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Preface

This volume contains the papers presented at MathWikis (http://www.cs.ru.nl/mwitp/), the ITP
2011 Workshop on Mathematical Wikis held on August 28, 2011 in Nijmegen, Netherlands.

There were 10 submissions (one of them invited). Each submission was reviewed by four program
committee members.

We would like to thank Henk Barendregt for generously sponsoring the MathWikis workshop from
his Spinoza Prize, awarded by The Netherlands Organisation for Scientific Research, as well as our peer
reviewers for carefully reviewing the submissions and giving constructive feedback.

This proceedings volume has been generated with EasyChair, which made this task really convenient.

August 23, 2011
Bremen/Nijmegen

Christoph Lange
Josef Urban

ii

http://www.cs.ru.nl/mwitp/
http://en.wikipedia.org/wiki/Spinoza_Prize
http://www.nwo.nl/


Program Committee

Jesse Alama CENTRIA, FCT, Universidade Nova de Lisboa (PT)
David Aspinall University of Edinburgh (UK)
Joseph Corneli Knowledge Media Institute, The Open University (UK)
Cezary Kaliszyk University of Tsukuba (JP)
Fairouz Kamareddine Heriot-Watt University (UK)
Michael Kohlhase Jacobs University Bremen (DE)
Markus Krötzsch University of Oxford (UK)
Christoph Lange Jacobs University Bremen (DE)
Lionel Mamane (LU)
James Mckinna Radboud University Nijmegen (NL)
Piotr Rudnicki Univ. of Alberta (CA)
Carst Tankink Radboud University Nijmegen (NL)
Josef Urban Radboud University Nijmegen (NL)
Denny Vrandecic Karlsruhe Institute of Technology (DE)

iii



Contents

Preface ii

Programme v

The On-Line Encyclopedia of Integer Sequences: From Punched Cards to Wiki in 46
Years
Neil J. A. Sloane 1

Metadata for a wiki of formalized mathematics
Jesse Alama 2

The PlanetMath Encyclopedia
Joseph Corneli 6

A Linear Algebra Wiki
Michael Doob 13

The Web of Mathematical Models
Thomas Grundmann, Jean-Marie Gaillourdet, Karsten Schmidt, Arnd Poetzsch-Heffter,
Stefan Deßloch, and Martin Memmel 19

Wiki Authoring and Semantics of Mathematical Document Structure
Hiraku Kuroda and Takao Namiki 28

Ideas for a MathWiki Editor
Sebastian Reichelt 38

Dynamic Proof Pages
Carst Tankink and James McKinna 45

Content-based encoding of mathematical and code libraries
Josef Urban 49

ProofWiki: A Structured Approach to Mathematical Presentation
Matt Westwood 54

WorkingWiki: a MediaWiki-based platform for collaborative research
Lee Worden 63

iv



Programme

Contributed talks are 30 minutes long. Please allow at least 5 minutes of your time slot for discussion.

09:00–10:00 Session 1
9:00–10:00 Invited talk: The PlanetMath Encyclopedia

Joseph Corneli

10:00–10:30 Coffee Break

10:30–12:30 Session 2
10:30–11:00 The Web of Mathematical Models: A Schema-based, Wiki-like, Interactive Platform

Thomas Grundmann, Jean-Marie Gaillourdet, Karsten Schmidt, Arnd Poetzsch-
Heffter, Stefan Deßloch and Martin Memmel

11:00–11:30 ProofWiki: A Modular Approach to Mathematical Presentation
Matt Westwood

11:30–12:00 Wiki Authoring and Semantics of Mathematical Document Structure
Hiraku Kuroda and Takao Namiki

12:00–12:30 Metadata for a mathematical wiki: Initial experiments
Jesse Alama

12:30–14:00 Lunch Break

14:00–15:30 Session 3
14:00–15:00 Invited talk: The On-Line Encyclopedia of Integer Sequences: From Punched Cards

to Wiki in 46 Years.
Neil J. A. Sloane

15:00–15:30 A Linear Algebra Wiki
Michael Doob

15:30–16:00 Coffee Break

16:00–18:00 Session 4
16:00–16:30 WorkingWiki: a MediaWiki-based platform for collaborative research

Lee Worden

16:30–17:00 Dynamic Proof Pages
Carst Tankink and James McKinna

17:00–17:30 Ideas for a MathWiki Editor
Sebastian Reichelt

17:30–18:00 Content-based encoding of mathematical and code libraries
Josef Urban

v



The On-Line Encyclopedia of Integer Sequences: From Punched
Cards to Wiki in 46 Years

Neil J. A. Sloane
AT&T Shannon Labs,

Florham park, NJ, USA

Abstract

I started collecting number sequences in 1964. In 1996 I launched the On-Line Encyclopedia of
Integer Sequences (the OEIS) on the web, with 10000 sequences. By 2008 it had grown to 135000
sequences, and I was processing 200 emails a day - too much for one person to handle. But converting
it to a Wiki was very difficult and took two years. Only thanks to the efforts of Russ Cox, who had
to rewrite all the OEIS software, and with the help of my colleague David Applegate, the OEIS Wiki
finally started working on November 11 2010 (see http://oeis.org). In this talk I will report on
the problems we ran into, how we solved them, and the present state of the OEIS Wiki.
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Metadata for a wiki of formalized mathematics
Jesse Alama∗

Center for Artificial Intelligence
New University of Lisbon
j.alama@fct.unl.pt

Abstract

In recent years wikis for formal mathematics have appeared. Formal mathematics presents a
number of challenges for the wiki perspective. To enhance the quality of the data in these wikis
from the perspective of information architecture, we propose some extensions of existing formal
mathematics wikis to more properly handle metadata.

1 Introduction

Recent years have seen some attention paid to the problem of building wikis for formalized mathematical
texts, and there are various proposals and even some live wiki or wiki-like systems for formal mathemat-
ics [9, 6]. Formal mathematics (or indeed any formally verified content) presents a number of challenges
for the wiki perspective.

In this paper we propose some extensions of existing formal mathematics wikis to more properly
handle metadata. The aim, ultimately, is to better apply the tools of information architecture [7] for a
formal mathematical wiki. We sketch some salient kinds of metadata for formal mathematics and their
implementation. Our work is but a modest step toward the grand aim of a semantic web in the domain of
mathematics, with a bias toward formal verification.

2 Previous work

Our implementation concerns mizar, primarily, though our proposals naturally extend to other interactive
theorem provers and indeed other formal wikis as well.

mizar is an interactive theorem prover built on classical first-order logic and set theory. Its associated
library, the mizar Mathematical Library (MML), is a large corpus of formalized mathematical knowledge
spanning many areas of mathematics.

One early resource is the mizar wiki, at http://wiki.mizar.org. This is a long-standing resource
for those interested in the mizar language and its library. Part of that wiki documents metadata for the
articles of the MML. Of interest to us are the tags assigned to articles from the American Mathematical
Association’s Mathematics Subject (MSC) Classification scheme.

However, the mizar wiki does not support editing of other metadata about articles of the library, and
it serves its (HTML) resources without contentful metadata, neither in the HTTP headers nor in the
representations themselves. The first wiki system for mizar is live at http://mws.cs.ru.nl/mwiki.
This wiki does support editing mizar texts and ensures their validity. But this wiki also offers up only
scant metadata. We build on earlier wiki efforts for formalized mathematics [9, 2], and on a dynamic
website [1] for presenting fine-grained logical and mathematical dependencies for the mizar Mathematical
Library. Our aim is to extend the infrastructure provided by these systems with rich metadata, thereby
increasing the quality of mizar information available to humans and machines alike.

∗The author was supported by the FCT project “Dialogical Foundations of Semantics” (DiFoS) in the ESF EuroCoRes
programme LogICCC (FCT LogICCC/0001/2007).
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The efforts of Kohlhase and his collaborators (e.g., [6]) toward semantic markup of mathematics,
though not about formalized mathematics in the same sense as mizar texts, have helped to show ways of
marking up mathematical texts.

3 Metadata categories

Some metadata about mizar texts are functions of the text—we can compute the metadata in question—
and thus aren’t suitable for user editing. The length of a mizar article in bytes, for example, or the
underlying XML representation of an article, are properties of the text that cannot (so far as we can see)
be meaningfully modified.

Other properties of texts, however, can be profitably exposed. The following properties of mizar texts
are candidates for user-editable properties:

• Mathematics Subject Classification

Already there has been some informal efforts to annotate parts of the mizar Mathematical Library
by assigning tags to articles from the American Mathematical Society’s widely used Mathematical
Subject Classification (MSC) scheme [4]. These data are used to seed our MSC assignments: we
reuse the previous assignments of MSCs to mizar items (generally whole articles) for our initial
assignment.

• Title and author information.

• Natural language abstract.

• Citations of relevant mathematical sources (e.g., books, papers, encyclopedia entries).

• Uncomputed or undetectable relationships between other items.

The mizar definition of cardinal numbers, for example, depends implicitly on the axiom of choice,
but it is not clear how this can be detected from the dependency graph of the mizar Mathematical
Library (if it is possible at all). It seems better to us to permit users of the mizar wiki to associate
the mizar item that represents the definition of cardinal number with the mizar item that represents
the axiom of choice. Such links could be represented through Atom link elements and served as
See-Also HTTP headers.

• Alternates for theorems and definitions

Thus, a “named” theorem might have different variants or special cases. For example, the Jordan
curve theorem can be understood in complete generality, or in the special case of polygons. A
theorem might be started for arbitrary dimensions, but be of especial interest for dimension 2 or
3 (e.g., Euler’s polyhedron formula in full generality and the three-dimensional case). A theorem
(or axiom, as the case may be) can even have different forms, such as Zermelo’s well-ordering
principle (“every set can be well-ordered”) and a ‘vanilla’ rendering of the axiom of choice (“every
non-empty set of non-empty sets has a choice function”) are equivalent to one another (in a suitable
background theory, of course).

Some of these metadata categories are already handled outside the context of our wiki. When authors
submit their mizar texts to SUM (the mizar User Group, charged with maintaining mizar and its library),
they supply the text as well as author and title information, an abstract (in English), and citations to
relevant sources (e.g., the source of the “informal” proofs that are formalized in the article). This infor-
mation is used to automatically generate a TEX representation of an article, which is then published in the
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journal Formalized Mathematics1. The editors of Formalized Mathematics are charged with maintaining
this information. The data is thus static, in the sense that one cannot edit the published title and abstract
of a paper that has already been published in a journal.

A wiki that permits editing of metadata that already exists under the aegis of Formalized Mathematics
is not intended to compete with that journal. The SUM and its efforts to professionalize the writing of
formal mathematical texts (in mizar) complement the project proposed here. We use the the mass of
metadata that has been accumulated throughout the construction of the MML to seed our wiki with an
initial pool of trustworthy data. Our aim is to make the sea of (mizar-)formalized mathematical knowledge
discoverable and improvable. Where possible, we provide links to the authoritative, original sources for
mizar formalizations.

Metadata support in the mizar language itself is (almost) entirely lacking. One cannot use the lan-
guage itself to indicate, for example, the author of a mizar text. The language supports only one metadata-
related construction, the section keyword, which takes no arguments and it intended to delimit different
parts of an article.

In the context of a live wiki, however, curation-by-committee is not a viable option for eliciting and
maintaining metadata. One must go beyond the mizar language and provide a means of attaching or
editing metadata. Since one cannot directly add this information to mizar texts, in the context of a web
interface, one must enter the information in a form.

The absence of metadata functionality from the mizar language (apart from the aforementioned
section keyword) is, to some extent, an advantage, because it gives a clear separation of responsi-
bility of the validity of the text from information about the text. Our wiki process for registering and
maintaining metadata can complement the standard process for eliciting this data. With each new re-
lease of the mizar Mathematical Library, we receive another batch of “canonical” or official metadata for
updated contents of the library.

4 Serving metadata

We serve metadata in two ways: in the HTTP headers, and in the body of our article representations. We
adhere to RESTful principles [3], promoting the transparency of the HTTP protocol with the ultimate
aim of making our (meta)data accessible to humans and machines (e.g., search engines) alike.

We use the Atom Publishing Protocol and its extensible notion of link [8] by serving metadata in the
HTTP response headers. Our aim coheres with the goals of the Linked Open Data initiative2. Given a
request for, say, the 92nd theorem of the article POLYFORM, we can return the following headers:

# Request

GET /item/polyform/theorem /92 HTTP /1.1

# Response

HTTP /1.1 200 OK

Content -Type: text/html

Link: <http :// wiki.example.org/item/polyform/theorem /92/text >;

rel=" alternate ";

type="text/plain"

Link: <http :// wiki.example.org/authors /5>;

rel="http :// wiki.example.org/rels/author"

...

1See http://fm.mizar.org.
2See http://linkeddata.org/
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In this example, in addition to standard HTTP headers, we use the proposed Link HTTP header [5] to
refer to the author of the article (if it is known). The representation in the ... would likewise contain a
link in its body to the author and the other metadata.

One challenge in the context of a wiki is to provide keep URIs “cool”, that is, essentially permanent
objects. The slogan here is “Cool URIs don’t change” [3]. Metadata can help us to keep URIs cool while
still admitting that some of the concepts, definitions, and theorems to which the URIs refer are evolving.

5 Outlook

Richer representations of formalized mathematical data and its metadata are available. Thus, one could
serve RDFa or employ a suitable microdata framework. Richer representations of the mizar data itself
as RDFa, or a documented, well-structured URI namespace for items, would be valuable. In the face of
capable clients, one could even imagine performing non-trivial content negotiation; today, mizar text are
served only as plain text or as (relatively thinly annotated) HTML.

Finally, it should be clear that although we focus on mizar, few parts of the project that directly
depend on the mizar language, its tool set, or its library. The wiki principles developed here would apply
to any other system as well. Indeed, a formal wiki for other systems, suitably equipped with the kind of
metadata, would be a step toward setting up rich correspondences between various formal libraries and
their web representations.
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The PlanetMath Encyclopedia
Joseph Corneli

Knowledge Media Institute
The Open University
Milton Keynes, UK

j.a.corneli@open.ac.uk

Abstract

The history of PlanetMath.org is discussed, tracing its inception, stabilization, and some defining
challenges. Research and outreach efforts that have been conducted in the course of work on the
PlanetMath project are reviewed, and the scope and reach of the resource are discussed. Recent
developments are indicated briefly. Some remarks evaluating PlanetMath’s trajectory and content
conclude the paper.

Keywords: online communities, mathematics, collaboration, encyclopedias, Commons-Based
Peer Production, PlanetMath

1 Introduction

From PlanetMath.org’s landing page1:

PlanetMath is a virtual community which aims to help make mathematical knowledge more
accessible. PlanetMath’s content is created collaboratively: the main feature is the mathe-
matics encyclopedia with entries written and reviewed by members.

This short paper describes the history of the PlanetMath encyclopedia. The history of this resource
cannot be easily separated from a history of the PlanetMath community and the technology behind the
site, though the presentation here is not especially technical. The reader who is interested in a suc-
cinct overview of the current characteristics of the encyclopedia will find what they seek in Sections 6
(quantitative aspects) and 8 (qualitative aspects).

2 Beginnings

The early history of PlanetMath is wrapped up with that of the similarly-named website, MathWorld.2

Eric Weisstein began collecting the material now found in MathWorld as a high school student, and
continued the project as a college student in the late 1980s. “Eric’s Treasure Trove of Mathematics,”
went online in 1995, when Weisstein was a graduate student in astronomy at the California Institute of
Technology.3 In November 1998, Weisstein made a deal with the CRC Press to publish his encyclopedia
in book format, as the CRC Concise Encyclopedia of Mathematics. One year later, Weisstein accepted the
position of encyclopedist at Wolfram Research, Inc., and the renamed “MathWorld” site was unveiled
in December 1999.4 In March 2000, CRC Press sued Weisstein and Wolfram Research for copyright
violation, forcing MathWorld off of the internet.5

1http://planetmath.org
2http://mathworld.wolfram.com
3http://www.echarcha.com/forum/archive/index.php/t-19516.html a copy of the now-defunct http://

mathworld.wolfram.com/about/erics_commentary.html
4http://en.wikipedia.org/wiki/Eric_W._Weisstein
557 U.S.P.Q.2d 1220 (C.D. Ill. 2000)
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In the words of Eric Weisstein: “if you ever assemble a body of knowledge that you want to share
with others, you don’t want to go through what I have just gone through.”6 So it came to pass that in
the Fall of 2000, Nathan Egge and Aaron Krowne, at that time both undergraduates at Virginia Tech,
came up with the idea for PlanetMath: a collaboratively created mathematics reference work that would
have resistance to copyright threats built in, in the form of an open content license. By the summer of
2001, the basic infrastructure for creating an encyclopedia was complete, and a fledgling community had
grown up around the resource.

The CRC lawsuit was settled for an undisclosed sum in late 2001, and on November 6, 2001, Math-
World returned to the internet.7 But in the mean time, a new online community had been born – with
some very different principles and practices. Whereas MathWorld’s terms of use disallow archival copies,
PlanetMath regularly publishes snapshots of the content for download. Moreover, users are permitted
(and, indeed, encouraged) to copy, mirror, redistribute, print, remix, and reuse PlanetMath content for
commercial or any other purpose – so long as all such works are published under the same license as
PlanetMath, granting downstream users the same rights.

3 Stabilization

The key reference for PlanetMath is Aaron Krowne’s 2003 Master’s Thesis, written at Virginia Tech [6]
under the supervision of Ed Fox. In this thesis, Krowne describes how the early design and development
of the site benefited from continuous feedback in the #math IRC channel on Undernet.8 He also details
the key technical and community features of the site as they developed in this period:

• A state-of-the-art system for displaying mathematical notation on the web, starting from LATEX
sources.

• A flexible authority model that can support both wiki-style articles (that anyone can edit), and a
more academic style, where articles are owned by one person, who may, if they wish, grant co-
authorship permissions to chosen others, and who must respond to separate commentary from peer
reviewers (cf. [7]).

• A discussion forum attached to every encyclopedia article, which helps give the resource a “peda-
gogical slant”.

• An autolinking service that helps integrate content into the site, by enabling authors to focus on
the contents of one article at a time.

• Workflow built around corrections and watches, including a feature whereby articles are “or-
phaned” if a correction is not responded to after a given period of time.

• A scoring feature that provides a rough estimate of how much value each user has contributed to
the site.

In 2003, PlanetMath incorporated, and in 2005, obtained non-profit status, so that it could accept tax-
deductible donations (in the US). Together with a small stream of ad revenue, this has covered hosting
and other maintenance costs.

6See Footnote 3.
7http://mathworld.wolfram.com/about/faq.html#history
8irc://irc.undernet.org/math
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4 Pushing the limits

In 2003, the present author was enrolled as a graduate student in mathematics at the University of Texas
in Austin, and in possession of a large and growing personal collection of very tersely-written definitions
and proofs relevant to the department’s prelim exams.9 In fact, this work had as much to do with the
tradition of computer mathematics in the air in Austin (QED, Maxima, ACL2, AM) as it had to with
exams. A representative example:

(lebesgue outer measure: fact: lebesgue outer measure is
infimum of lebesgue outer measures of open supersets)

1: X ⊂ Rn

2: L = {O⊂◦ Rn : O⊃ X}
3: |X |e = infO∈L({|O|e})

After discovering PlanetMath and striking up a correspondence with Krowne, one night we uploaded
the contents of the “Austin Problems in Mathematics – Cross-Index” (styled APM-ξ ) into the PlanetMath
encyclopedia as world-editable “seed entries”. This turned out to be a first-rate disaster.10

The primary complaints from community members were:

(1) the entries could not be understood without reading an accompanying FAQ;

(2) a casual visitor to the PlanetMath website might get the wrong impression about the nature of the
encyclopedia when looking at “apmxi” entries; and,

(3) nearly 600 entries had been introduced into PlanetMath by the site’s administrator in one big
batch, circumventing, at least in outward appearances, the site’s usual model of careful review and
collaborative editing of entries.

