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Abstract—Based on an earlier proposed procedure and data,
we extended our signature database and examined the differences
between signature samples recorded at different times and the
relevance of training data selection. We found that the false accept
and false reject rates strongly depend on the selection of the
training data, but samples taken during different time intervals
hardly affect the error rates.

Index Terms—online signature; signature verification

I. INTRODUCTION

In our earlier study [1], we investigated a procedure for
signature verification which is based on acceleration signals.
The necessary details about the method – applied in the earlier
study and recent study – are explained in Section II. Previously
we created a database with genuine and unskilled forgeries and
used the dynamic time warping method to solve a two-class
pattern recognition problem.

In our recent study we extended the database with fresh
recordings of the signatures from former signature suppliers,
thus we were able to compare signature samples recorded
in different time periods. In addition, we examined how
the selection of training data can affect the results of the
verification process.

Several types of biometric authentication exist. Some of
them have appeared in the last few decades, such as DNA and
iris recognition and they provide more accurate results than the
earlier methods did (e.g. fingerprint, signature). Hence they
are more difficult to forge. However, a signature is still the
most widely accepted method for identification (in contracts,
bank transfers, etc.). This is why studies tackle the problem
of signature verification and examine the process in detail.
Usually their aim is to study the mechanics of the process and
learn what features are hard to counterfeit.

There are two basic ways of recognizing signatures, namely
the offline and the online. Offline signature recognition is
based on the image of the signature, while the online case uses
data related to the dynamics of the signing process (pressure,
velocity, etc.). The main problem with the offline approach is
that it gives higher false accept and false reject errors, but the
dynamic approach requires more sophisticated techniques.

The online signature recognition systems differ in their
feature selection and decision methods. Some studies analyze
the consistency of the features [2], while others concentrate

on the template feature selection [3]; some combine local and
global features [4].

A key step in signature recognition was provided in the
First International Signature Verification Competition [5], and
reviews about the automatic signature verification process
were written by Leclerc and Plamondon [6], [7], Gupta [8],
Dimauro et al. [9] and Sayeed et al. [10].

Many signals and therefore many different devices can be
used in signature verification. Different types of pen tablets
have been used in several studies, as in [11], [12]; the F-Tablet
was described in [13] and the Genius 4x3 PenWizard was used
in [14]. In several studies (like ours), a special device (pen)
was designed to measure the dynamic characteristics of the
signing process.

In [15], the authors considered the problem of measuring
the acceleration produced by signing with a device fitted with
4 small embedded accelerometers and a pressure transducer. It
mainly focused on the technical background of signal record-
ing. In [16], they described the mathematical background
of motion recovery techniques for a special pen with an
embedded accelerometer.

Bashir and Kempf in [17] used a Novel Pen Device and
DTW for handwriting recognition and compared the accel-
eration, grip pressure, longitudinal and vertical axis of the
pen. Their main purpose was to recognize characters and PIN
words, not signatures. Rohlik et al. [18], [19] employed a
similar device to ours to measure acceleration. Theirs was
able to measure 2-axis accelerations, in contrast to ours
which can measure 3-axis accelerations. However, our pen
cannot measure pressure like theirs. The other difference is
the method of data processing. In [18] they had two aims,
namely signature verification and author identification, while
in [19] the aim was just signature verification. Both made use
of neural networks.

Many studies have their own database [12], [13], but
generally they are unavailable for testing purposes. However
some large databases are available, like the MCYT biometric
database [20] and the database of the SVC2004 competition1

[5].

1Available at http://www.cse.ust.hk/svc2004/download.html
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II. PROPOSED METHOD

A. Technical background

We used a ballpoint pen fitted with a three-axis accelerom-
eter to follow the movements of handwriting sessions. Ac-
celerometers can be placed at multiple positions of the pen,
such as close to the bottom and/or close to the top of the
pen [15], [17]. Sometimes grip pressure sensors are also
included to get a comprehensive set of signals describing the
movements of the pen, finger forces and gesture movements.
In our study we focused on the signature-writing task, so we
placed the accelerometer very close to the tip of the pen to
track the movements as accurately as possible (see Figure 1).

