as syntactical errors (like “dependency link without
dependum”), layout problems and (to some extent) problems with the labels
(like labels including the phrase “...to be...” within a task instead of a goal).
More information about the model validation approach can be found in [3].

2 Status and Future Plans

It is important to mention that the Eclipse Modeling Toolbox can be inte-
grated within any EMF/GMF-based modelling tool. It has been used successfully
within the business process modelling tool bflow* for the development of some
useful add-ons. Future plans related to openOME include to provide iStarML
import and to add more functinality to the add-on-mechanism. Everyone is in-
vited to use and improve the Eclipse Modeling Toolbox which is available at
http://sourceforge.net/projects/eclipsemodeling/.

References

1. www.cs.toronto.edu/km/openome/: (Openome, an requirements engineering tool)

2. Cares, C., Franch, X., Perini, A., Susi, A.: Towards interoperability of i* models
using iStarML. Computer Standards & Interfaces 33 (2011) 69 — 79

3. Laue, R., Storch, A.: A flexible approach for validating i* models. In: Proceedings
of the 5th International i* Workshop, Trento, Italy. (2011)

171