Subsequent to a poll, it was decided that the apmxi entries would be “orphaned”, and any that were
not adopted by community members after a week would be deleted from the encyclopedia. This was the
fate that befell most.

The event was a defining moment in the history of PlanetMath. In the first place, it was a testament to
the strength of the community’s norms. Secondly, it showed that the specific affordances of computers,
e.g. for mass processing of data, or for dealing with hypertextual complexity associated with alternate
related treatments of a given topic, needed to be tempered to work well for the people involved. These
issues would set much of the research and development agenda around PlanetMath for the following
decade.

5 Research, outreach, and some critiques

In 2005, several established PlanetMath contributors met in person at a Symposium on Free Culture and
the Digital Library at Emory University, where Krowne was then based. Contributed papers looked at

• an adaptation of PlanetMath’s software for collaborative creation of course notes in a graduate
course on ordinary differential equations [10];

• experiments with a novel hypertext system based on the idea that everything is annotatable [1];
and,

9http://metameso.org/~joe/math/Xi.pdf
10http://wiki.planetmath.org/cgi-bin/wiki.pl/one_week_in_october
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• the dynamic tension between the non-copyrightability of ideas, and the necessity of conveying
ideas in copyrightable expressions, and the ramifications for mathematics [12].

These reflections on copyright (and copyleft) were subsequently expanded in an article for First Monday,
which looked at the drawbacks of current copyleft licenses, particularly “license lock” [8].

We presented talks about PlanetMath in the Math on the web pavilion at two Joint Mathematics
Meetings (San Antonio, 200611; New Orleans, 200712), and in a session on The Role of Open Source
Math Projects in the Mathematics Community at MathFest (Madison, 2008)13; and at more specialized
workshops: The Evolution of Mathematical Communication in the Age of Digital Libraries (Minneapolis,
2006)14, and Mathematical Knowledge Management: Sustainability, Scalability and Interoperability
(Halifax, 2007)15.

We also made efforts to create a print version of the PlanetMath encyclopedia (retitled the “Free
Encyclopedia of Mathematics”). The 2004 attempt, in two volumes16, and a 2005 attempt in one much
nicer-looking volume17, thanks to Ross Moore’s contribution of multinclude.sty and other tweaks.18

Still, the resulting 1971 page PDF was more a proof of concept than a printer’s proof.
On the development side, PlanetMath was thrice supported by Google’s Summer of Code (2006–

2008). The best outcome of this was that PlanetMath’s autolinking subsystem was turned into a modular
piece of code, NNexus19, as written up in [5]. PlanetMath’s software improved further under contract
with Springer, pursuant to the creation of StatProb.com.20 PlanetMath’s sister site PlanetPhysics.org21 is
currently in the process of switching over to this platform, termed Noosphere 1.5.

However, the development effort wasn’t particularly able to keep pace with the feature requests
generated by the user community.22 Nor did the Noosphere codebase present a particularly compelling
resource for capable computer mathematics developers like Claus Zinn [14] and Christoph Lange [9], to
jump into and improve. Zinn wrote:

The rapid growth of math resources on the web, which is further pushed by wiki-based
communities, is both a threat and an opportunity for intelligent math learning environments
[...] If we could harness the collaborative authoring process and encourage and guide wiki
authors to continually provide content and metadata, then intelligent services could unleash
their true potential.

6 Scope and reach

At the time of this writing, PlanetMath contains 8945 entries, dealing with 15655 concepts. 298 people
have contributed an entry in the encyclopedia, and 2742 have contributed something (perhaps just one
forum post).

11www.jointmathematicsmeetings.org/meetings/national/jmm/san-prog.pdf
12http://www.dessci.com/en/company/shows/jmm/mow2007.htm
13http://www.maa.org/abstracts/mf2008-program.pdf
14http://www.ima.umn.edu/2006-2007/SW12.8-9.06/
15http://projects.cs.dal.ca/ddrive/seminars/mkm.shtml
16http://www.scribd.com/doc/9691966/, http://www.scribd.com/doc/9692058/
17http://metameso.org/~joe/docs/book.pdf
18http://metameso.org/~joe/math/fem-2005.tar.gz
19http://code.google.com/p/nnexus/
20http://statprob.com
21http://planetphysics.org
22http://wiki.planetmath.org/cgi-bin/wiki.pl/Feature_Requests
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Out of these, an exceptional group of 24 authors have produced more than 100 encyclopedia articles
apiece. Their contributions comprise 74% of the total number of articles. About 71% of this core group
joined before 2004 (in the “early days” for the site).

130 users have a score of 1000 points or more, which would correspond to contributing 10 or more
new encyclopedia articles, but actually, a significant fraction of this value has been contributed through
things like corrections, revisions to existing objects, and posting in the forums. All told, this group has
contributed 96% of the total number of articles. About 58% of this group joined before 2004.

According to Alexa.com, PlanetMath.org is currently the 165,011th most popular website in the
world, comparable to the website of the Mathematical Association of America23 (119,267th), or relative
newcomer MathOverflow.net24 (184,818th).

A far cry from competing with Wikipedia, but in fact we like to think of the two projects as mutually
supporting. PlanetMath content is reused under the terms of the shared CC-By-SA license in hundreds
of Wikipedia articles, and cited in over 1500.

7 A new era

In 2010, a new project to completely rebuild PlanetMath’s software began. Planetary is based at Jacobs
University, Bremen, and led by Michael Kohlhase, with major contributions from most members of his
research group (along with the present author).25 The Planetary system is described in [4]. Planetary
is considerably easier to extend than Noosphere: it is currently comprised of around 20 plugins for the
popular open source platform, Vanilla Forums26, many of which integrate sophisticated software tools
previously developed by the KWARC group. Notably, the system now includes support for semantic
authoring and flexible metadata interaction, addressing the critiques mentioned in Section 5.

2011 will see the publication of a book chapter discussing the future use of PlanetMath as the core of
a problem-based learning system [2], the focus of the author’s doctoral studies [3]. With this as a basis
for a showcase of innovative uses for the PlanetMath content, and with a well-documented and easy to
extend software platform supporting the system, we hope to see PlanetMath become a central integration
platform for free software projects working with freely licensed math on the web.

8 Conclusion

PlanetMath has been successful as an online community: the software stabilized early on and has re-
quired little upkeep, while the site has continued to grow. However, there has been a danger that with
the software system running more or less on “autopilot”, new features would not be developed. With any
luck, this threat is in the process of being eliminated, heralding in the opportunity to build one or more
“new” online communities in close relationship to PlanetMath (e.g. a developer community working
on sophisticated tools for scientific communication; a learning community using the PlanetMath ency-
clopedia as part of a remix-driven interactive textbook). We should do a careful evaluation of what has
worked and what could be improved for next time. There is not room in the current paper to conduct this
discussion, but framework proposed by Resnick et al. would be an excellent place to begin [13].

For all of its potential as a software showcase and its possible future role as a player in a larger
landscape of related interlinked online communities, PlanetMath should, at least for the moment, be
evaluated first and foremost as an encyclopedia. This too would be best as an ongoing task. For now,

23http://maa.org
24http://mathoverflow.net
25http://trac.mathweb.org/planetary
26http://vanillaforums.org
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Coverage The median entry would be an advanced undergraduate or begin-
ning graduate topic. PlanetMath is generally considered to have
more in-depth treatment of technical issues, e.g. of proofs, than
Wikipedia.

References Present in many articles, although there is not yet a unified
database of references or style of presenting them (this is
planned).

History 315 items, mostly 20th Century or later.27

Audience Consistent with the coverage, there have been 4127 posts in the
“Graduate/Advanced” forum, 4261 posts in the “University/Ter-
tiary” forum, and 1199 posts in the “High School/Secondary”
forum.

Clarity There is no hard and fast rule. Some articles are minimalistic,
but precise (e.g. from strong contributors who have have English
as a second language). Other articles may be verbose and vague.
In any case, debates over clarity of presentation are intense, and
a high standard is generally maintained (see Section 4).

Pictures There are over 600 images, but this is only about 7% of all en-
tries. A unified database/gallery of pictures might encourage
more submissions.

Accuracy At the time of this writing there are 48 outstanding corrections28;
more than 14080 corrections have been filed since the site began,
though 2337 are classified as “addenda”, meaning that no mis-
take is implied, and 9182 are classified as “meta/minor”, mean-
ing that in the entire history of PlanetMath some 2561 real errors
have been found through the peer review process (and all but a
few fixed!). Note that these numbers do not take into account di-
rect changes by authors (and would tend to under-represent error
fixing in world-editable articles).

Unusual PlanetMath provides “math for the people, by the people”.
Weight PlanetMath can be used from any browser, and comfortably

edited from a lightweight laptop or netbook, weighing about 1kg.

Table 1: Succinct review of the PlanetMath Encyclopedia

a quick summary following the outline used by Emma Previato in her review [11] of the CRC Concise
gives us a look at how PlanetMath measures up (Table 1).

Because the technology that supports the site is special-purpose, we have been able to hone in on what
works best for commons-based peer production in mathematics. Features like the autolinker facilitate
integration of content, and the corrections system helps avoid messy battles. There is much more work
to be done, but at the close of its first decade of life, PlanetMath may be poised to become a encyclopedia
in the literal classical sense of a “complete instruction”.

27http://planetmath.org/browse/objects/01Axx/
28http://planetmath.org/?op=globalcors
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Abstract

This paper is a report on an ongoing project of two years. Its purpose is to provide a resource
for Linear Algebra at the undergraduate level that can, in particular, be used as a textbook. The
experiences, both good and bad are given, and these are used to indicate future directions for the
project.

1 Motivation

1.1 Movitation #1: Correctability

The initial motivation for this project came from teaching an introductory course in Linear Algebra for
first-year university students after having not done so for many years. I was really dissatisfied with the
textbook. For example, the following “proof” was given:

Theorem 2.2.2 Let A be a square matrix. Then det(A) = det(AT ).

Proof By Theorem 2.1.1, the determinant of A found by cofactor expansion along its first
row is the same as the determinant of AT found by cofactor expansion along its first column.

Putting aside the fact that Theorem 2.1.1 is described earlier in the text as a “general theorem, which we
state without proof”, the purported proof itself is simply irreparably wrong in the absence of some kind
of inductive argument.

Here is another sample from the same book:

Theorem 5.2.1 If W is a set of one or more vectors from a vector space V , then W is a
subspace of V if and only if the following conditions hold.

(a) If u and v are vectors in W , then u+v is in W .

(b) If k is any scalar and u is any vector in W , then ku is in W .

This Theorem as stated is completely correct. But a student who uses these two conditions as the defining
properties of a subspace will eventually come upon a potential subspace that is empty: it will satisfy (a)
and (b) without being a subspace. The phrase “one or more vectors” hidden in the hypothesis makes the
result correct, but hides a property that is really essential.

Presumably errors are not included by design. Being able to make corrections between editions of a
book is impossible, and new editions must be infrequent because of financial constraints; it is trivial to
make corrections if the source is online.

1.2 Movitation #2: Breaking the Linear Structure of a Book

Looking at other textbooks is really no help. All seem to have problems such as those given above to a
greater or lesser extent. At least part of the problem lies not with the authors, but rather with the nature
of the textbook. In particular a textbook must
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• assume a certain background and level of innate ability for the student, and give argument in detail
consistent with that assumption,

• have a manageable finite length (although some linear algebra textbooks are now over 700 pages
long!),

• be essentially linear (each chapter uses results proven in earlier chapters).

1.3 Movitation #3: It’s Easier to be an Editor than an Author/Editor

Writing a book is a huge task. Revising it for later editions is almost as bad. However, writing a small
section of a book is pretty easy, and it’s usually not too difficult to get volunteers to undertake such a
task. Similarly, the quality and the levels of difficulty of the exercises in a book is an important (and often
underestimated) aspect of the presentation. Getting voluteers to contribute a modest number of exercises
is not too difficult. Of course, as with any open project, there must be an editor (dictator) in charge to
ensure that all contributions to the project are consistent.

2 Why a wiki

The motivations given in the last section drive the choice of software towards a wiki[3], and many of the
problems mentioned in the previous section are solved easily by this choice. The greatest asset is that the
data does not have a linear structure as a book does but, rather, is organized as a tree. There are several
impications of this structure:

• The same material may be examined from different viewpoints. The most straightforward one may
be given in a page with links to deeper or more subtle arguments.

• Forward references are natural; many times it is both expedient and useful to defer a proof of a
mathematical concept until a better understanding of the underlying structures has been acquired.
By custom, a book will give the proof immediately after its statement (or not at all!).

• Tangential but interesting topics can be explored via a link without interrupting the general flow of
the main text.

• More repetition is possible: a theorem may have several similar parts with subtly different proofs.
There is simply not enough room in a book to repeat similar proofs (a standard trick is to move
some proofs to the exercises), but it is not a problem (and even encouraged) with separate links for
comparable material.

There are other advantages with a wiki:

• The use of colour is quite expensive for a book; it costs nothing in a wiki.

• Photographs are quite expensive for a book; it costs nothing in a wiki.

• Putting a copy of a textbook as a file on a student’s computer as, say, a PDF file is (copyright)
problematic; it is straightforward with a simple wiki extension.

• The inclusion of accurate graphics (e.g., two dimensional or three dimensional plots) is also straigt-
forward.

• The use of animations is easy.
14
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Students taking a first-year university course are usually still in their teens. This means, for the
current crop of students, that the home computer has always been commonplace, and that any software
more than ten years old has been around forever. In particular, they have never known a time when
computers didn’t come with a browser that could access Wikipedia. Wikis for them are like radios for
us: we know that there was a time when they didn’t exist, but we can’t really imagine it. Just as we
can’t really appreciate the awe that must have been felt by an adult who, for the first time, heard sound
coming out of thin air, our first-year students feel that it is no big deal to have an enormous database like
Wikipedia available from their bedrooms on a 24/7 basis.

This is, in fact, a wonderful opportunity. The student comes with a skill set that can be very useful. I
have, by intention, made my wiki look much like Wikipedia. By doing this, I don’t have to tell students
where to look for help, or where the print button is: they just do the right thing.

As another example, a theorem may have several parts with each dependent on the proofs of the
previous ones or with all of them logically equivalent. In either case, the part may be stated with a link
labelled “Proof” next to it. No further explanation is necessary; the student knows exactly what to do.

3 The first steps

To test the efficacy of the wiki in the classroom, I volunteered (!) to teach a large-section, one-term linear
algebra course over several terms. The students in this course have varied levels of ability and ambition.
Some just want to be through with their math requirements while others know that they want an honours
degree in mathematics. The content of the course is not atypical: Solving systems of linear equations,
Gauss-Jordan reduction, some two and three dimensional geometry, and an introduction to vector spaces.

The initial wiki pages were actually expanded lecture notes. Students were encouraged to read them
and print them out in advance of the lectures. They were also encouraged to find errors (and indeed they
did!). The basic structure for the course and the problems assigned came from the textbook as usual. In
a certain sense, this was an anti-wiki: the material was edited by one person and the advantage of the
cooperative nature of a wiki was just thrown away. Argueably, the first step in building a quality imple-
mentation is to run a simpler prototype and find out what actually happens (goes wrong, in particular),
and so that is the approach that was used. Feedback from the students could then be used as an aid for
deciding the best way to proceed. The reactions of students were gauged in two ways:

• The access count of each page was monitored. In this way it was possible to see which pages were
actually used.

• Comments on the wiki were invited as part of our standard student evaluation questionnaire given
at the end of the course.

A second initiative concerning the wiki implementation involved the method of presentation of the
mathematics on the web pages. Three approaches were used:

• The “default” approach: using software on the server to generate and cache png files of the math-
ematics used on the page.

• MathJax, which uses JavaScript within the browser to create the mathematics for the page on-the-
fly.

• Translate a math snippet into MathML, which is then displayed using the abilities of the browser.

All three of these have been used as part of the initial tests of the wiki with varying results which are
described in more detail in the Subsection 5.1.
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4 Initial results

The response from students to the questionnaires has been overwhelming positive. Over 90% are strongly
supportive of the idea of having a wiki for the presentation of course materials. They had some additional
interesting ideas within the latest questionaire (May 5, 2011):

Very fond of the homemade Wikipedia. Made finding information very simple.

The wiki was actually very awesome—the only thing missing was some kind of interactive
quiz that tested knowledge.

It would be great if the wiki showed where we were in the course at any given time.

Wonderful substitute for textbook and great was to save students a few bucks, and take
advantage of new and different technologies.

There were a few really negative responses, but unfortunately they didn’t go into detail. It might have
been really helpful to know the reasons for their feelings.

There were also some qualified endorsements.

The wiki is helpful but there are a few math errors that need some editing.

The wiki pages took a long time in downloading and sometimes didn’t work. The note
printouts were missing the symbol θ sometimes so there would be a blank space left.

Many responses indicated that the student prefered a dynamic wiki to a standard textbook. How
could anyone be surprised by this? Nonetheless, some questions to ask are:

• Will the wiki actually increase the level of competence of the students? For example, giving
solutions to (at least some of the) exercises is certainly desirable. If these solutions are only a click
away, will the temptation to look before actually working on the exercises be too great to resist?

• Will the tail wag the dog? The goal is to help the student learn the mathematics, and not to entertain
them. A sense of proportion is necessary.

• Mathematics must be seen as more than a collection of algorithms. Does the wiki format help or
hinder this process?

5 Implications of Display Methods

5.1 Inserting Mathematics within the Text on the Page

Several methods were used to display mathematics on the wiki pages. Each came with assets and liabil-
ities:

• The default (texvc) method [2]: the material designated as mathematics is sent through LATEX to
create a dvi file. This file is sent through dvipng to create a png file. The png file is then inserted
into the page as a graphic image. This method works quite well: it is very fast and produces
accurate results. However, the results are bitmapped, and, as such, can not be changed when the
font sizes in the display are changed (by the user or otherwise). There are usually no problems with
pixellation, but the potential for problems is there for complicated constructions (the rendering of
subsubscript i versus subsubscript iota, for example).
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• The MathJax method: MathJax is a javascript application [1] which may be used to render math-
ematics on wiki pages. It produces beautiful results that may be enlarged when the font size of
the surrounding text is changed. It can also be used with some of the special LATEX packages (for
example, amsmath) available for mathematicians. However, each time a new page is accessed, it
is run through MathJax and the time required to render a complicated page may be lengthy. In
addition, when jumping to a specific location on a new page, the position may be lost as the page
is rendered.

• The MathML method: MathJax can translate the material designated as mathematics into MathML

code. An appropriate browser is necessary, of course. When such a browser is used, the math-
ematics is rendered much more quickly than with MathJax using javascript. There still is some
delay on complicated pages. The problem of the loss of position when the page is rendered is also
a problem with this method.

In short, the rendering of the mathematics on wiki pages is still a work in progress. The solutions
currently being used are still pretty new. I expect them to improve a lot in the next few years.

It is interesting to note the students’ solution to the display problems. If they couldn’t read the screen,
then just pushed the print button and looked at the resulting pdf file. It looked fine most of the time.

5.2 Multimedia displays

The use of multimedia software is, of course, one the most exciting prospects within a wiki site. The
dynamic content at this point consists of animated gifs. These have been produced using different ap-
proaches:

• 1. Use TEX to make a dvi file of each image.