In our design we chose the LIS352AX accelerometer chip
because of its signal range, high accuracy, impressively low
noise and ease-of-use. The accelerometer was soldered onto a
very small printed circuit board (PCB) and this board was
glued about 10mm from the writing tip of the pen. Only
the accelerometer, the decoupling and filtering chip capacitors
were placed on the assembled PCB. A thin five-wire thin
ribbon cable was used to power the circuit and carry the three
acceleration signals from the accelerometer to the data acqui-
sition unit. The cable was thin and long enough so as not to
disturb the subject when s/he provided a handwriting sample.
Our tiny general purpose three-channel data acquisition unit
served as a sensor-to-USB interface [21].

The unit has three unipolar inputs with signal range of 0
to 3.3V, and it also supplied the necessary 3.3V to power it.
The heart of the unit is a mixed-signal microcontroller called
C8051F530A that incorporates a precision multichannel 12-bit
analogue-to-digital converter. The microcontroller runs a data
logging program that allows easy communication with the host
computer via an FT232RL-based USB-to-UART interface. The
general purpose data acquisition program running on the PC
was written in C#, and it allowed the real-time monitoring
of signals. Both the hardware and software developments are
fully open-source [22]. A block diagram of the measurement
setup is shown in Figure 2.

The bandwidth of the signals was set to 10Hz in order
to remove unwanted high frequency components and prevent
aliasing. Moreover, the sample rate was set to 1000Hz. The
signal range was closely matched to the input range of the
data acquisition unit, hence a clean, low noise output was
obtained. The acquired signals were then saved to a file for
offline processing and analysis.

Fig. 1: The three-axis accelerometer is mounted close to the
tip of the pen

B. Database

The signature samples were collected from 40 subjects.
Each subject supplied 10 genuine signatures and 5 unskilled
forgeries, and 8-10 weeks later the recording was repeated with
20 subjects, so we had a total of 40 × 15 + 20 × 15 = 900
signatures. The signature forgers were asked each time to
produce 5 signatures of another person participating in the
study.

In order to make the signing process as natural as possible,
there were no constraints on how the person should sign. This
led to some problems in the analysis because it was hard
to compare the 3 pairs of curves (two signatures). During a
signing session, the orientation of the pen can vary somewhat
(e.g. a rotation with a small angle causes big differences for
each axis). This was why we chose to reduce the 3 dimensional
signals to 1 dimensional signals and we only compared the
magnitudes of the acceleration vector data.

Figure 3 shows the acceleration signals of 2 genuine signa-
tures and 2 forged signature. Figures 3a and 3b show samples
from the same author, and they appear quite similar. Figures 3c
and 3d are the corresponding forged signatures, which differ
significantly from the first two.

C. Distance between time series

An elastic distance measure was applied to determine
dissimilarities between the data. The dynamic time warping
(DTW) approach is a commonly used method to compare time
series. The DTW algorithm finds the best non-linear alignment
of two vectors such that the overall distance between them is
minimized. The DTW distance between the u = (u1, . . . , un)
and v = (v1, . . . , vm) vectors (in our case, the acceleration
vector data of the signatures) can be calculated in O(n ·m)
time.

We can construct, iteratively, a C ∈ R(n+1)×(m+1) matrix
in the following way:

C0,0 = 0

Ci,0 = +∞, i = 1, . . . , n

, C0,j = +∞, j = 1, . . . ,m

Ci,j = |ui − vj |+min (Ci−1,j , Ci,j−1, Ci−1,j−1) ,

i = 1, . . . , n, j = 1, . . . ,m.

After we get the Cn,m which tells us the DTW distance
between the vectors u and v. Thus

dDTW(u, v) = Cn,m.