2. Make a cropped PostScript file of each image using dvips.

3. Convert the PostScript file to a gif.

4. Stitch the gifs together to make an animated gif.

• Use a symbolic manipulator (Maple in this case) to make an animation and save it as an animated
gif.

• Make a shell script to generate PostScript files, and stitch them together in an animated gif.

6 Next steps

The work done so far is just one step in a larger project. The next goal is a wiki covering undergraduate
linear algebra. It will be structured is such a way to allow the material to be used in different ways for
different courses.

Any list of topics is necessarily idiosyncratic. Initially the list of topics covered will include:

• Vector spaces over R, C, finite fields and general fields.

• Subspaces. Linear independence, generating (spanning) sets, bases. Dimension. Infinite dimen-
sional vector spaces. Direct sums. Every vector space has a basis (application of Zorn’s Lemma
or some other form of AC).

• Matrices. Matrix algebra. Inverses of matrices. Singular matrices. Determinants. Rank of ma-
trices. Equivalent conditions for nonsingularity. Row space, column space, null space, rank of
matrices and their interrelations.
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• The theory of systems of linear equations. Elementary matrices. Gaussian Elimination. The
reduced row echelon form. Solution space of a homogeneous system, particular and general solu-
tions of an arbitrary system.

• Linear transformations. Representation by matrices in the finite dimensional case. Fundamental
subspaces associated with a transformation (kernel, range). Fundamental subspaces associated
with a matrix and their connection to linear transformations. Dimension theorem.

• Linear operators on finite and infinite dimensional spaces.

• Linear functionals. Dual spaces. Duals of finite dimensional spaces; duals of infinite dimensional
spaces.

• Eigenvalues and eigenvectors of a linear operator; of a matrix. Characteristic equation of a matrix.
The minimal polynomial. Diagonalization of matrices (operators) and applications. Invariant
subspaces. Cayley-Hamilton theorem.

• Inner product spaces. Cauchy-Schwarz theorem. Orthogonal complements. The Gram-Schmidt
algorithm. Adjoint of a linear operator. Unitary, self-adjoint, normal and orthogonal operators and
their matrices. Diagonalization and self-adjoint operators.

• Jordan canonical form.

• Bilinear forms and their representations. Quadratic forms. Positive definite and positive semidefi-
nite bilinear forms.

Each topic will have a page with a table of contents (automatically generated) that includes the list
of theorems, and will include separate links to proofs when appropriate, and many exercises of varying
difficulty. Solutions to all problems will be available.

It will also become a collaborative project. A working group has been established and is looking at
finishing the next stage in a 12–18 month time period.

The beauty of the wiki is that the material may be expanded or changed easily and on a collaborative
basis. It also keeps track of the dependencies between pages, an invaluable tool when choosing which
topics to cover. Alternative approaches are easily implemented.

The approach so far has been incremental—this matches the philosophy of the wiki perfectly. Further
expansion after completing the next stage is anticipated.

References
[1] MathJax: http://www.mathjax.org/
[2] MediaWiki with texvc: http://www.mediawiki.org/wiki/Texvc
[3] The experimental wiki can be accessed at http://wikitest.cs.umanitoba.ca/mathwiki/index.

php/Math1300:MainPage
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Abstract

In science and engineering mathematical models are increasingly important to describe natural
phenomena and design artifacts. Our goals is to make the notion of “mathematical models” more
explicit and precise as well as to build up knowledge repositories for searching, exploring, combining,
and sharing models. With the Web of Mathematical Models, WoM, we provide a platform to host such
models on the Web. Models follow an explicit, content-related schema.

1 Introduction

In science and engineering mathematical models are increasingly important to describe natural phenom-
ena and design artifacts. Not least because of the power of modern software and computer technology,
which allows for better analysis, visualization, and comprehension of natural phenomena and designed
artifacts. Based on Eykhoff’s definition, in which a mathematical model is “a representation of the es-
sential aspects of an existing system (or a system to be constructed) which presents knowledge of that
system in usable form” [6], we distinguish three kinds of models:

• Descriptive models that explain the essential aspects of existing systems such as physical, socio-
logical, or economical systems;

• Constructive models that describe systems to be constructed as part of engineering tasks or pro-
cesses and

• Abstract models that are used for modeling a certain class of phenomena, but are not (yet) applied
to a specific system. Examples are special classes of differential equations or labeled transition
systems.

Our goal is to make the notion of “mathematical models” more explicit and precise as well as to
build up knowledge repositories for searching, exploring, combining, and sharing such models. With the
Web of Mathematical Models, WoM, we provide a platform to host such models on the Web. Its mission
is to help improving the accessibility, usability, precision, tool support, classification, and comparability
of mathematical models, and thus, WoM provides a foundation for future computer-guided design flows
and an intelligent engineering support for standardized, composable, and computer-processable models.
To achieve our goals, we had to answer the following two central questions:

∗The project WoM is supported by the Rhineland-Palatinate research center (CM)2 – Center for Mathematical and Compu-
tational Modelling.
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1. How to represent mathematical models?

2. How to manage and present them in an open model platform?

To answer the first question, we established a small initial user community of applied mathematicians
and identified the following requirements:

• A model should have an informal description that introduces the model and explains which phe-
nomena or artifacts are modelled. It may be supported by graphical or video visualizations of the
model.

• A mathematical description characterizes the model in terms of its mathematical properties. It
explains the parameters of the model. In principle, it should be expressible in a formal language.

• Software support allows simulating the model with different parameter settings. The software
should be realized in a component-based way such that models can be composed.

• Linking and metadata relate the model to other models and related documents, and provide support
for classification and structured search.

These requirements are fulfilled by an XML-based schema. This schema does not only structure the
model definition, but also relates it to visualizations – graphics or videos – and (interactive) simulation
programs. It supports two kinds of simulations:

• pre-fabricated simulations that are embedded into the Web user interface and create – based on a
set of parameters – a result, e.g., a picture or a movie, and

• open simulation programs that are embedded into an interactive environment, which allows the
user to experiment with and to explore the model in interactive sessions.

WoM provides the possibility to integrate remotely usable simulation programs without in-depth
knowledge of Web technologies. Since we anticipate authors to be mathematicians or engineers, but not
Web developers, we expect that WoM simplifies the publishing of models for them.

To answer question two, we identified four requirements which enable us to store, relate, query,
search, use, and compose models:

• Community support: Construction, collection, classification, and linking of models is only possible
with support from a user community. Accordingly, the platform should encourage participation,
and foster the development of a self-sustainable community.

• Model construction: The platform should support the schema-conformal construction and mod-
ification of models. It should combine Wiki functionality with an offline editing possibility. In
particular, models need a declarative and platform independent representation that can be down-
and uploaded.

• Web accessibility: Models and all their functionality should be accessible and usable on the Web.
In particular, simulations should be possible without download and shareable between users.

• Evolvability: To stepwise realize our vision, many changes of the schema for model representation
and ontologies for classifications have to be managed in the future. In particular, the existing model
representations have to evolve together with the schema and ontologies in a consistent way. This
is only achievable with mechanical support by the platform.
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Addressing these last four requirements, we developed a web-based model platform1. It is centered
around a repository for our schema-based model representation. We expect the schema to be crucial for
evolvability.

Web accessibility is ensured by the integration of the ALOE system into the WoM infrastructure.
ALOE2 is a web-based and generic social resource sharing platform developed at the Knowledge Man-
agement group of DFKI3. ALOE allows contributing, sharing, organizing, and accessing arbitrary types
of digital resources such as text documents, music, or video files. Users are able either to upload re-
sources or to reference them using URLs. Furthermore, the platform offers common user management
features and Web 2.0 interaction possibilities like tagging, rating, and commenting on resources.

This paper focuses on the schema used for the representation of mathematical models (Section 2). It
extends the overview paper [7]. In Section 3, we discuss related work. Section 4 contains the conclusion.

2 A Schema for Models and their Relations

Our approach is built around a structured representation of models. Based on an XML-based schema,
we started to build up a model repository. Having an explicit, content-related schema distinguishes
the approach of WoM from classical Wiki platforms and enables stronger computer-support for model
use and management. The schema is called XModel Schema and is internally defined by an XML
Schema. LATEX serves as the default input language – in particular for formulas. Thus, we provide a
LATEX implementation of the XModel Schema. Future versions may also support other input languages
like MathML. In this section we introduce the current state of the XModel Schema.

The XModel Schema defines an XML representation of a model. The components of an XModel –
an instance of the XModel Schema – are shown in Figure 1 and described in the following paragraphs.

Describing a Model. Besides a title, an XModel essentially consists of an informal description and a
formal description. The informal description is basically a textual representation of the model. It is a
compound of paragraphs, lists, (simple) tables, and images. In addition, elements to emphasize content
and for referencing are supported as well as mathematical expressions. Although they are permitted,
these expressions do only have a descriptive character and are not associated with any special role.

In contrast, the formal description defines a model using mathematical expressions, which have
special meaning. They are used to define the model’s set of input parameters I, output parameters O,
and miscellaneous parameters M. The latter may serve as constants or other variables. Each parameter is
defined by a name, a domain/type, and a short textual description. These parameter blocks are followed
by the model’s definition, which describes how the model is implemented using the beforehand defined
parameters. Therefore, this consists of text content similar to the informal description’s one. To (re)use
these parameters, special elements to refer to a parameter’s name, domain/type, and description are added
(parameterName, parameterType, parameterDescription). But the essential part of the definition block
is a set of model equations/formulas R that define the relationships between the parameters, such that
for each o ∈ O at least one equation/formula r(I′∪M′) ∈ R exists with I′ ⊆ I and M′ ⊆M. R may also
contain equations/formulas that allow to bind some miscellaneous parameters m ∈M for further use in
other equations.

1A snapshot of a development prototype is available here: http://angren.cs.uni-kl.de/WoMstatic/. Use womguest
as username and password to login.

2http://aloe-project.de
3German Research Center for Artificial Intelligence
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Figure 1: The XModel Schema

Visualizations and Simulations. In addition, a model may contain visualizations and simulations. The
visualizations can range from simple images to complex videos. Simulations are provided by software
packages that allow for online experimentation with the model. They usually take some input parame-
ters and – in the case of pre-fabricated simulations – return an image or video as result. These program
parameters should correspond to the (input) parameters of the formal model. Therefore, the formal
description’s parameters can be referenced by the program parameters. Thus, the program parameter’s
role (name, description, and possibly domain/type) can be easily inferred. In addition to these corre-
lated parameters, a simulation may also have parameters to control particular aspects of the simulations.
Currently Matlab- and Sage-based simulations are supported. The Sage framework [16] provides a web-
based Python interpreter and a very rich library of mathematical algorithms and data structures.

While the previously described way to use simulations by referencing an external program resource,
for instance a Matlab or Sage file, is already supported by the WoM, we are currently developing model-
embedded simulations, which are (Sage-based) programs that allow to define a simulation directly inside
the XModel. Therefore, the XModel Schema allows code snippets that are parts of the formal descrip-
tion’s parameters and equations/formulas. An accordingly extended schema is depicted in Figure 2. It
shows the extension of the parameters and equations with the new element simulation code that encap-
sulates the additional code. Using IDs, each simulation code element is associated with the simulation to
which it belongs. Because the order of the snippets in the description may be different to their order in
the program, additionally, each simulation code element has to be numbered. For code, which does not
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simulation

Parameter
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Figure 2: XModel Schema with integrated simulations

directly belong to a formal description’s component, such snippets can be defined within the body of the
corresponding simulation element.

Metadata. The XModel Schema also includes metadata such as the model’s authors, contributors,
holders of rights, and editors as well as keywords, the model’s status that can be stable, experimental, or
checked, and a bibliography, whose structure is based on the BibTeX syntax. Using a classification, a
model can be related to standard classifications. Currently, WoM supports the AMS 1991 Mathematical
Subject Classification [1] and the WZ08 - Classification of Economic Activities [4]. A model may also
be related to other models in the WoM, which is a symmetric relation.

The XModel Schema is designed in a way that allows to evolve the models over time. For exam-
ple, models may be classified according to a new classification ontology or may be extended with new
simulations and visualizations. Of course, changes in other parts of the model are possible as well.
Consequently, a model may have different versions and provides access to its history.

Processing an XModel Document. As mentioned in the beginning of this section, we currently pro-
vide a LATEX document class, which roughly describes the syntax of XModel. The LATEX source is trans-
lated into an XModel document. Because of that, LaTeXML [12] in conjunction with BibTeXML [2] are
used to translate the LATEX document into an intermediate XML document, which is finally transformed
into an XModel document using XSLT. Based on a valid XModel representation, further processing op-
erations like a transformation into an XHTML representation or back into a LATEX document are possible.
The entire processing chain is depicted in Figure 3.

LaTeX XML XModel XHTML
LaTeXML
BibTeXML XSLT XSLT

XSLT

Figure 3: The processing chain from LATEX to XHTML

In Figure 4, the result of such an additional transformation is shown. It exemplarily illustrates the
XHTML representation of a model for the “Horizontal Shot”. Furthermore, it shows the integration of
a pre-fabricated Matlab simulation in section 4. Simulations. A separate link to a corresponding Sage
simulation is shown at the end of that section. Figure 5 gives an impression of the Sage interface.
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Figure 4: Web representation of the “Horizontal Shot” XModel
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Figure 5: The Sage simulation provided by the Sage module which is part of the model “Horizontal
Shot”.

3 Related Work

Several communities work on different aspects to support math in the Web. Some of them focus on pro-
viding visual aids for mathematical algorithms, like the proprietary platform available under [17], which
is based on Mathematica/WolframAlpha. Demonstrations, which are mainly interactive, are based on a
CDF4 file that can only be processed by proprietary tools. For various demonstrations unstructured text
comments and author information are given. Demonstrations may be referenced to “related” demonstra-
tions, but that is not necessarily a symmetric relation. It also misses any community features, model
structuring, and alternative visualization capabilities.

Another approach are math-related Wikis, which are based on several freely available software
projects. A wide range of them use the OMdoc [9] format5. It concentrates on the representation of
mathematical equations, their transformation, and referencing. Others use the OpenMath and MathML
standards [3]. Sample projects are [10] (outdated) and [15] – “The Encyclopedia Sponsored by Statis-
tics and Probability Societies”. While they are providing AMS classifications, user communities, and
LATEX-based integration of new content, they lack a clear model structure. For instance plain LATEX doc-
uments and visual support are limited to ordinary images. Another prototype JOBAD (JavaScript API
for OMDoc-based Active Documents) [8] concentrates on the integration of other (ad-hoc called) Web

4Computable Document Format
5OMdoc is an inter lingua for mathematical communications.
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Services. They are linked via keywords or explicit user input. This project’s main goals are on-the-fly
conversion of units, and document visualization style. Neither interactive models nor structured models
are provided.

The PlanetMath project [14] collects – similar to a math encyclopedia – all kinds of math-related and
LATEX-sourced documents and makes them available as HTML pages. The downloadable intermediate
XML format does not provide any clear structuring or support for model linkage, besides keywords,
which are automatically extracted from the text. While community features like comments and history
are supported, neither visual assistance, except for images, nor interactive playgrounds are provided.

Platforms like ActiveMath [11] are capable of communicating with computer algebra systems or
formalizing mathematical expressions in order to annotate or simply present them in the Web. Some
of them provide learning platforms that allow flash programs and applets to be embedded. Special
platforms (see e.g. [13]) are specialized in proof languages and proof checker capabilities for all math-
related expressions. But none of them provide any community features nor do they support the notion of
mathematical models and their relations.

While the WoM and the OKSIMO project (formerly known as Planet Earth Simulator [5]) have in
common that they want to model day-to-day problems and make the partially interactive models available
on the Web, the OKSIMO project depends on a propriety Fcl input language, i.e., a visual programming
language, to submit new models. In contrast to WoM, OKSIMO lacks a structured model repository.

In summary, the described approaches have different focuses, but usually share some technical as-
pects. For instance, JOBAD uses a similar model repository approach, namely TnTBase – a database
assembled from Subversion and Berkeley DB XML. Except platforms aiming at formalizing mathe-
matical expressions, all (web-oriented) platforms support LATEX-based inputs without any pre-defined
additional structure. A distinguishing feature of the WoM approach is that it supports its models/entries
by an explicit schema.

4 Conclusion

We introduced the Web of Models, a platform for storing, searching, exploring, and sharing mathematical
models. In this paper, we focused on the structured representation of a model as an instance of the
XModel Schema. It defines the scope of WoM and, besides others, allows to classify models as well as
relate them to each other. It standardizes the model’s structure and thus improves model consistency. It
allows to integrate simulations whether as references to an already existing program or directly inside
the model’s description via model embedded simulations. With the help of such simulations the user can
explore and experiment with the models. Created from a LATEX document an XModel instance can be
transformed into different representations like XHTML. Finally, XModel is the cornerstone of WoM, of
the model platform built around, and for all available transformation and processing options. Moreover,
it supports any future evolution steps by automated processing capabilities.
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Abstract

We are developing a CMS including document authoring feature based on wiki to publish struc-
tural mathematical documents on the Web. Using this system, users can write documents including
mathematical expressions written in LATEX notation and explicitly stated characteristic structures of
mathematical articles such as definitions, theorems, and proofs. Documents input to the system is
published on the Web as not only XHTML files to be browsed but also XML files complying with
NLM-DTD, which is used to exchange articles electronically. Not only single wiki page document,
users can build a document which consist of more than one pages and is described its structure se-
mantically by the system. In order to do this, we also propose an application of OAI-ORE and RDF
vocabularies to describe structures of documents consisting of several resources.

1 Introduction

Today, many documents are published on the Web. The term “documents” here includes articles of news
or blog, wiki pages, journal articles, and any other web pages. These documents are published as HTML
or XHTML to be browsed, or as PDF or PS file to be printed out. Sometimes one document is published
as several formats.

Some documents consist of several resources. One of examples is a document including a graphic
image. Here, we assume that body text of the document is written in a HTML file and the image is a
JPG file. On the Web, each of them is independent resource and given unique URI. When URI of the
image is put on src attribute of an img element in the HTML file, we should treat the document as not
just referencing but including or embedding the image. In this case, this document is an aggregation of
two resources that are HTML file of body text and JPG file of graphical image.

Sometimes documents include not only graphic images but also whole of other (more small) docu-
ments. In general, this is called transclusion. HTML does not have this transclusion feature in itself,
but MediaWiki, for example, has templates feature to extract content of other wiki pages to the page [3].
In this case, the document is an aggregation of resources that are body text written in wiki markup and
other documents which are indicated in the document to be included.

Furthermore, we sometimes build a document by integrating several documents. In this case, not
only a large document is just split into several documents, but each of documents is independent and
has their own URI, and they can be referenced directly. In general, parts, chapters, or sections of a
document are able to be independent documents. MathML specification by W3C [8] is an example of
such documents. This document consists of one overview, eight sections, and eleven appendices. These
divisions are independent web pages and have their own URIs. Finer divisions of a document may be
independent documents according to structure or characteristics of a document. For example, definitions,
theorems, proofs, and expressions in mathematical documents may be independent documents.

Open Archives Initiative Object Reuse and Exchange is standards to describe and exchange aggre-
gations of web resources [11]. In the User Guide of OAI-ORE [13], journal articles are described as

∗hiraku@math.sci.hokudai.ac.jp
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Listing 1: A document including a theorem written in Wiki
At f i r s t , we g i v e Tay lo r ’ s theorem and p r o o f o f i t .

[ [ theorem i d =” t a y l o r t h e o r e m ” t i t l e =” Tay lo r ’ s theorem ” |
Let $f$ be a f u n c t i o n which i s d e f i n e d on t h e i n t e r v a l $ ( a , b ) $ and suppose t h e $n$ th
d e r i v a t i v e $ f ˆ{ ( n ) }$ e x i s t s on $ ( a , b ) $ . Then f o r a l l $x$ and $x 0$ i n $ ( a , b ) $ ,

$$ R n ( x ) = \ f r a c { f ˆ{ ( n ) } ( y ) }{n !} ( x−x 0 ) ˆ n $$

wi th $y$ s t r i c t l y between $x$ and $x 0$ ( $y$ depends on t h e c h o i c e o f $x$ ) . $R n ( x ) $ i s t h e
$n$ th r e m a i n d e r o f t h e T a y l o r s e r i e s f o r $ f ( x ) $ .
] ]

( O r i g i n a l t e x t o f t h e theorem i s h t t p : / / p l a n e t m a t h . o rg / e n c y c l o p e d i a / Tay lo rsTheorem . html ,
r e t r i e v e d a t 2 0 1 1 . 0 5 . 0 8 )

aggregations of representation files such as PDF or PS. In this article, on the other hand, we propose
describing documents as aggregations of constituting resources and relating the documents with their
representations apart from describing aggregations.

With a background like that, we are developing a content management system Matherial, which
manages and publishes mathematical documents and other resources. One of the purposes is developing
a system which assists to write documents consisting of several resources, and publishes as web pages
with appropriate metadata to describe its structure and publishes as XML files complying with NLM-
DTD for further reusing.

Matherial provides authoring assistant feature based on wiki engine. Users of the system can write
a wiki page including chapters, sections, mathematical statements, and expressions, or they can write
some of them as independent wiki pages and integrate them into one document and publish it. Relation-
ships between documents and included resources, and between documents and wiki pages representing
them, are modeled as aggregations of OAI-ORE, and they are described in XHTML representation of
documents by RDFa. Matherial can output documents into not only one or more XHTML pages, but
also XML files complying with NLM-DTD. Therefore, other systems supporting NLM-DTD are able to
re-use documents by Matherial.

The paper is organized as follows: In section 2, we present an example of mathematical structural
documents on Matherial. In section 3, we propose an application of OAI-ORE and RDF vocabulary to
describe structural documents on Matherial and more generally on the Web. Finally, section 4 concludes
the paper.

2 Mathematical Contents Management System

2.1 Wiki-based Authoring

One of major features of Matherial, developed in this study, is assistant authoring mathematical doc-
uments. This is based on so-called “Wiki Engine”, so users can write documents by simple markup
notation and publish them on the Web. They can put mathematical expressions written in LATEX notation
into texts, and our own MathML library [7] converts them to MathML [8].

The most simple type of documents created on Matherial is one consisting of a wiki page. When users
need to write mathematical text structures, such as definitions, theorems, and proofs, using functional
markup for them, they can expressly provide that segments have such property.

For example, Listing 1 is a document written in wiki markup including a theorem. When users
write theorems in their document directly like this, URIs of theorems are hash URIs, appending
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Listing 2: A document imporint other resources
We b e g i n wi th Tay lo r ’ s theorem and i t s p r o o f .

[ [ i m p o r t w ik i / TaylorTheorem ] ]

[ [ i m p o r t w ik i / P roofOfTay lo rTheorem ] ]

For a f u n c t i o n $ f ( x ) $ , $ f$ i s T a y l o r e x p a n d a b l e when $\ l i m {n\ t o \ i n f t y }R n ( x ) =0$ where $R$ i s
r e m i n d e r te rm of [ [ [ w ik i / TaylorTheorem | t h e theorem ] ] , and we have b e l l ow .

[ [ i m p o r t w ik i / T a y l o r E x p a n s i o n ] ]

Even i f complex f u n c t i o n $ f ( z ) $ i s n o t ho lomorph i c a t a p o i n t $c$ , i f $ f$ i s ho lomorph i c i n an
a n n u l u s a round $c$ , we g e t L a u r e n t s e r i e s be l low ,

$$f ( z ) = \sum {n=\ i n f t y }ˆ{\ i n f t y } a n ( z−c ) ˆ n$$
where
$$a n =\ f r a c 1 {2\ p i i }\ o i n t \gamma\ f r a c { f ( z ) dz }{ ( z−c ) ˆ{ n+1}}$$
and $\gamma$ i s a c l o s e d c u r v e i n t h e a n n u l u s ( f i g . [ [ r e f a n n u l u s ] ] ) .

[ [ f i g u r e f i l e / Annu lusOfLauren t i d = a n n u l u s ] ]

Th i s i s e x t e n s i o n of [ [ [ T a y l o r E x p a n s i o n ] ] ] f o r f u n c t i o n s which a r e n o t ho lom orph i c .

their IDs as fragment to URI of the document. In this case, assuming a URI of a document is
http://mw2011.matherial.org/wiki/Taylor, a URI of a theorem itself in the document is http:
//mw2011.matherial.org/wiki/Taylor#taylor_theorem.

For important definitions, theorems, and proofs, considering we discuss about them or reuse them
from other documents, they should be independent documents and referenced by their own URI. On
wiki of Matherial, users can set type of page, for example set that page is a theorem, the system treats the
document by the wiki page as if it is described a theorem. In this case, URI of the theorem is URI of the
document by wiki page. Detail about URIs and relationships of documents and wiki pages in Matherial
are illustrated in section 3.

With Matherial, users can write documents importing and extracting mathematical statements which
have been created as independent document. Moreover users can put images which are managed in
Matherial into documents in the same way, and they can use descriptions of images which were input
when images were upload to the system instead of writing new descriptions in the page. Listing 2 is
a document importing statements which are already published and going on to describe a statement
following them. In that example, an image referenced in the text will be imported with its description.

Moreover, aggregating these documents as sections, chapters, or parts, users can build a new docu-
ment. In Matherial, users input enumeration of sub documents with metadata of the document such as
title, author’s information, and so on into form to build the document. Detail of semantic structure of
documents which consist of several resources is described at section 3.

2.2 Output Documents

Matherial output documents as XML files. XML schemas of output XML files are XHTML [18] to read
directly by web browsers, and NLM-DTD [9] to exchange articles electrically.

For XHTML files, metadata are described as RDF graph [14] and embedded by RDFa [15]. Metadata
written into XHTML are metadata of the document itself such as title, authors’ information, and time and
date when the document was created and update, and structure information about relationships between
the document and other resources. For example, relationships between resources for a document about
the Laurent series shown previously is illustrated at Fig.1. The web page of this document browsed is
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Listing 3: A part of an NLM-DTD XML version of a document
<?xml v e r s i o n =”1.0”?>
<!DOCTYPE a r t i c l e PUBLIC ”− / /NLM/ / DTD J o u r n a l A r c h i v i n g and I n t e r c h a n g e DTD v3 . 0 2 0 0 8 0 2 0 2 / /EN”

” a r c h i v e a r t i c l e 3 . d t d”>
<a r t i c l e >

<f r o n t >
<a r t i c l e −meta>

< t i t l e −group><a r t i c l e − t i t l e >L a u r e n t S e r i e s </ a r t i c l e − t i t l e ></ t i t l e −group>
<c o n t r i b−group>

<c o n t r i b >
<name><surname>Kuroda</ surname><given−names>Hiraku </ g iven−names></name>

</ c o n t r i b >
</ c o n t r i b−group>
<pub−da te><day>29</day><month>5</month><year >2011</ year ></pub−da te>
<s e l f−u r i xmlns : x l i n k =” h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ” x l i n k : h r e f =” h t t p : / / mw2011 . m a t h e r i a l
. o rg / L a u r e n t S e r i e s / en ”/>

</ a r t i c l e −meta>
</ f r o n t >
<body>

<p>We b e g i n wi th Tay lor ’ s theorem and i t s p r o o f .< / p>
<s t a t e m e n t c o n t e n t−t y p e =” theorem”>

< t i t l e >T a y l o r Theorem</ t i t l e >
<p>Let < i n l i n e −fo rmula><math xmlns =” h t t p : / / www. w3 . org / 1 9 9 8 / Math / MathML” d i s p l a y =” i n l i n e
”><mi>

∗ s n i p ∗
<a t t r i b >

<u r i xmlns : x l i n k =” h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ” x l i n k : h r e f =” h t t p : / / mw2011 . m a t h e r i a l .
o rg / L a u r e n t S e r i e s / en / p r / TaylorTheorem ”/>

</ a t t r i b >
</ s t a t e m e n t>
<s t a t e m e n t c o n t e n t−t y p e =” p r o o f”>

< t i t l e >P r o o f o f T a y l o r Theorem</ t i t l e >
∗ s n i p ∗

<a t t r i b >
<u r i xmlns : x l i n k =” h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ” x l i n k : h r e f =” h t t p : / / mw2011 . m a t h e r i a l .
o rg / L a u r e n t S e r i e s / en / p r / P roofOfTay lorTheorem ”/>
<u r i xmlns : x l i n k =” h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ” x l i n k : h r e f =” h t t p : / / mw2011 . m a t h e r i a l .
o rg / TaylorTheorem ” x l i n k : r o l e =” h t t p : / / m a t h e r i a l . o rg / te rm / p roo fOf ”/>

</ a t t r i b >
</ s t a t e m e n t>

∗ s n i p
and < i n l i n e −fo rmula><math xmlns =” h t t p : / / www. w3 . org / 1 9 9 8 / Math / MathML” d i s p l a y =” i n l i n e ”><mi>&#
x3B3 ;< /mi></math></ i n l i n e −fo rmula> i s a c l o s e d c u r v e i n t h e a n n u l u s ( f i g .< x r e f r i d =” a n n u l u s”>
annu lus </ x r e f >) .< / p>

<f i g p o s i t i o n =” f l o a t ” i d =” a n n u l u s”>
<g r a p h i c xmlns : x l i n k =” h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ” x l i n k : h r e f =” h t t p : / / mw2011 . m a t h e r i a l .
o rg / f i l e s / 2 0 1 1 / 0 5 / 1 0 / 0 / f i l e ”/>
<a t t r i b >

<u r i xmlns : x l i n k =” h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ” x l i n k : h r e f =” h t t p : / / mw2011 . m a t h e r i a l .
o rg / L a u r e n t S e r i e s / en / p r / f i l e / 2 0 1 1 / 0 5 / 1 0 / 0 ” / >

</ a t t r i b >
<c a p t i o n>

< t i t l e >Annulus f o r L a u r e n t S e r i e s </ t i t l e >
<p>Annulus f o r L a u r e n t S e r i e s i s shown .< / p>

</ c a p t i o n>
</ f i g>
<p/>
<p>Thi s i s e x t e n s i o n of <ex t−l i n k xmlns : x l i n k =” h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ” ex t−l i n k−t y p e
=” u r i ” x l i n k : h r e f =” h t t p : / / mw2011 . m a t h e r i a l . o rg / T a y l o r E x p a n s i o n”>Tay lo rE xpan s ion </ ex t−l i n k>

f o r f u n c t i o n s which a r e n o t ho lomorph i c .< / p>
</body>

</ a r t i c l e >
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Laurent Series

ore:aggregates

Taylor Theorem

Proof of Taylor Theorem

mt:proofOf

Discussion forum for The Document

mt:discussedAt

mt:discussionAbout

XHTML NLM-DTD

Taylor Expansion Formula

Figure and its description

mt:hasRepresentation

Wiki Markup Text

mt:hasContent

Figure 1: RDF graph of a document consisting of several resources
An RDF graph describing relationships between the document, included resources, representations and
a discussion forum about the document is shown.

shown at Fig.2.
For XML files complying with Archiving and Interchange Tag Set [10] of NLM-DTD, URIs of

included resources are written at xlink:href attribute of uri element in elements which included re-
sources are extracted to. Mathematical statements are extracted into statement element, and type of
statements are explicitly shown at content-type attributes. Listing 3 is a part of an XML file com-
plying with NLM-DTD of the document shown previously. Mathematical statements are written into
statement elements and their URLs are into statement/attrib/uri elements. Relationship be-
tween a theorem and its proof is shown at statement/attrib/uri element of the proof. Imported
image and its description are extracted at fig element and it is referenced using xref element. You can
get the whole of the XML file from http://mw2011.matherial.org/LaurentSeries/en/nlm.

3 Document structure and its metadata

The documents authoring feature of Matherial is based on wiki engine. Users write texts by wiki markup
of Matherial. The most simple document is one consist of only body text but not any other resources.
Matherial converts an input wiki markup text to XML files complying with XHTML and NLM-DTD, and
publish them on the Web. Wiki source files, XHTML files, and XML files should be given different URI,
and a URI of each files is different from the URI of the document itself (we call a URI for a document
itself platonic form URI) [16].

In Matherial, users can write documents which include other resources, too. This does not means
that documents just reference other resources. As \includegraphics command or \input command
of LATEX, users can embed images or extract contents of other documents into the document. Matherial
generates XHTML files which include contents of other documents and is embedded images by img

elements, and generates XML files of NLM-DTD which include other documents and is embedded
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Figure 2: A web page of a document importing other documents
A web page of a document importing other documents is shown. Imported documents are extracted.
Mathematical expressions written in LATEX notation are converted to MathML and rendered by web
browser. URI of this page is http://mw2011.matherial.org/LaurentSeries/en/html. You can
also browse this page by using platonic form URI of this document, http://mw2011.matherial.org/
LaurentSeries/.

mt http://www.matherial.org/terms/

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

ore http://www.openarchives.org/ore/terms/

Table 1: Name spaces and Prefixes
URI of prefix mt is namespace for experimental vocabulary in this study. URI of prefix rdf is namespace
for basic vocabulary of RDF [14]. URI of ore is namespace for vocabulary of OAI-ORE [11].

images by graphic elements, from wiki sources written like that.

This document structure on Matherial is described as an RDF graph whose nodes are platonic form
URI of the document, URIs of resources included in the document, URIs of representations of the docu-
ment, and so on (Fig.1). Matherial describes this structure by Resource map of Open Archives Initiative
Object Reuse and Exchange (OAI-ORE) [11].

The structure of a document which consists of several resources and which is represented by several
representations could be applied to not only documents in Matherial but general documents on the Web.
In following subsection 3.1, we will introduce OAI-ORE to describe Aggregations of resources, then in
subsection 3.2, we will show a model of the document structure and metadata schema to describe the
structure. RDF namespaces and its prefixes used in this article are shown at table 1.
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Figure 3: Proxy of OAI-ORE
Section-1 and Section-2 are Aggregated Resources in an aggregation Document. Two proxies
Pr-1in1 and Pr-1in2 are Proxies for two Resources in the Aggregation. Order relation x:hasNext

should not set between two Aggregated Resources directly.

3.1 Revisiting OAI-ORE

Open Archives Initiative Object Reuse and Exchange (OAI-ORE) provides a model to describe aggre-
gations of resources. In OAI-ORE, a resource which consists of one or more resources is called an
Aggregation. A resource which is a member of an Aggregation is called an Aggregated Resource. An
aggregation is defined as a conceptual construct, so it does not have a representation. Therefore, informa-
tion about an Aggregation should be described by other resources different from the Aggregation. Such a
resource which describes an Aggregation is called a Resource Map. For example, relationships between
an Aggregation and Aggregated Resources are described in a Resource Map for the Aggregation.

OAI-ORE provides a mechanism named Proxy to relate Aggregated Resources with properties which
are given only in the Aggregation. In an Aggregation A-1, for example, we assume that two Aggregated
Resources AR-1 and AR-2 have order AR-1→ AR-2. Moreover, we assume that they have different order
AR-2 → AR-1 in another Aggregation A-2. In this case, if we describe directly the order relationship
between AR-1 and AR-2 in AR-1, it conflict to relationship in AR-2. This is because we describe rela-
tionship which is available only in AR-1 independently of AR-1. To resolve this problem, we use Proxy
resources which act as Resources in the Aggregation to describe relationships available only in the Ag-
gregation between Aggregated Resources and other resources. For example, relationships between AR-1

and AR-2 in A-1 is described using their Proxies like fig.3.
For more detail of OAI-ORE, see [11].

3.2 Structure of Document including Resources

3.2.1 Document and its Members

In this study, a Document is an Aggregation consisting of one or more resources. A resource which is a
constituent of a Document is called a Member of Document, or simply a Member. An image embedded
into a Document is familiar example of Member. A Member of a Document could be another Document
different from the aggregating Document. In other words, aggregating several Documents, we can build
a new Document. Relationships between a Document and its Members are described by RDF triples
whose predicates are ore:aggregates.
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Document Content. A Document could have a resource as one of Members which is described the
content of the Document itself. We call such a Member a Document Content. A content of a Document
is body text of the Document. When a Document includes other resources, indications to include them
are written into the content. One example of Document Content is a HTML file, which is a source file of
a web page. We can write not only marked-up body text, but also indications to embed images into the
page using img elements. In this case, the Document consists of a HTML file as Document Content and
images indicated. When we browse this document, web browser get a HTML file from a server, recognize
it, get other resources to embed into the page, and display the completed web page. For another example,
text files written in wiki markup for any wiki engines. They are described body text and embedding
indications different notation from HTML. The system may convert it to a HTML, or create a PDF file
which contains image files. Relationship between a Document and a Document Content is described by
a RDF triple whose predicate is mt:hasContent, which is sub property of ore:aggregates.

Order of Members. When Document has the Document Content, positioning of other Members is
described in the Document Content. On the other hand, when Document is simple Aggregation of
resources and does not have a Document Content, we may want to describe positioning or order of
Members. Furthermore, we may want to give Members complicated and non-linear order relationships
such as tree structure. In this article, we propose mt:hasNext predicate to describe order relationships
of Members in the Document. This property takes URIs of Proxies of Members for subjects and objects
of triples to describe linear or complicated order relationships of Members of the Document (fig.4)

Type of Members. We may want to give Members any role in a Document. In an “article” document,
for example, the first Member is abstract of the article, following some Members are Sections of the
article, and the last Member is References of the article.

mt:partType predicate is to describe these roles of Members in a Document. This property takes
URIs of Proxies of Members for subjects, and URIs of sub-classes of mt:PartType which repre-
sent roles of Members in Documents. Sub-classes of mt:PartType are mt:Preface, mt:Abstract,
mt:TableOfContents, mt:Part, mt:Chapter, mt:Section, mt:Acknowledgment, mt:Appendix,
mt:References, and mt:Index.

3.2.2 Mathematical Element

Mathematical documents may contain distinctive elements, such as mathematical expressions (especially
display math style), definitions, theorems, proofs. When we write a mathematical document, preparing
these elements as independent resources and including them in the Document as Members, we can ref-
erence these import elements individually and reuse them.

When we create a Document containing mathematical elements, we can show type of the Document
explicitly using sub-classes of mt:MathematicalObject. Sub classes of mt:MathematicalObject
aremt:Expression, mt:Definition, mt:Theorem, and mt:Proof. mt:Theorem has more detailed
sub classes, that are mt:Lemma, mt:Corollary, and mt:Proposition.

A resource of type mt:Proof describing mathematical proof should show explicitly which theorem
is proved. mt:proofOf is predicate for RDF triples to relate theorems and its proofs. This property takes
URIs of resources of type mt:Proof for subjects and URIs of resources of type mt:Theorem or its sub
classes for objects (fig.4).
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Figure 4: Structure of mathematical Document
An example of Documents which has several Documents as Members is shown. Members include inde-
pendent theorem and its proof. Relationships of them are described.

3.3 Document and its Representations

In this article, Documents are Aggregations of ORE, so Documents are abstract resources and do not
have entities. Therefore, to browse Documents, Documents should be related with other resources which
Documents are serialized in any formats which we can browse. A resource which is serialized from a
Document and has URI different from URI of the Document is called a Representation of the Docu-
ment. When a Document is related to a Representation of the Document, We say a Document has a
Representation. a Document Content may be one of Representations of the Document. Some Repre-
sentations include all Members of Document any way like PDF files, other Representations include only
indications and references to other Members like HTML files. Relationships between Documents and its
Representations are described by RDF triples using mt:hasRepresentaion predicate (fig. 1).

4 Conclusion and Discussion

In this article, we introduced a CMS developed for authoring and publishing mathematical documents,
and we proposed background semantics to describe structures of documents consisting of several re-
sources. Using the system, we can publish not only small documents but also large documents consisting
of several resources by writing in easy mark-up. Structures of documents consisting of several resources
are described as RDF graphs based on Resource map of OAI-ORE, and they will be reused by Semantic
Web Technologies.

Some applications of OAI-ORE are describe an article as an aggregation of OAI-ORE. The FORE-
SITE [2] project developed a toolkit to describe metadata of articles from JSTOR by using OAI-ORE.
In the project, each issue of journals is an Aggregation of articles, and each article is an Aggregation
of individual page images and a PDF-formatted version of the entire article [1]. The ICE-TheOREM
project [17] provides thesis authoring and publishing systems. In this project, each thesis is an Aggre-
gation of sections and PDF, DOC, and ODT version of the article, and each section is an Aggregation
of PDF, DOC, and ODT version of the section. These applications treats each article as an Aggregation
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of parts of it and its Representations. On the other hand, in this article, we describe a Document as an
Aggregation of parts of it, and we use another property for relationships between a Document and its
Representations.

The OMDoc format is a content markup scheme for mathematical documents [4]. This format is
designed for the Mathematical Knowledge Base. SWiM is a semantic wiki for Mathematical
Knowledge Management using OMDoc and OpenMath [5][6]. While these are aimed at building the
Mathematical Knowledge Base, the Matherial is aimed at publishing mathematical documents by using
simple notation for authoring and only presentation markups for outputting. OMDoc also provides a
document ontology [12]. RDF classes i.e. Definition, Theorem (and so on), Proof, and Formula

and RDF properties i.e. proves and provedBy are defined, but a class for general mathematical
expression is not defined. These classes of OMDoc ontology are subclass of MathKnowledgeItem.
However, documents of Matherial are not expressed in OMDoc. So we use classes in mt namespace
instead of OMDoc ontology.
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Abstract

We present some functional and non-functional requirements and wishes for a web-based editor
for formalized mathematics, in particular for use in the MathWiki project at RU Nijmegen [13]. We
discuss possible implementation alternatives, and argue for a holistic design of the entire wiki with
editor features in mind.

1 Introduction

Since the invention of proof assistants, researchers have argued for a library of mathematics formalized in
a machine-readable format; this goal is stated and explained in the QED manifesto [1], for example. Such
a library would have a vast amount of use cases from the verification of complicated proofs (as in the
Flyspeck project [4]), to computer algebra systems with strong correctness guarantees, and to learning
environments for students to become familiar with mathematical proofs and check their results [17].
Most importantly, it could serve as a uniform repository for present and future mathematical theories, to
ensure that no mathematical developments become “lost” in the ever-growing body of results.

Formal math differs from other variants of mathematics done on a computer in that definitions, state-
ments, and proofs are built from a limited set of basic principles, so that the computer can be said to
actually “understand” the contents of the library (to the extent possible). This enables to a degree of
correctness and homogeneity that cannot be achieved any other way.

However, the amount of work necessary to build such a library is prohibitive for any single person
or project [16]. One possible solution is to organize its development in a collaborative fashion, using
wiki-like technology [13]. In contrast to regular wikis, only meaningful formal definitions and correct
proofs can be entered. Still, a combination with informal content is possible and beneficial, potentially
bringing together formerly separate user communities.

Compared to desktop-based proof assistant IDEs, the wiki approach trades performance and simplic-
ity for ease of use and availability. The major benefits of a web-based solution are the lack of client-side
installation and the ability to work directly on a single consistent library. Performance is not expected to
be a large problem as long as the number of contributors is low. If the required server-side computation
becomes too expensive in the future, a hybrid desktop/internet solution (i.e., client software accessing a
remote library) may become a better alternative. At the moment, we favor a fully web-based solution
because of its potential to attract more contributors in the first place.

A major caveat, however, is that formalization is not only time-consuming but also rather diffi-
cult. In particular, the learning curve is currently too steep to appeal to a significant number of novice
users. Moreover, formal math is still closer to the source code of a computer program than to informal
math [17]. For this reason, the features of a wiki editor strongly affect the potential user base: The
more guidance and readily accessible information the editor provides, the easier and quicker the input of
formalized mathematics will become, all other things being equal.

In addition, since new users first face the obstacle of having to learn about already existing formal
content, it is even more important for the static (non-editing) part of the wiki to provide as many cues as
the accompanying editor; one way to achieve this is to use the same rendering mechanisms in viewing
and editing mode wherever possible. Since websites showing appropriately post-processed formal math-
ematics already exist (e.g. isarmathlib.org), the actual challenge lies in bringing the same features to
an editor. Present systems such as the current MathWiki editor [13] or wikiproofs.org offer essentially
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a raw text editor, in contrast to feature-rich desktop IDEs like Proof General [2] or CoqIDE [12]. The
ProofWeb system [6] contains an editor modeled after such IDEs, but it is specific to Coq at the moment
and does not offer many of the features we envision. Especially, incorporating ProofWeb would imply
that viewing and editing rely on entirely different code bases, so features would have to be implemented
twice.

To develop an editor for the MathWiki project [13], we would especially like to leverage some of
our experience gained from developing the HLM proof assistant [8, 9]: Its defining characteristic is a
graphical user interface that is tightly integrated with the verifier component, so that many useful features
can be implemented directly on top of the formal data structures. However, the intention of MathWiki
is to provide access to a number of different existing proof assistants, such as Mizar [10] and Coq [12].
This is a compromise: Ideally, we would like to specify the formal content just once, using a rich user
interface with HLM-like features and a general interchange format such as OMDoc [7], and use the
resulting data to generate formalization for different proof assistants. However, since the conversion
of formal mathematics between different proof assistants is problematic [18] (at the moment, at least),
supporting different proof assistants in parallel seems to be the safer route to take.

This paper presents the result of a first investigation into the possibilities of implementing auxiliary
features (for example those known from proof assistant IDEs or from HLM) in a MathWiki editor, on
top of different provers.

2 Requirements

As indicated in the introduction, an editor for a mathematical wiki must be both easy to use and flexible
with respect to the underlying prover technology. In this regard, different modes of interaction of existing
proof assistants present a special challenge. Even just considering technological differences and ignoring
mathematical foundations, there are actually several dimensions along which provers differ:

• The most well-understood dimension concerns the proof language, which can be either declarative
or procedural [19]. Roughly speaking, declarative proofs consist mostly of lists of statements
that are proved to hold, along with hints that guide the prover towards the verification of these
statements. Procedural proofs contain commands (or “tactics”) that tell the prover exactly how
to proceed (in contrast to the hints in declarative proofs, which merely need to contain enough
information to prove the statement in question). Since these commands fully describe the proof,
intermediate results are usually not included in the proof script, and can only be obtained by
“replaying” the proof in the prover. (The Proviola tool [11] aims to address this shortcoming.)
One requirement for a MathWiki editor is that procedural proofs should be just as easy to edit as
declarative proofs. In other words, the editor needs to provide additional information to the user in
order to make procedural proofs readable.

• A related but separate dimension is whether the prover maintains some internal state in addition
to the input text. In most procedural provers, every line of input constitutes a state change. This
state influences the information that is shown to the user and is necessary to understand procedu-
ral proofs. Coq, in particular, also has an “undo” feature to revert the last step [5]; this enables
an editor like CoqIDE [12] to maintain a movable cursor indicating the portion of the input text
that has been sent to the prover. If the proof language is declarative, no additional state is neces-
sary; Mizar [10] is an example of a stateless prover. However, declarative languages have been
developed for stateful proof assistants as well. Also, HLM [9] can be described as procedural but
stateless: Its user input comes from context menus instead of text, and the contents of these menus
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contain the information that would normally depend on the prover state (but in this case merely
depends on the the location or context of each menu, i.e. on the library contents).

• The graphical input method in HLM presents another challenge: It would seem that a text editor
would be a basic ingredient of a generic MathWiki editor, but HLM proofs cannot feasibly be
edited as text. On the other hand, an additional graphical interface would be helpful even if the
primary input is in text form.

• Finally, a web-based front end is usually inherently asynchronous, while most existing software
operates in a synchronous fashion (recent Isabelle developments being a notable exception [15]).
There are two reasons for the asynchronous nature of websites: the potentially large latency of
all operations that require client/server communication, and the standard mode of operation of text
editor controls in browsers. In a declarative and stateless scenario, asynchronous verification is un-
problematic: Whenever the input text changes, the prover can re-verify it and show the results to
the user when they are available. Stateful provers are more difficult to connect to an asynchronous
front end because the intended, actual, and observed state can diverge quickly. Finally, HLM con-
stitutes a special case again: It is inherently synchronous because possible inputs are determined
by menu contents that change after every operation which modifies the library.

Some compromises are necessary to accommodate all flavors of proof assistants, even in principle.
In addition, the editor must integrate well with the rest of the wiki. A number of features (most of
which are available in HLM, for example) would be desirable both in the wiki and its editor. We will
briefly characterize their value according to the methodology of Cognitive Dimensions (CD) [3]. Of
the four types of user activity mentioned in CD literature, incrementation, transcription, and exploratory
design seem especially important at the current stage, whereas modification (of existing formal content)
will most likely remain the job of a few experts for the foreseeable future. In addition, the ability to
understand and browse existing data is vital, even though it is not classified as a user activity in the CD
sense.

• The most obvious enhancement in a web-based viewer and editor is the use of (automatically
generated) hyperlinks to navigate to referenced definitions and theorems. In terms of Cognitive
Dimensions, such links improve the “visibility,” or accessibility, of referenced objects, enabling
exploration and modification. Since placing links in a text editor may be difficult to impossible,
links may need to be shown separately in editing mode.

• When the user moves the mouse over a clickable link, an abbreviated version of the linked item
can be displayed as a tooltip. This feature has the potential to greatly increase usability of a mathe-
matical wiki because it reduces the number of pages that need to be opened in order to understand
a given item. The general user-friendliness of tooltips stems from their non-disruptiveness: They
typically disappear whenever they would stand in the way. However, since mathematical defini-
tions are often complex, the size of the tooltip area can become a problem, especially since tooltips
will typically appear at locations where they hide relevant content of the current page. Thus, an
even less disruptive alternative would be a dedicated area on the page instead of a floating tooltip.

In CD terms, temporarily showing the contents of a referenced item corresponds to the “juxta-
position” of that item with the one the user is currently viewing or editing. This helps the user
understand the contents of the current item more quickly, and can also prevent errors due to incor-
rect definitions or theorem statements.

• Definitions, theorems, and proofs should be rendered in a visually pleasant form. One important
ingredient is the use of common mathematical symbols; for example, the author of a definition
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could specify a custom symbol that represents the defined object at all places where it is used.
Ideally, it should be possible to reproduce the usual mathematical notation even in cases where
that involves more than a single symbol. In HLM, the notation for a definition in the library can be
specified as a two-dimensional “layout” that includes placement of arguments and is augmented
by further information such as rules for parentheses. The inclusion of arguments in the notation is
possible because library entries cannot be referenced as mathematical entities; like “functors” and
“predicates” in Mizar they are always referenced with specific arguments. In type-theoretical proof
assistants, such definitions yield functions in the mathematical sense, which can be referenced on
their own. In this case, the notation feature can only be reproduced approximately.

A user-defined notation for mathematical objects is a “secondary notation” according to CD, as
it provides visual hints beyond the raw formal content, aiding in transcription and modification
(assuming it is actually available in the editor, not just in the viewer). In this context, it especially
reduces the “hard mental operation” of deciphering formal mathematics, by relating it to known
informal math. This is desirable for all possible user activities.

• Although outside of the scope of this paper, we propose a tree or a tree-like menu of all definitions
and theorems for navigation in the wiki, which should be available in all situations. As HLM
shows, such a tree is much easier to browse if items are shown in their custom notation, and
previews of items are shown as tooltips prior to opening them.

• The text editor should include syntax highlighting, at least for basic keywords (which is the prime
example of a “secondary notation”).

3 Design Alternatives

Different approaches are possible depending on the importance of each requirement. In the current
MathWiki implementation, the wiki and editor are entirely separate. Since the editor is a raw text editor
at the moment, non-essential features like hyperlinks are available only for finished formalizations, after
they have been submitted and verified. The simplest approach would be to enhance the text editor with as
many features as possible, for example automatic asynchronous verification and highlighting of errors.

Although this approach is compelling especially because of its incremental nature, it bears two sig-
nificant problems: First, most of the information that the user needs in addition to the raw text has to be
displayed separately, and updated through a complex client/server protocol. Second, such an individual
piece of software easily becomes more and more detached from the rest of the wiki as more features are
added to it. For example, to accommodate stateful provers with procedural proof languages, there needs
to be a display of the current state, but this display is then unavailable on the main page even though it
would be equally important there.

In other words, such a design would be feasible but rather short-sighted: Over time, similar features
would be desired on both wiki pages and editor pages, but most of the features described in section 2
would need to be implemented twice. In addition, the differences between provers could lead to separate
editor implementations, requiring further duplication of features.

At the other end of the spectrum, there is the possibility of displaying and editing everything at
a higher level, hiding the underlying textual representation. If the high-level representation is fully
equivalent to its textual counterpart, it can be used equally for viewing and editing formal content, and
all conceptual differences between proof assistants can be concealed by this abstraction layer.

This is very similar to the approach taken by the HLM proof assistant, although HLM goes one step
further by omitting the textual representation entirely. The idea of HLM is that everything (including
definitions, statements, and proofs) is displayed in a natural mathematical style, and input happens via
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menus which contain pre-rendered versions of the corresponding result. For example, if the goal of
a proof is a universally quantified statement ∀x ∈ S : P(x), the menu item corresponding to universal
generalization will simply show “Let x ∈ S.” In terms of Cognitive Dimensions, this reduces the “hard
mental operation” of having to figure out the command for universal generalization (or even just realizing
that universal generalization is the correct next step).

The existence of HLM shows that this method of proof input is viable but requires complex dialogs to
input parameters of proof steps. One should also keep in mind that the HLM logic is designed especially
to facilitate menu-based input; it is difficult to imagine how the same mechanism could be used as the
primary or sole input method for an existing proof assistant.

However, a middle ground exists as well. The basic idea is to provide both a textual and a high-
level representation side-by-side (or just the high-level representation if HLM is used as the underlying
system). The additional high-level view provides all of the desired features such as hyperlinks, tooltips,
custom notation, etc., but only limited editing facilities. It is shared between the main page and the editor
page.

While this might seem like an obvious solution, the actual difficulty lies in the connection between
these two views. With a declarative, stateless, and asynchronous system underneath, the high-level
view can simply be updated at regular intervals. For example, if the Mizar system is used, an existing
Mizar-to-XML translation [14] appears suitable as an intermediate representation from which a readable
version of the document can be computed. With HLM, there is no text input, and all editing happens
synchronously in the high-level view. However, procedural stateful provers present a challenge because
the user expects to see the current state, and because a change at one position in the input text tends to
break all commands beyond that position.

Our proposed solution is to limit the high-level view to the commands that have already been verified,
and to merge the state display into it. In the case of proving ∀x ∈ S : P(x) as above, at the beginning the
high-level view simply contains this goal statement. After the user submits the appropriate command for
universal generalization, a new line is added to the high-level view, showing “Let x ∈ S. Then P(x):” to
indicate the current hypothesis and goal.

In general, the contents of the high-level view are computed from all of the prover states after sending
each command to the prover, up to the current state, rather than from the raw input text. Thus, no
additional parsing of user input is necessary, and the display can be enhanced with all useful information
that can be obtained from the prover.

If the user has to trigger every state change manually (for example using “up,” “down,” and “go to
cursor” buttons as in existing proof assistant IDEs), the connection between both views becomes very
loose, in contrast to the automatic updating in declarative mode. This problem becomes worse in a
web front end because custom keyboard shortcuts are usually not available. However, because of the
importance of the state display, the user presumably needs full control over the position that separates
the verified and unverified parts.

Thus, we suggest that the input cursor be used to determine this position, which is equivalent to an
automatic “go to cursor” operation whenever the cursor position changes. In particular, whenever the
user finishes entering a command, that command is automatically sent to the prover. Besides requiring
less keystrokes, a special advantage is that the verified part of the text does not need to be locked: If
the user moves the cursor into this part in order to edit it, the prover will be instructed to backtrack to
this position anyway. The lack of locking makes the editor “less synchronous,” mitigating one of the
differences between provers.

This feature can be regarded as an extended variant of the “electric terminator mode” available in
Proof General [2]. The difference is that Proof General only reacts to the input of specific characters
terminating the pieces of text that can be sent to the prover on their own; it does not change the prover
state every time the user moves the cursor or presses backspace to remove a “terminator” character.
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Although the elimination of all explicit navigation is a rather radical change from the user’s point of
view, first experiments with an implementation in CoqIDE look encouraging: The lack of interruptions
from regular text input actually tends to make proof input somewhat smoother.

4 Conclusion and Future Work

We have presented requirements and design alternatives for an editor that is integrated into a mathemat-
ical wiki. The desire to support several proof assistants with different interaction styles, and to present
formal content in a more high-level form than raw text, requires a compromise between a text editor
and a structural view or editor. We have argued for a side-by-side presentation both in the editor and in
the wiki itself, and described how a text editor can be connected to a high-level view, depending on the
interaction mode of the underlying prover.

The next step will be to implement, within the MathWiki framework, the proposed method of inter-
acting with provers. A particularly interesting question is how well the automatic “go to cursor” feature
works together with asynchronous updating of the input text, and how much a delayed display of the
current prover state (due to network latency) affects usability.

Many thanks go to Josef Urban for his support and very helpful discussions, and to the anonymous
reviewers for their detailed comments (including a pointer to the concept of Cognitive Dimensions).
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Extended Abstract: Dynamic Proof Pages
Carst Tankink James McKinna

Abstract

Reading a formal proof script written in a procedural (command-driven) style is difficult, bor-
dering on impossible, without access to an interpreter for the script, that generates the states based
on the commands. The Proviola system replaces the need for this interpreter, storing responses and
displaying them on-demand.

This abstract describes a natural extension to the Proviola: instead of working on plain text files,
the improved system takes an HTML rendering of the script, and decorates it with the proof states.
The decorated page can be used as a Wiki page, generated out of a script file.

1 Introduction

Collaboration on formal (computer-verified) mathematics can be supported by taking a Wiki-based ap-
proach: a Wiki provides a repository of reusable results (e.g., lemmas, theorems and definitions) and
methodology, and it also lowers the threshold for contributing to the repository by novice users.

The software for such a Wiki can be designed in two directions:

• Bottom-up, or technology-centric, focussing on the technological problems one might encounter,
such as consistency of the database, version control or file management.

• Top-down, or user-centric, first determining what activities to support for authors and readers of
Wiki pages, by way of the interfaces (the pages in the Wiki) and developing the technology that
underlies the interface.

Both approaches can be interleaved, as technological advances can inspire new interaction styles,
while a fleshed-out interface drives the direction of technological development.

In this abstract, we will mainly work user-centric, describing a revised and redesigned approach to
rendering the pages a reader might see in a Wiki for formal mathematics, henceforth simply a MathWiki.
While we describe a design, the interface describes the behaviour desired of (formal) Wiki pages and
can be considered top-down. Our work at present leaves open how an author can write such pages,
both in terms of proof script content as well as Wiki commentary, but our approach emphasises upward
compatibility, preserving and then enhancing existing author workflows.

1.1 Proviola

Because the MathWiki contains the artifacts of formal, computer-evaluated mathematics, it is possible
to use the tools which manipulate these artifacts to enhance the Wiki pages. As one example of this, we
developed the Proviola [6, 5].

The Proviola is a tool for displaying the dynamics of (script-based) formal proof development. A
proof script is the result of an interactive session between an author and a proof assistant (PA). Such a
session consists of the author writing commands to which the assistant responds with a proof state. The
author proceeds by writing a new command, which modifies the proof state, and this game continues
until the theorem is proven. The transcript of the session are the commands written by the author, which
can be replayed by a reader at a later moment.

Because proof state is important in understanding such scripts, a reader typically cannot read the
script without first loading it into the proof assistant and inspecting it step by step: the script represents
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one side of the interaction (the author’s), but to understand the proof coded in it, the reader needs access
to the full interaction, including the PA responses.

When such scripts are published on the web, including as pages created for a Wiki, this may become
a nuisance: the reader should have both a PA and a web browser open, using the browser to explore the
links between notions, and using the PA to inspect the proof states and better understand the proof. To
save the reader from having to flip between programs just to explore a repository, we create a new page
for the Wiki. This page contains both the proof script and the state, as generated by the PA.

Declarative proofs An alternative to
the Proviola would be to write proofs
in a ‘declarative’ style, such as is done
in the Mizar system [1] or when writ-
ing Isar scripts for the Isabelle PA [9].
Proofs in this style look more like tra-
ditional mathematics: the author pro-
vides the proof states and the rules
from which these states follow, and the
system checks that the use of these
rules was allowed.
This style can allow for readable
proofs, but many proofs are already
written in a procedural style, and it is
our aim to make those proofs more ac-
cessible, without requiring authors to
rewrite their scripts.

The tool that creates these dynamic pages is a camera:
it parses a proof script, sends the commands to a PA and
records the responses. The resulting list of (command, re-
sponse) pairs is stored in an XML file, which is transformed
into an HTML page with minimal JavaScript and CSS. This
HTML page allows the reader to have direct access to the
state, by just pointing at the commands he is interested in.

The first prototype for the Proviola worked with scripts
for the Coq proof assistant, sending the commands through
the ProofWeb [3] system. The resulting pages were undeco-
rated, containing only the commands and responses as plain
text.

Towards improving the display of the proof movies, we
revised the tool to send each command instead to Coqdoc.
This tool, part of the Coq [7] distribution, marks up com-
mands and annotated comments in HTML, allowing syntax
highlighting and hyperlinks to referred lemmas and defini-
tions. In essence, for this version of our camera, we in-
tended as output an HTML page as Coqdoc would render it,

but enhanced with the proof states as in our original movies.
This approach works, but has two drawbacks:

• It does not ‘play nice’ with other tools or workflows: the camera is a wrapper around Coqdoc,
replacing that tool, so it cannot integrate easily into existing workflows that use Coqdoc produce
HTML documentation, such as the “Software Foundations” course notes of Benjamin Pierce and
collaborators [4]. Remedying this drawback is necessary to allow others to make good use of our
tool.

• Because of the way Coqdoc works, namely on a per-file basis, instead of on a per-command basis,
it is difficult to generate hyperlinks, which is essential to support readers in browsing a Wiki
containing the enriched pages: the information Coqdoc uses to generate hyperlinks is stored in a
separate file, that uses offsets in the original script for identifying location. This workflow presents
each command as a stand-alone file to Coqdoc, uncoupling the presented data from the linking
information.

We have recently re-evaluated our workflow for creating movies, to tackle both problems at the same
time, and redesigned the tools accordingly.

2 Proviola: New Workflow

Instead of using the camera as a tool that calls Coqdoc, the camera was redesigned to be able to instead
read the files generated by Coqdoc. Its implementation is straightforward: extending the parser for Coq
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scripts to extract the commands from an HTML tree, by erasing the markup information. The resulting
commands are sent to the prover, and the marked-up tree is stored together with the response.

Next to implementing a new parser, we also added communication with a locally installed Coq
interpreter: instead of having to use ProofWeb, the camera can also use a local prover, allowing the use
of special directives and libraries. We envisage that potential users and authors may wish to bind in
custom PAs for document checking, beyond the vanilla distribution supported by for example ProofWeb.

This new workflow allows a camerawoman to create movies out of existing Coqdoc-generated HTML
files, solving the first drawback. The second drawback is also solved: Coqdoc puts links into the HTML
file, and these links are copied into the movie, possibly modified to refer to other movies.

There is a question of correctness arising from our redesigned process: how does a reader know that
the movie is faithful to the original script? In the plain-text setting, this could be easily verified: the
‘command’ section of the movie should match up with the script. In the case of the new Coqdoc-reader,
this requirement becomes a bit more complex: the reader should make sure that the transformation
from script to HTML preserves the code, and that the transformation from the HTML tree back to the
commands also remains faithful. To assist in this, the movie also contains the extracted commands,
which might make it easier for the reader to verify this.

3 Movies as Wiki Pages

The Proviola camera can be used to generate pages in the MathWiki: it is a tool transforming a source
file (the proof script) into an HTML page. This means we can generate a Wiki out of a repository of
script files, where the proof states can be inspected on the pages themselves.

We have designed a prototypical Wiki system that creates HTML movies when a page is requested.
It can be found at http://mws.cs.ru.nl/mws/. Because generating a movie can take some time, it
runs as a background process, caching the generated movie for future use. Until that completes, the
Coqdoc-generated HTML is shown. The movie-based Wiki page contains links to other Wiki pages (or
pages in the Coq standard library). This prototype does not currently address any of the more technical
issues, such as maintaining consistency of the repository when a page is changed, but serves as the basis
for future research and experimentation.

The prototype has a basic editor: the entire proof script can be changed through a text box, where
storing the script triggers a verification of the content, and clearing the cached copy of the movie. The
content is only stored if it is deemed correct by the proof assistant.

This prototype does not provide any sophisticated support for (collaboration of) page authors, but
focuses on the readers. These readers might become authors themselves at a certain point, but because
formal development has a steep learning curve, they need all the help they can get in understanding the
material that is already there.

4 Future Work

The Proviola is a reader-centric tool: it does not provide any new possibilities for writing the pages in
the Wiki. To extend the Wiki, we intend to tackle the following issues:

• How to write a narrative of a movie, without having to change the underlying script; this use case
arises when working with non-editable third-party sources. The sources might be non-editable
because they are critical for other developments (similar to Wikipedia’s “protected pages”), but
they might be included in an explanation of a formalization. Such narration might be achieved
through some form Wiki-linking (specifying what objects to include in a marked-up document),
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but to make this work for arbitrary regions of code raises some questions about how to specify the
“comb”: what we previously [5] called the data structure(s) necessary to provide a commentary
overlay which avoids having to modify the underlying source.

We do not intend this narration to be limited to describing a single proof script in a single file.
Instead, a narrative can span an entire repository, or describe the different approaches taken in
different proof assistants;

• How to relate such technology and workflows to those supported by other literate tools such as
lhs2TEX[2];

• How to extend this work to other provers: our prototype was easily adapted to the sequential
interaction model of Isabelle, but this question still remains open for document-oriented PAs such
as Mizar, Epigram or Agda, where the underlying interaction model is ‘batch-mode’ or even could
be considered in terms of a ‘rectangle-based’ granularity of editing; in any case, such models
challenge the simplicity of linear, script-based approaches;

• Integrate the prototype Wiki with the advanced methods for maintaining consistency in reposi-
tories. In particular, we will integrate the prototype with the version control-based workflows
implemented for the Wiki for Mizar [8].

Our objective is to integrate such technology into a fully-fledged authoring framework, in which
script authoring and checking, enhanced ‘Coqdoc’-style documentation, and third-party ‘narration’ co-
exist within a MathWiki.
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Abstract

This is a proposal for content-based canonical naming of mathematical objects aimed at semantic
machine processing, and an initial investigation of how useful it can be, how similar it is to other
approaches, what disadvantages and limitations it has, and how it could be extended.

1 Motivation

There are interesting naming problems when dealing with a large formally encoded mathematical library
that is changing, in particular by parallel (nonlinear) editing. Some of the problems might appear also
in large code libraries, either via correspondences like Curry-Howard and Prolog-like interpretations of
mathematics, or just by the fact that code can have (implicit, explicit, chosen) mathematical semantics
attached to it, like formal mathematics, and the structure of code libraries is similar to formal mathemati-
cal ones. Some of the problems (for example renaming of concepts) might appear also in not completely
formally specified mathematical repositories/wikis, or this might also be relevant to semi-formal wikis
where at least some part of articles has some semantic encoding. The problems are following:

Renaming: Mathematical objects might change their name, or have parallel names. Bolzano-Weierstrass
theorem is often known just as Weierstrass theorem, Jaśkowski natural deduction [Jas34] as Fitch-
style [Pel99], Jarnı́k’s algorithm [Jar30] as Prim’s algorithm [Pri57]. Similarly for Solomonoff
vs. Kolmogorov vs. Chaitin complexity vs. algorithmic entropy. Composition of two relations
might be called compose(R,S), or rel compose(R,S), or just R*S. Still, these names refer to
the same mathematical content: The theorems have the same wording, and the functors have the
same definition.

Moving: An item might be (as a result of wiki-like refactoring) moved to a different place in the li-
brary, which in many naming schemes can result in some kind of renaming. For example, a fully
qualified name in the formal CoRN library [CFGW04] based on the Coq system could change
from CoRN.algebra.Basics.iterateN to CoRN.utilities.iterateN . In the formal Mizar Mathematical
library 1, moving the fiftieth theorem in article CARD 1 [Ban90b] to the first position in article
CARD 2 [Ban90a] would change its fully qualified name from CARD 1:50 to CARD 2:1. Similarly
for fully qualified names of functions in many programming languages. Any old term/formu-
la/proof referring to the old name would later have to refer to the new name, making them look
different.

Merging: Sometimes two or more objects might be merged into a single one. For example it might be
recognized that Prim’s description is essentially the same as Jarnı́k’s, and the two rewritten into
a single unified form. Function composition might be recognized to be a special case of relation
composition, and the two definitions merged into one.

1http://mizar.org/
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Note that whole hierarchies of such parallel notations and objects might be developed, possibly even
within one sufficiently large library that has no tools for detecting such terminological parallelism. For
example, it is quite conceivable that a large amount of parallelism exists when developing concepts
related to functions and relations, like domain, range, inverse, transitive closure, etc. Similarly for multi-
plicative vs. additive groups/monoids, arithmetical operations/theorems on complex vs. real vs. rational
vs. integer vs. natural numbers (when viewed as restrictions), leading to parallely derived “different” ver-
sions of operations like power and modulo and parallel theorems about them using recursively different
terminology.

How do we detect such parallelism and deal with it? Are we sentenced to re-invent pyramids of
“more convenient” or “more fitting” or “more general” or “more politically correct” names of concepts
over and over? And how do we find in the 1930’s vocabulary used in the developments by Jaśkowski and
Jarnı́k that they are isomorphic to other developments from 1950’s? Is there a matching/unification/sub-
sumption/resolution/automated-reasoning algorithm that would (recursively) unfold the different concept
names to some basic common language layer (set or type theory for example) without a significant per-
formance penalty, allowing us to have easy search and inference tools for such heterogeneous libraries?

2 Content-based naming

It seems that the best the programming languages and formal libraries came up so far are module-based
names, possibly enhanced by mangling the parameters and their types. The Mizar solution just follows
the frequent mathematical practice of numbering definitions and theorems. Thus, the object naming
typically depends either on human imagination, on the placement of the object at a particular place, or
on both. None of these two guarantee stability with respect to the problems mentioned above.

The author is aware of three (related) solutions, each developed in a different context, listed here in
the (assumed) historical order:

• Gödel numbering [G3̈1]

• Recursive term sharing

• Recursive cryptographic hashing

2.1 Gödel numbering

The famous invention showing that arithmetic is self-referential. Every mathematical object is given a
unique (impractically large) natural number as a name, based on an arithmetic function applied to its
constituents (contents) already expressed as numbers. This obviously makes the name independent of
placement in any particular module, and removes the human naming factor. As long as the wording
(contents) is fixed, the name stays the same.

2.2 Recursive term sharing

In some computer implementations that deal with mathematical structures like terms (automated the-
orem provers (ATPs), Prolog) exhaustive sharing of terms is used to achieve space/time efficiency. In
the E ATP system [Sch02], the terms f(g(a)), g(g(a)) can be printed using the following numeric
representation (corresponding to how the system represents them as pointers): a -> *0, g(*0) ->

*1, f(*1) -> *2, g(*1) -> *3 . In this way, the number assigned to a term is unique2, however,

2Obviously, something needs to be said about variables and their treatment, e.g as de Bruijn indices for this purpose.
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it depends on the order in which a particular set of terms was presented to the system. If g(g(a)) was
presented before f(g(a)), their numbers would be swapped. Because the numbering is contiguous, two
such different numberings will be incompatible. So this naming is content-based like the previous one,
however only inside one invocation of such a system.

2.3 Recursive cryptographic hashing

While the first scheme leads to impractically large numbers, the second is too fragile for practical pur-
poses. Is there something providing the best of both worlds? An obvious direction in which this leads is
minimal perfect hashing functions. However, constructing minimal (or small) perfect hashing function
seems to be feasible only for finite sets of objects, possibly extended to uncomplicated denumerable sets
of objects. There is no known (to the author) practical way how to have a reasonably well-behaving
perfect hashing function for arbitrarily large complicated objects like mathematical formulas, terms, and
proofs.

However, there is a practical approximation: cryptographic hash functions. Finding collisions for
a cryptographic hash function like SHA-13 or SHA2564 is so far very difficult, and “practically not
happening”. This has been used for a number of purposes, one of the most recent ones bearing surprising
similarity to the Gödel’s recursive encoding idea: SHA-1 based naming of files and directories in the
Git version control system.5 To summarize, each file is by Git named as the SHA-1 hash of its contents,
and each directory is named by computing the SHA-1 of the file containing the names, permissions,
and SHA-1 hashes of its constituent files and subdirectories. This in practice means that Git only stores
each duplicated file/directory once, and that some (both file and directory) renamings are very simple to
recognize.

3 Content-based naming of formal mathematics

A particular modification of the Git’s SHA1-based internal naming scheme for Mizar (and similar for-
mal/code libraries) could be as follows.

1. The initial library items (the set-theoretic equality and membership predicates in case of Mizar)
are assigned an SHA1 value (e.g. their SHA1 value as strings, etc.) which serves as their unique
name, that does not change between the library versions (all Mizar libraries are build up from the
language of set theory).

2. A suitable semantic form is defined for terms, formulas, defined symbols, proofs, and other rele-
vant library items. These all are trees (or DAGs), where the nodes are other items, and possibly
some keywords of the language (if we follow Gödel’s numbering scheme, we might assign SHA1
values also to the keywords, punctuation, etc.).

3. The semantic form (tree, DAG of items - SHA1 values) is suitably combined to obtain the canon-
ical value for the semantic form. In case of Git, this is for example done by sequential listing of
files with their SHA1 value in a file, and computing the SHA1 value of the contents of such file.
In our case, the most likely candidate for easy semantic representation is the existing XML format
of all Mizar items (similarly for Coq) like definitions and theorems. We could either just compute
a SHA1 value of each such item when treated as a file (with other items replaced with their SHA1

3http://tools.ietf.org/html/rfc3174
4http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
5http://book.git-scm.com/1_the_git_object_model.html
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value), i.e. treating items as “files” in the Git internal naming algorithm, or we could do (probably
more expensive) recursive computation of the value for all subtrees (similar to the shared term
representation mentioned above). If such an operation turns out to be expensive, we could still
use the fast local serial shared-term numbering to efficiently cache the previously computed SHA1
results for each instance of the library.

4 Proposed use, limitations, and extensions

A straightforward proposal is to compute such content-based names for all items in a large formal library
like the MML or CoRN, and see how much naming-based duplication is inside the libraries. Sometimes
such results could be surprising, showing that there are some significant redundancies, eg. when devel-
oping multiplicative and additive versions of algebraic structures.

Another direct use is for tracking the items’ histories during wiki-like refactoring: The library is in the
case of the formal Mizar/CoRN wiki prototypes held in a Git repository already, and the file/directory-
based SHA-1 hashes are very quickly computed each time a commit is made. Given this speed, it is
conceivable that the above-explained item-based SHA-1 computation would not be significantly more
expensive, and could be made an automated part of each repository commit (a particularly elegant way
would be just to replace the Git default SHA-1 application with this one, and let Git use it internally
instead). A side-effect of such an enhanced commit would be a mapping of human item names to the
content-based ones, and a semantic diff report, saying which items have been moved and which have
changed. This kind of experiment is probably readily feasible, for example on the recent one hundred
versions of the Mizar library, or on the Coq-contribs repository.

Another immediate use would be for the search and automated reasoning/search tools over the li-
braries: A query to such tools would always be done in the content-based encoding. Thus, if a new
user is (as is quite often the case with large formal/code libraries) ignorant of the particular naming
conventions, and partially duplicates the concept hierarchy, this would not be a problem when asking
some strong search/inference tools for an advice based on what is already in the library. The automated
reasoning/search tools would work on recursive content-based encoding of both the library, and the new
user’s queries and context, and provide the user also with advice about the relevant library names that
should be used.

On the other hand, direct content-based naming is often unwanted. For example, in Wikipedia an
article typically keeps its name for long time, even though its content changes. Such a stable name
however naturally creates an equivalence class in the semantic space of SHA-1 hashes: some authority
claims that a set of SHA-1 hashes have the same semantics according to some (stronger) point of view.
Such equivalence classes could be used productively to allow human (or other) influence on the recursive
content-based naming, propagating the equivalence classes using congruence-closure algorithms. This
could serve as a semantic analogy of text tools like diff, which can be instructed to ignore white space
changes. The user would in our case specify seeding equivalence pairs, whose (propagated) influence he
would like the semantic diff (and strong semantic tools like ATPs) to ignore.

An interesting related problem is providing suitably normalized object representations, before they
get consumed by the SHA-1 hash. For example, associative-commutative operators (like plus) are typ-
ically normalized into set-like representations (ignoring brackets and order) by ATP systems. This ap-
proach complements the previous one: semantic equivalence classes are not specified manually, but by
specifying a content-normalization algorithm before the hashing function is applied. For semi-formal
wikis, where for example only a small article/section part (say, the theorem) is semantically encoded,
such normalizing function might consist just in ignoring the non-semantic parts of the articles/sections.

One limitation is that functions like SHA1 are only “practically” secure, not theoretically. If we are
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very unlucky, we could for example infer a new theorem based on a clash between two differently defined
concepts. An obvious remedy is to re-check the theorems in a safe encoding.
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ProofWiki
Matt Westwood

1 Introduction

ProofWiki is an online repository for mathematical proofs. Its stated mission is: “the collection, collab-
oration and classification of mathematical proofs.”

To that end, it provides:

• A catalogue of definitions of mathematical concepts, categorised according to context (e.g. topol-
ogy, number theory, analysis, graph theory, abstract algebra).

• A catalogue of axiomatic frameworks (e.g. Zermelo-Fraenkel axioms, axioms for Natural Deduc-
tion in the context of propositional logic, etc.)

• A repository of mathematical proofs, categorised, like the definitions, according to context.

• A rudimentary historical context, in the form of short biographical pages arranged into chronolog-
ical order, in which the intention is to provide links to the original source works in which particular
pieces of work first appeared.

• A glossary of works from which the material was sourced.

It can be found at www.proofwiki.org.
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2 History

ProofWiki was conceived by Joe George, a student of mathematics at the University of Newfoundland,
and set up in March 2008 by him with the help of a couple of friends.

Over the last three years it has been accumulating users steadily, until now there are over four hun-
dred.

The author became involved in July 2008, having been alerted to it from mathhelpforum, to which he
was a regular contributor. The author had a wealth of mathematical material which had been assembled
in LATEX format over several years, but had been struggling to find a way to present it on the Internet. The
still-embryonic ProofWiki appeared to be exactly the medium for presenting the accumulated material
in the way it had originally been envisaged.

Since that time, the author has spent considerable time building up the site and contributing to the
direction of its evolution.

2.1 Statistics

The following numbers may be of interest. They are accurate at the time of writing (5th July 2011):

• Number of proofs: 3795

• Number of definitions: 2819

• Number of users: 426

• From Google Analytics, between 4th June and 4th July:

– Number of visits: 35,850

– Number of pageviews: 88,866

– Percentage of new visitors: 74.71%

2.2 Philosophy

A mathematician’s work consists of proving things. How useful would it be, one would ask, to have a
compendium of proofs of all sorts of standard results? No comprehensive website exists, we believe,
dedicated entirely to the documentation of actual proofs of results. There are plenty of sites replete with
definitions, but as far as we know, no site had yet been created with the express purpose of providing the
proofs themselves.

Into how much detail should a proof go? Many published proofs contain phrases such as “It is easy
to see that . . . ” or “It obviously follows that . . . ” and so on. It is the philosophy of ProofWiki to include
all these skipped-over parts. Every step of a proof should be documented, and every concept defined.
We consider that every page should ultimately be accessible to any reader who reaches such a page. The
only barrier to comprehension is an understanding of the concepts. To that end, every single technical
term is provided with a link to a page defining what it means.

It can be argued that the very existence of ProofWiki is a Bad Idea. In order to become a mathe-
matician, one is supposed to be able to prove things. Much of the work of a mathematics undergraduate
student consists of creating such proofs, from whole cloth, in order to develop the skills to progress. If
such proofs are freely available on the Internet, and can be directly cut and pasted into place into an
assignment document, then where is the benefit to the student?

This paper does not attempt to argue this point, beyond making the observation that all such ency-
clopedias cause exactly the same concern to be raised.
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3 Structure

ProofWiki has been constructed with the following philosophical strategies in mind.

3.1 Separation of Definitions and Axioms from Proofs

Because a definition is a completely different concept to a proof, an early decision was made to separate
the various categories of entity into separate namespaces.

These über-categories are available directly from the main menu sidebar, and can be browsed as
follows:

• Proof Index

• Definition Index

• Symbol Index

• Axiom Index

... and so on.
There are other miscellaneous namespaces which are

3.2 Deep levels of categorisation

When you are crafting a proof in a particular field of study, you have a convenient folder where you can
find any existing results relating to a particular definition.

Take for instance: Arens-Fort Space is Completely Hausdorff.
This result goes directly into two categories:

• Category:Arens-Fort Space

• Category:Completely Hausdorff Spaces.

In turn:

• “Category:Arens-Fort Space” is in Category:Examples of Topologies.

• “Category:Examples of Topologies” is in Category:Topology

• “Category:Topology” is in:

– Category:Proofs
– Category:Set Theory
– Category:Analysis

• “Category:Set Theory” is in Category:Proofs

• “Category:Analysis” is in Category:Proofs

From the other path:

• “Category:Completely Hausdorff Spaces” is in Category:Hausdorff Spaces.

• “Category:Hausdorff Spaces” is in Category:Separation Axioms

• “Category:Separation Axioms” is in Category:Topology

... and so on.
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3.3 Accurate and meaningful page names

There is a fine line between being too terse (thereby making it obscure) and being too wordy (thus making
the category page more difficult to scan). We also try to use a “name” for a result, if it exists (and we can
find out what it is).

As ProofWiki has evolved, so have the page names.
As an example, the following pages names have all been used for the Odd Number Theorem:

• Recurrence Formula for Square Numbers

• 1+3+ ...+(2n−1) = n2

• Sums of Sequence of Odd Numbers

• Sum of Sequence of Odd Numbers

Each of the superseded page titles have been kept as a redirect.

3.4 Short and pithy pages

Some wiki sites on the internet (in particular Wikipedia) try to make a page as comprehensive as possible:
with a history, a list of examples, a paragraph of applications, a full dissertation of which directions
research has taken the subject, and of course a summary for the lay person. ProofWiki’s philosophy
is: less is more. If you have a great deal to say, then split it into several pages. One page: one result.
One page: one lemma. One page: one specific example. (MediaWiki applications encourage the use of
shorter pages anyway — if you write a page with over thirty thousand or so characters, it issues you a
warning.)

Some topics, however, have many different aspects to them, to such an extent that to write these
aspects all into the same page would cause that page to become larger than is desirable. ProofWiki has a
way around this problem: using the inbuilt “transclusion” tool in MediaWiki, it is possible to construct
a large page out of a number of smaller pages. This can be particularly useful when you want to group
together many proofs or definitions in one place, but still keep the individual sections as standalone pages
in their own right.

Some particular examples:

• Definition:Separation Axioms

• Trigonometric Identities

Note how each section title of these pages is a link which leads directly to the subpage from which
the relevant parts have been transcluded into the main page.

3.5 A consistent approach to symbology

It is appreciated that there is considerable variation between various notations. While it is impossible
to cater to everybody’s personal taste in notation, an attempt has been made to establish a notational
convention on the site. When a concept is introduced by means of a definition, the various symbols for it
are defined (if relevant with a historical perspective), and the ProofWiki preferred symbol is specified.

From Definition:Set Complement:
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“No standard symbol for this concept has evolved. There are alternative symbols for {(S) and S.
C (S) is sometimes encountered, and may appear occasionally on this website. Another common one is
S′, but it can be argued that the symbol ′ is already overused.

“Some authors use Sc or S{, but those can also be confused with notation used for the group the-
oretical conjugate. Some authors use CS. Another one is S∗, and another is S̃. You may encounter
others.”

An attempt is usually made to use the notation which matches the name of the LATEX tag that defines
it, for example A \setminus B for A \B and \circ \restriction_A for ◦ �A. In cases where the
notation used is not universally understood, the strategy is for every page which uses this notation to
explain it wherever it is used.

It is planned (but no work has yet been done on this) for a list of “approved symbology” for the site.
Till then we need to be tolerant of variation. The subject is contentious, as different users have their own
preferred systems of notation. This is an area where advice may be needed.

3.6 The use of mathematical language over English

A specific example is that “iff” is preferred over the more wordy “if and only if”. The disadvantage of
this is that casual viewers frequently see this as a typo, and well-meaningly “correct” it. This is alleviated
by specifically linking to a page which defines what “iff” actually means.

3.7 A widely spaced presentation

A mistake often made in presentation of material for a computer screen is to mistake it for just another
page in a book. However, it is believed by the author (and research may back this up) that in order to be
properly taken in, information on a screen needs to be far less dense than on the printed page. To this
end, a house standard is to present each thought (in most cases that means “each sentence”) on a separate
line, with a blank line between it and the next line. More space can be put between rows to emulate
paragraphs. Screen space is not paper to be conserved. Screen space is free.

An exemplar of this style is the page Big Implies Saturated.

3.8 A historical perspective

The mathematicians who have contributed through the ages to this body of learning are credited as far
as is known. Sources are documented (although this is currently incomplete) so that the user is able
to access the original source material in which a concept is introduced. Variations in approach are
documented when appropriate, and contentious and inaccurate statements are challenged.

Some exemplar pages:

• Definition:Pascal’s Triangle, in which a section of historical notes is included.

• Definition:Empty Set, in which an unwillingness by certain authors to acknowledge the existence
of the empty set as an object is questioned.

• Union of Exteriors contains Exterior of Intersection, in which an inaccurate statement made in a
published work is documented.
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4 Infrastructure

ProofWiki was constructed around the readily available MediaWiki package (see http://www.mediawiki.
org), a popular example of which is Wikipedia.

All mathematical material is written in LATEX according to a set of loosely-enforced house rules. This
LATEX is rendered by MathJax, which is found on http://www.mathjax.org/.

ProofWiki has never been comfortable when viewed using Internet Explorer. It works, but the layout
is compromised. For best results on a PC, Firefox or Google Chrome are recommended. The author has
no knowledge of the user experience on other platforms.

5 Comparison with other sites

5.1 Wikipedia

See http://www.wikipedia.org.
As ProofWiki uses the same architecture as Wikipedia, and has been deployed with little customi-

sation of appearance, the two sites have a similar look-and-feel. However, the strategies are markedly
different.

Wikipedia, as its name suggests, takes an encyclopedic approach to its subject. A page on a given
subject is designed to hold as much information as possible, with the result that pages can become so
large as to become unwieldy and in extreme cases amorphous.

This is in direct contrast to the approach of ProofWiki, in which pages are deliberately crafted to
be short and pithy. If there are multiple contexts for a given topic, then it is usual to split these up into
separate pages, transcluded into a summary page. The MediaWiki software “transclusion” capabilities
have been exploited to a fair extent to allow this to be accomplished.

As an example of how transclusion has been exploited, see the entry Trigonometric Identities.
Also there is a high-level strategy to include on Wikipedia only “notable” subjects, and to disal-

low original research. On ProofWiki no such limitation has been imposed. If a mathematical item is
interesting enough for a contributor to spend the time to enter it, then it is deemed worthy of inclusion.

Wikipedia is inconsistent in the technique for rendition of mathematical symbology. There is a con-
tinual discussion on that site as to whether it is better to use LATEX inline or whether to use conventional
html formatting. It is the view of ProofWiki that all mathematics is best rendered in LATEX, in order to
achieve full consistency of look-and-feel.

On occasion an article which has been slated for deletion from Wikipedia has been rescued and
added to ProofWiki. A notable example of this is the entry on Boubaker polynomials, which had a
stormy history on Wikipedia and was eventually deleted amidst a squall of wrangling.

5.2 Wolfram MathWorld

See http://mathworld.wolfram.com.
Wolfram MathWorld is arguably the most elegantly presented and comprehensive on-line mathemat-

ical encyclopedia, but then it is perhaps the oldest.1 However, its focus is on definitions only, and no
attempt has been made to add proofs.

In structure and presentation it closely resembles ProofWiki in its attempt to provide a compact and
easily-assimilable page rather than bombard the reader with a large quantity of information. There is
also a section on each page containing links to other relevant pages.

1The author knows of no such older site.
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It may well be suggested that the structure of ProofWiki was influenced significantly by MathWorld,
but if this is the case then such influence was (at least in the mind of the author) completely unconscious.

Having said that, all such mathematics websites, not least ProofWiki, owe a considerable debt to
MathWorld for showing what is possible.

5.3 PlanetMath

See http://planetmath.org.
ProofWiki bears a considerable resemblance in style, if not format, to PlanetMath. The latter has been

evolving for considerably longer, so in many places is more comprehensive. However, the emphasis in
PlanetMath is on definitions rather than proofs. While such proofs do exist, this is not consistent and
therefore connecting the definitions with their uses is less than successful in places.

PlanetMath has been configured very much as a community, with an active discussion forum. On
each page the author’s username is prominent, as are the statistics for each user’s contributions. Each
page has a tool by which feedback may be offered on each page, but whether this is working or not needs
to be reviewed.

Each page on PlanetMath also has its MSC number2 appended to it. This is still a work-in-progress
on ProofWiki.

5.4 The MacTutor History of Mathematics archive

See http://www-history.mcs.st-andrews.ac.uk/history/index.html.
This is a specialised site whose main purpose is to provide short biographies of all the major math-

ematicians in history. As such it has no intention of documenting any of the actual mathematics itself.
However, it has been used as a resource for some of the historical detail which is often added to a page
to add context.

5.5 Others

The author appreciates that there are many other websites out there whose content and approach overlap
that of ProofWiki, but there has been insufficient research done in order to provide a worthwhile analysis
of them. Their presence is welcomed and supported.

6 Who’s Who

Because of its nature, nothing is known about the various authors beyond what they have seen fit to
publicise.

There are three administrator accounts: “Prime.mover”, “Joe” and “Alecscooper”.
“Joe” has the responsibility for maintaining the website’s infrastructure, for example, upgrading the

MediaWiki software as it becomes necessary.
”Prime.mover” has contributed the bulk of the material on the site so far, and continues active and

prolific involvement.
“Alecscooper” also contributes as and when his schedule allows, and keeps an eye on the user ac-

counts.

2Mathematics Subject Classification
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7 How To Contribute

ProofWiki has been set up to be completely free access. Anybody accessing the website has authority
to add or amend any page at all. You do not even have to create a user account, although if you are
preparing to contribute a significant quantity of materials you are firmly encouraged to do so.

This potentially leaves us open to all sorts of abuse to vandals and spam-merchants. However, this is
guarded against by two so-far foolproof techniques:

1. A mathematical captcha: anonymous users are expected to solve a simple addition/subtraction test
to prove they are not robots. While this looks as though it should be pitifully simple to subvert, so
far it has worked.

2. The permanent disabling of perpetrators’ accounts. This has been done in the past where users have
set up accounts as a means to provide links to websites dedicated to non-mathematical activities
(macramé, anti-smoking, political propaganda, and so on). It has also been done where users have
performed acts of vandalism.3 Not only can the user account be blocked, but so can the IP address
from where the dodgy account was set up.

The main reason why this technique has proved successful is because the level of traffic is low enough
for one person to be able to monitor it completely.

8 Conclusion

The aim to provide proofs of every mathematical result ever published is clearly ambitious. The main
limitation to our efforts is no more and no less than mathematical ability.

We need people who have the skills to be able to fill in the gaps. There are far too many “stub”,
“work in progress” and “explain” pages that need to be completed.

8.1 ProofWiki constantly evolves

New results and interesting snippets are added as the contributors discover them. The readership grows
wider, and ideas are continually being added for how to improve the presentation. Some may be good,
some may not be so good — but the important thing is that the ideas are flowing.

8.2 There are no unbreakable rules

And that’s another one. Most of rules and guidelines described in the structure section of this paper have
been broken during the course of ProofWiki’s evolution, sometimes because the page breaking that rule
was written before the rules had evolved, and sometimes because in a particular context it “made sense at
the time”. Sometimes a page is written by a person who does not quite grasp the philosophy upon which
ProofWiki emerged (“it thinks, therefore it is”) — such pages stand as they are until they are rebuilt.
Sooner or later.

3A case in point was where a user had a vendetta against another user, and made insulting and demeaning additions to
various pages associated with that user. In that case the user, having been blocked, sent an email to the administrators begging
to be allowed back on. The block was lifted, and the user continued to perform his childish acts of vandalism, for which his
block was reinstated and set to last indefinitely.
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8.3 ProofWiki is for everybody

All levels of mathematical literacy are catered for: from the straightforward simplicity of some of the
proofs of Pythagoras’ theorem to the forthcoming (planned — don’t hold your breath!) full detail of
Fermat’s Last Theorem.

Join in!
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Abstract

WorkingWiki is a software extension for the popular MediaWiki platform that makes a wiki into
a powerful environment for collaborating on publication-quality manuscripts and software projects.
Developed in Jonathan Dushoff’s theoretical biology lab at McMaster University and available as
free software, it allows wiki users to work together on anything that can be done by using UNIX
commands to transform textual “source code” into output. Researchers can use it to collaborate on
programs written in R, python, C, or any other language, and there are special features to support easy
work on LATEX documents. It develops the potential of the wiki medium to serve as a combination
collaborative text editor, development environment, revision control system, and publishing platform.
Its potential uses are open-ended — its processing is controlled by makefiles that are straightforward
to customize — and its modular design is intended to allow parts of it to be adapted to other purposes.

Copyright c©2011 by Lee Worden (worden.lee@gmail.com). This work is licensed under the
Creative Commons Attribution 3.0 license. The human readable license can be found here: http:

//creativecommons.org/licenses/by/3.0.

1 Introduction

The remarkable success of Wikipedia as a collaboratively constructed repository of human knowledge
is strong testimony to the power of the wiki as a medium for online collaboration. Wikis — websites
whose content can be edited by readers — have been adopted by great numbers of diverse groups around
the world hoping to compile and present their shared knowledge.

While several somewhat high-profile academic wiki projects have been launched and later aban-
doned — the quantum physics community’s Qwiki [14] for example — there have also been successful
academic wiki projects that strongly suggest that wikis can be a transformative tool for accelerating and
amplifying the power of research collaborations. In particular, the OpenWetWare wiki [4] has proven
itself to have staying power as a home for an extended research community’s projects and data, and the
Polymath project [11] provides especially powerful inspiration regarding the power of online collabora-
tion to accelerate the process of mathematical discovery.

MediaWiki, the software behind Wikipedia and its sister projects, available openly as free software,
is especially powerful, full-featured, and stable, and is widely used in academic and popular sites alike.
It excels at managing information organized into pages of text, as it is on Wikipedia. As such, it is very
useful for collaborative and public documentation of a research team’s techniques and results, but not
applicable for collaboration on the daily research itself, which tends to involve writing of software tools
for data analysis and simulation, and production of manuscripts for publication, with figures, tables,
formulae and citations.

This paper describes a software package that extends MediaWiki, creating a hybrid environment
which combines the desirable features of the wiki system — easy collaborative editing, recording of
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history and authorship, and instant publication on the internet — with support for complex formats
including programming languages and LATEX document formatting, making it possible to collaborate
simply and flexibly on the actual daily work of the lab and making it simple to store and publish, in an
integrated form, the results, process and presentation of the research.

2 WorkingWiki

WorkingWiki [27] is a software extension for the popular MediaWiki system that makes a wiki into a
powerful environment for collaborating on publication-quality manuscripts and software projects. The
WorkingWiki extension allows you to store “source files” in your wiki and develop, test, run and publish
them easily, along with the products of computations using those source files. Examples include a project
of five LATEX files and six EPS images that compile together into a single PDF file, or an R script that
includes two other R source files and produces a CSV data file and several EPS figures. The WorkingWiki
extension keeps track of when the source files have changed and when to redo the processing to update
the output, and how to display the various file formats involved. The output files and images can be
displayed in wiki pages along with the source code, and can be used as inputs to further computations.

Example: collaborating on a LATEX document. It’s very common for a group of scientific authors
to write a paper by emailing each other copies of .tex files daily or hourly. This is inconvenient — in
order to look at the paper you have to save the file into a directory and compile it — and unreliable — it’s
easy to get mixed up and lose someone’s edits, or overwrite them with someone else’s copy of the file.
One solution is to use a revision control system such as Subversion [8] or Git [2] to manage the source
code, but if any authors are unwilling to take on the work of learning to use the tool, they’re likely to fall
back on emailing the file or just dictating changes to someone else. WorkingWiki addresses this problem
by providing basic revision control features together with easy editing. Once the .tex files, .bib files,
and images are in the wiki, it’s easy for everyone to edit and see the updated results, and the wiki keeps
track of all the changes and their authors, and makes it easy to review or undo them. It also provides a
convenient place to discuss changes, without having to put comments into the manuscript itself, and can
be used as a website to present the research to the public.

Example: collaborative, reproducible lab science. A research team can use WorkingWiki to archive
experimental data (using the wiki’s history features to record who uploaded which data sets when);
develop their data-processing scripts collaboratively in the wiki; construct the scripts that produce figures
and tables in the wiki; create the manuscript that presents the results in the wiki; and finally export the
manuscript as a .tar.gz file ready to submit to a scientific journal. The wiki can then be used to publish
the data, source code, and manuscript to the world as is. This process captures all the files needed
to understand and reproduce the research project, with its revision history intact, and in a form that is
easy to annotate and publish online. A research team developing simulation programs rather than using
experimental data can use WorkingWiki in the same way.

WorkingWiki is developed principally for research groups, but is likely to have a variety of other uses as
well for mathematicians, scientists, and software developers. WorkingWiki provides some features of an
integrated development environment: it coordinates compiling (if necessary) and running the code when
relevant source files have changed, and displaying the results. It provides some features of a revision
control system: it uses MediaWiki’s history features to record author, date/time, and content of every
change to the files and the wiki pages they are connected to, and it allows viewers to export the source
code to their workstations and work on it offline.
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It integrates editing and running code with wiki editing. Source and product files can be mixed freely
into wiki pages’ text. Editing is fully collaborative. The effects of changes to source files can be fully
previewed before saving to the wiki. The WorkingWiki-extended wiki is a simple, elegant way to present
a research team’s work to the world.

WorkingWiki has special features for translating LATEX documents to HTML, for display directly
in the wiki page. WorkingWiki allows collaborators to edit complete LATEX documents collaboratively
on the wiki, view the compiled document in the wiki page, and export the documents’ source files to
your workstation when ready to submit or circulate. Using Bruce Miller’s LaTeXML software [20], the
rendered contents of a LATEX document are made visible in the wiki page, including figures, citations
and equations (optionally using MathML), as well as in the standard PDF format. The editing history of
all files is maintained, including authorship of each change. WorkingWiki’s LATEX handling works with
documents that involve multiple files, stored on multiple wiki pages. LATEX \include, \bibliography,
\includegraphics, and like commands are supported. Filenames do not need to match page names.

WorkingWiki is extensively customizable, supporting collaborative development and use of computer
programs in any language. Images and other files created by computer programs can be included directly
in LATEX documents and read by other programs, and are updated automatically when the programs or
source data files are changed. The development environment can be customized by adding default make
rules, and in many other ways.

WorkingWiki supports reproducible and open research by allowing researchers to collect all the files
involved in a research project — data files, source code, documentation, publications — in an accessible
place where collaborators can develop them together, and the public can be allowed to download the
entire project, to verify results and try their own experiments.

3 WorkingWiki in use

WorkingWiki operates on source files that are stored in standard wiki pages. Source files are collected
into projects. Behind the scenes, WorkingWiki maintains a cached working directory where it stores
and processes the project’s files. When an output file is called for in a wiki page or by other means,
WorkingWiki does its work by invoking make [23] to create or update the file from the source files in its
project before displaying it. In this way, users can edit their code (or their data files, or .tex documents)
by editing the wiki, and run the code and view the output (the typeset version of the paper, the updated
version of the figure, the textual output of the program) just by previewing or saving the page.

Figure 1 provides a simple example of the source text of a WorkingWiki-enabled wiki page. Most
of the text of this page is standard MediaWiki markup using constructs such as ==. . .== for section
headers and [[. . .]] for links. A WorkingWiki source file is defined by including it in an XML-style
source-file element. The text between the opening and closing tags of that element defines the content
of that file, and it is written to the corresponding file in the project’s working directory and used to update
the project’s output files as needed. In this example, project names are not explicitly given, signaling the
software to use by default the project whose name is the name of the wiki page. The assignment of files
to projects can be made explicit by supplying a project attribute along with the filename attribute in
the opening tag.

Below the source file is an output file, represented by a self-closing project-file element. When
the MediaWiki parser encounters this tag and passes it to WorkingWiki’s code, WorkingWiki synchro-
nizes all the project’s source files with their copies in the working directory, creates a subprocess to run
the Unix command make figure.png, and (assuming the make command succeeds) retrieves the file
and inserts the file into the HTML page that is the output of the wiki’s parser. Thus simply viewing the
page causes the output file to be updated and displayed. Figure 2 shows what this wiki page looks like in
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==R graphics example==

Here is a simple example of how to do a figure with R, using

[[Recipe_Book#R | the lalashan site’s custom rules for using R]].

The custom rules make it simple: just define a .R file:

<source-file filename=example.R>

plot(function(x){-x*cos(x-1)}, -pi, pi, col="blue");

</source-file>

and request its output using just the right filename:

<project-file filename=example.Rout.png/>

Figure 1: Source text for example WorkingWiki-enabled wiki page, illustrating the use of the
source-file and project-file tags.

the web browser.
This example is especially simple because the steps to make the output from the source code are

controlled by a system-wide makefile installed in a central location and used in all projects. This is not
necessary: makefiles can also be added to individual projects, in the same way as any other source file,
and in this way users can control the processing of any kind of files and specify their dependencies.

WorkingWiki completely supports MediaWiki’s previewing feature: changes to pages, including
source files, can be tested and revised extensively before saving them to the wiki. When a user previews
a page that includes project files, WorkingWiki updates them from the modified source files, in a separate
preview copy of the project’s working directory. When the user saves the changes to the wiki, Working-
Wiki merges the temporary files into the permanent copy, to avoid unnecessary repetition of processing
steps. 1

Editing source code in a form field in a web browser is much less convenient than editing files in
full-featured editors like vi and emacs, but browser addons It’s All Text [15] for Firefox and TextAid
[9] for Chrome make it much easier by allowing a page’s contents to be opened in a text editor of the
user’s choice and kept open while repeatedly submitting and previewing the page or a section of the page.
This gives users access to all the editor features they are used to, such as syntax highlighting and smart
indenting.

3.1 LATEX features

WorkingWiki allows a source file to be displayed in a transformed form. For instance, if a page’s ed-
itor writes <source-file filename="example.R" display="example.Rout.png">, the project
file example.Rout.png is updated and displayed in the page in place of the source code. This feature
has not proved very popular — it seems to be preferable to make source code visible in most cases —
but the use of default display attributes is very useful with LATEX and related formats. Default display

1When a directory becomes large, these copy operations can become quite expensive. Unfortunately, it’s necessary, because
if we processed unsaved code in the primary cache directory it could modify files in ways that would affect the outcome of
future processing steps, even if the previewed changes were never saved. We partially address this problem by making it
possible to split out large or numerous project files into separate project directories that are left uncopied provided the project’s
authors promise that they are protected from problematic side effects, but a more flexible solution would be desirable. We are
considering using the Btrfs filesystem’s copy-on-write file storage capabilities [1] to make these copy and merge operations fast
and cheap.
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Figure 2: How the markup of figure 1 appears in a wiki page.

transformations can be defined by the wiki’s administrators, and WorkingWiki comes with a small num-
ber of them predefined. In particular, .tex files are by default transformed to .latexml.html files
for display, and WorkingWiki’s system-wide makefile provides rules that make that transformation by
using LaTeXML to process the document into HTML for display. Additionally, if a user has opted to
enable MathML output and is using a MathML-compatible browser, WorkingWiki instead provides a
.latexml.xhtml version of the document which uses MathML for all mathematical content. (This
automatic detection and output switching is also available to wiki users and administrators for custom
HTML-producing processes.)

When displaying a .tex file, WorkingWiki also provides a link that makes and provides a PDF
version of the document using either LATEX or PDFLATEX (or other programs, if customized). This link
can be redefined or additional links can be added to the default behaviour and they can be changed on a
file-by-file basis by adding attributes to the source-file element.

In figure 3 is a screenshot of a LATEX document in a wiki page, illustrating how the XHTML version
of the manuscript is embedded in the page, and the PDF link at the right margin. Embedding the rendered
form of the manuscript directly in the wiki page allows for a comfortable cycle of editing, previewing,
and editing some more, which is comparable to the ease of editing a manuscript’s source text in a text
editor, processing it into DVI or PDF, viewing, and editing again, especially when using an external text
editor with the wiki as described above.

These features allow users to edit LATEX documents (and other source files) in the same way that wiki
pages are edited: open an edit form and change the source code; press the preview button and see what it
looks like when processed; edit some more until it is right, and then save.
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Figure 3: A LATEX document in a wiki page.

The make rules that are provided with WorkingWiki automatically keep track of dependencies on
BibTeX files, figures, locally provided style files and included tex files, so that the displayed manuscript
is kept up to date when any part of it is updated.

It is simple to use LATEX conditionals to insert comments and conversations in the code of a manuscript
that are visible in the HTML version of the manuscript but invisible in the PDF, providing an easy way
to coordinate while keeping a clean manuscript for submission.

3.2 Advanced features

3.2.1 Inter-project dependencies

For advanced users, WorkingWiki supports sharing of data among multiple projects, and takes steps to
ensure dependency relationships are respected and data integrity is protected when previewing or running
background jobs (see below).

This feature allows a number of useful strategies. General-use code can be shared among multiple
projects, by placing it in a ”library” project. Complex projects can be organized by grouping related
things together into separate WorkingWiki projects, while allowing interaction between the different
components. Independent parts of a project can be isolated from one another. A particularly important
case is that a journal article for publication can be housed in a separate project from the data and pro-
grams that provide its content. This allows, on the one hand, the authors to maintain the dependency
relationships within the wiki that allow the manuscript’s figures and tables to be automatically kept up
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to date when the data and programs change, and on the other hand makes it simple to export the article’s
source files in a neat .tar.gz package for submission to the journal and leave the programs and data
behind.

3.2.2 Interaction with external data

WorkingWiki’s back end is capable of processing data from multiple sources, and the front end allows
those projects to be integrated with projects originating on the wiki. For instance, this author has a
research project in progress in which a complex simulation program is stored in two GitHub repositories,
pulled into two project directories in the wiki’s file cache, compiled and run by code in a third project
whose source files are housed on the wiki, and the output files are stored in a fourth project that is created
on the wiki but doesn’t have any source files.

This external-project feature also allows interaction between projects housed on different wikis —
this is useful on our site at McMaster because we operate many interconnected wikis, and store some
general-use code on a central wiki for use on others.

Project data can be exported to a user’s local disk in a .tar.gz package, which includes the wiki’s
centralized makefile and other supplementary data, to allow running and developing the code offline. It
can then be re-imported into the wiki. There is also a command-line tool to pull project files from wikis
to a local directory. In the future there may be an interface to git [2], allowing one to pull and push
source code from and to the wiki storage as if it were a (somewhat simplified) git repository. Given the
flexibility of the git client, this would effectively make it possible to migrate projects easily between wiki
storage and many other repositories.

3.2.3 Background jobs

When certain computational steps are too slow to run on the spot, WorkingWiki allows them to be run as
background jobs, which run outside of the wikitext-parsing process. A background job is created simply
by specifying a make target and requesting it be made in the background. Any background jobs that have
been created are listed at the top of all pages that interact with the projects they involve, in a listing that
provides their basic information and status. Whether a job has succeeded or failed, a user can browse its
files, destroy it, or merge its output into the project’s primary working directory. Running jobs can be
browsed and killed.

In a standard installation, background jobs are run as Unix subprocesses on the same processors
as the web server (using nice and ionice at the discretion of the site administrators), but there is a
prototype in development to run background jobs on computing clusters using GridEngine [5].

4 Design of the software

WorkingWiki is implemented as a MediaWiki extension, written in PHP and augmented by a few
JavaScript and CSS resources, makefiles, and small helper programs. It is freely available under the
GNU General Public License [3], and is compatible with all versions of MediaWiki from 1.13 on.

The source-file and project-file tags are implemented as tag hooks, a standard means of
extending MediaWiki’s parser, and retrieval of binary files and project management are provided by two
special pages, another standard form for extensions. Like MediaWiki, WorkingWiki itself provides a
number of hooks that can be used by other extensions to provide additional features or modify the ones
that are provided. It has not been tested in combination with all other MediaWiki extensions, but there
are no known conflicts.
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WorkingWiki’s behavior can be extensively customized as is. Administrators can modify the rules
controlling how different file types are displayed, and provide default transformations like the one from
LATEX to HTML and links like the one from LATEX to PDF. Custom make rules can be added, to make it
easy for users to write source code and transform it in standard ways, and the existing make rules can be
partially or completely overridden.

4.1 Separation of wiki from project engine

A wiki is a powerful tool that combines a number of important functions. It is effectively a combined
revision control system, integrated development environment, markup parser for website content, and
publishing platform for web pages written in its markup language. WorkingWiki extends all of these
functions to a wider range of source material, making the wiki into a combination revision control sys-
tem, development environment, execution environment, and publishing platform for the general case of
executable program text. Each of these functions is provided in more powerful forms by other tools, but
the power of the wiki medium is in combining them together in an elegant, easy-to-use form.

An ideal situation would be to make it easy for end users to separate all these functions in a mix-
and-match way, for instance providing a development, execution and publishing platform for data stored
in a revision control system of the user’s choice, or providing revision control, execution and publishing
but using a third-party tool for editing and previewing. This is not entirely possible at present, but
WorkingWiki is written with these separations in mind.

In particular, while the revision control, development (e.g. editing and previewing), and publishing
functions are essentially provided by MediaWiki once the source files’ contents are inserted into the
stored pages and output files are inserted into the output HTML, WorkingWiki’s execution environment
is entirely separate from MediaWiki’s code, and is designed as a completely independent component.

This component, called ProjectEngine, is a standalone tool that stores files, performs make opera-
tions, and serves up-to-date file contents. Written in PHP, as are MediaWiki and WorkingWiki, it can be
used as a component of a larger program — it is incorporated in WorkingWiki in this way by default —
and can also run as a self-contained HTTP service. It can be thought of as similar to a simple web server
— whose primary function is to retrieve the contents of files for clients — but one that can create and
update its files using make rules before serving them.

ProjectEngine supports updating and removing files; creating, destroying and merging preview ses-
sions by making a copy of ”persistent” files; and creating, destroying, merging and tracking background
jobs.

The project engine seems to be a simple and powerful concept, and one that may have uses be-
yond this single wiki system. If nothing else, it can be used as a back end for similar extensions for
other wiki engines, and the author has discussed this possibility with the author of Projects Wiki [19], a
WorkingWiki-inspired plugin for Dokuwiki.

4.2 Security considerations

There are, of course, risks involved in running a web server that includes a project engine, which exe-
cutes programs supplied by users. To a first approximation, the risks can be partitioned into just a few
categories: overuse or destruction of server resources, access to sensitive data, denial of service, and
harmful output. All of these risks can be managed.

The first category, overuse or destruction of system resources, is fairly broad. It includes scenarios
from user-supplied code altering files on the server, to programs that send voluminous spam emails to
innocent people, to infinite loops that consume excessive CPU time or fill up a disk partition. These risks
can be managed by use of a mandatory access control system such as TOMOYO Linux [7] to restrict
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access to all system resources, from sensitive files to use of the server’s network interfaces. Additionally,
ProjectEngine uses nice and ionice to prevent its processes from monopolizing CPU time and disk
access, and uses setrlimit() to limit the number of subprocesses a make process can create and kills
make processes after a limited time period. A quota system can be used to limit the amount of disk space
ProjectEngine’s files can consume.

Mandatory access control is also effective at keeping user-supplied code from reading sensitive sys-
tem files, and WorkingWiki’s inputs are carefully validated to prevent backdoor access to SQL data.
WorkingWiki works with MediaWiki’s access control features to ensure that a password-protected wiki
doesn’t reveal data to unauthorized users.

Denial of service attacks can include inputs that cause crashes in the software, as well as inputs that
consume inordinate resources. The latter category has been covered. The former case can probably never
be ruled out with complete confidence, but in any case, when a wiki is password-protected, unauthorized
users have no means to interact with WorkingWiki and thus any attacks from outside the user community
must be directed at other services.

The case of harmful output is the least well accounted for at present: in order to provide an HTML
rendering of LATEX documents, it’s necessary to allow ProjectEngine jobs to produce HTML output to
be passed on to the client, and in order to support programmers it’s necessary to allow them to write
programs and custom make rules; in combination this means that users’ projects can produce HTML
output that does unwelcome things on the client side, such as making calls to third-party websites that
reveal information about users logged in to the wiki. It may be possible to filter HTML output in a way
that allows only safe output, but this is currently not implemented in WorkingWiki. Another possibility
is to provide as an option a restricted set of WorkingWiki features, for instance allowing users to edit
LATEX documents but not to create makefiles; this might suffice to provide a system that could be safely
opened up to anonymous editors.

The current recommendation is to use WorkingWiki only on password-protected wikis, restricting
editing access to trusted users. We believe it is safe for publicly readable wikis as long as only trusted
users can edit. WorkingWiki is very useful and reliable for semi-closed wikis in this way, and use in
public wikis more like Wikipedia may be possible in the future.

5 Examples of WorkingWiki in use

WorkingWiki’s home site [27], which is itself a WorkingWiki-enabled wiki, provides a handful of ex-
ample WorkingWiki projects, illustrating how to create projects for LATEX and for programming (the
nomogram example [10] is especially engaging).

One active research team is using it to analyze and visualize African survey data related to HIV and
female genital cutting. For that research a utility project has been created that automates the process of
downloading the raw survey data from the provider’s web site, merging separate data sets together, and
transforming them into .RData files ready for processing in R. Another utility project provides custom
R functions for plotting the data, allowing users to create visualizations of particular variables, including
geographical plots, by inserting brief scripts of only a few lines into their wiki pages.

The Dushoff lab has created a suite of make rules to streamline R programming within Working-
Wiki, making it easy to process data in steps by creating a series of small R modules that operate on
the data produced by earlier modules, and interleaving these brief program snippets with the plots and
textual output that they produce, in a wiki page that documents the steps of the processing. This mode
of working with processing steps and their output is similar to the interactive notebooks provided by
Mathematica [22] or Sage [6]. The Dushoff lab has also developed custom processes and make rules
for automatically generating BibTeX data and browser-friendly reference lists from PubMed and similar
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identifiers, making it easy to maintain citation data within the wikis.
This author is conducting an experiment in open research by maintaining a project on a publicly

readable wiki. This project, which is in the early proof-of-concept phase, combines simulation and
mathematical analysis in modeling collective search for a solution to a complex problem [24].

Another team is using it to investigate the behavior of spatially extended threshold models like those
described by Schelling [21] and Granovetter [12], using a combination of python simulations and col-
laborative mathematical analysis (both in WorkingWiki). Other teams are using WorkingWiki to study
the use of non-negative matrix factorization for community detection in marine ecometagenomics data,
the effect of complex contact network structure on infectious disease dynamics, and spread of coexisting
favorable mutations in spatially localized populations of plants and animals.

Papers completed in WorkingWiki have been published in Ecological Economics [25], Theoretical
Ecology [13], and Journal of Mathematical Biology [16] (and now in this proceedings [26]).

6 WorkingWiki and math wikis

WorkingWiki’s makefile rules are straightforward to extend or replace. Its LATEX features can be ex-
tended to additional formats: this author once created a structure for working on Sweave documents in
WorkingWiki in an afternoon (it took a few minutes to write the rule to create .tex files automatically
from Sweave files, and a few hours to create a LaTeXML style file to make the Sweave output look good
in the browser). It should be straightforward to extend WorkingWiki to process any number of special-
ized document types conveniently; for instance, allowing users to edit sTex [17] documents and render
them automatically to PDF, browser-ready XHTML, and OMDoc [18] formats. It could also be used to
develop, store, and process documents in computer-aided theorem-proving systems, or using any other
tool that can be invoked from a UNIX command line to process files. Its uses are open-ended, and may
prove very fruitful to explore.
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