Fig. 2: Block diagram of the data acquisition system
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(a) Genuine - 1st time period (b) Genuine - 2nd time period (c) Forgery - 1st time period (d) Forgery - 2nd time period

Fig. 3: The images and corresponding acceleration signals of two genuine signatures and two forged signatures

The DTW algorithm has several versions (e.g. weighted
DTW and bounded DTW), but we decided to use the simple
version above, where |ui − vj | denotes the absolute difference
between the coordinate i of vector u and coordinate j of vector
v.

Since the order of the sizes of n and m are around 103−104,
our implementation does not store the whole C matrix, whose
size is about n×m ≈ 106 − 108. Instead, for each iteration,
just the last two rows of the matrix were stored.

III. SELECTION OF REFERENCE SIGNATURES

First, we examined the 40 · 15 = 600 signatures from
the first time period. For each person, 5 genuine signatures
were chosen first randomly as references, and included in
the training set. All the other signatures of this person and
unskilled forgeries of their signature were used for testing.
Thus the test set contained 5 genuine and 5 unskilled forged
signatures for each person.

We first computed the minimum distance between the five
elements of the training set (Dmin). Then, for each signature
in the test set, the minimum distance of the signature from
the training set’s five signatures was found (Ddis). Now, if for
some t in the set

Ddis < m ·Dmin

then t was accepted as a true signature; otherwise it was
rejected.

Besides the minimum we also used two other metrics,
namely the maximum and average distances, but the minimum
produced the lowest error rates.

The performance of a signature verification algorithm can be
measured by the Type I error rate (false reject), when a genuine
signature is labelled as a forgery and Type II error rate (false
accept), when a forged signature is marked as genuine. After
we analyzed the results, we observed that the Type I and II
errors depend on how we choose the reference signatures, so
we checked all the possible choices of reference signatures and
compared error rates. For each person there were

(
10
5

)
= 252

possible ways of how to choose the 5 reference signatures
from the 10 genuine signatures.

False acceptance/rejection rates
Type I Type II No of cases

0% 0% 39
20% 0% 135
40% 0% 68
60% 0% 7
80% 0% 3

Total 252
24.13% 0%

TABLE I: A typical distribution of error rates

False acceptance/rejection rates
Type I Type II No of cases

0% 0% 13
0% 20% 52
0% 60% 45

20% 0% 8
20% 60% 58
20% 20% 45
40% 20% 8
40% 60% 22
60% 60% 1

Total 252
13.81% 38.33%

TABLE II: A different distribution of error rates

Based on our earlier studies [1], we set the multiplier m at
2.16 because we got the highest overall accuracy ratio (88.5%)
with this value.

A typical distribution of Type I and Type II error rates is
shown in Table I. The first two columns show the error rates,
while the third one shows certain cases with the corresponding
error rates. The last row shows the average error rate.

According this table, in 39 cases (out of 252) the Type I
and Type II error rates are equal to 0. The average type error
rate of 252 possibilities is 24.13%, while the average Type
error rate is 0. For 27 authors (out of 40) and for each case,
the false reject rates were 0%. A much worse, but very rare
case is shown in Table II.

The average false accept rate was 14.34%, with a standard
deviation of 13.62%; the average false reject rate was 12.89%,
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DTW AE50 AE51 AE52 AE53 AE54 AE55 AE56 AE57 AE58 AE59 ME60 ME61 ME62 ME63 ME64

AE50 0
AE51 63 0
AE52 98 64 0
AE53 125 71 105 0
AE54 116 65 67 101 0
AE55 63 113 136 167 157 0
AE56 114 80 76 127 67 155 0
AE57 104 68 76 115 73 147 63 0
AE58 74 66 63 111 59 105 37 49 0
AE59 233 173 86 177 82 317 165 152 122 0
ME60 344 239 254 281 386 532 333 202 234 372 0
ME61 274 232 252 285 441 450 402 239 246 501 135 0
ME62 237 177 175 231 255 350 222 179 158 316 70 107 0
ME63 318 259 260 304 410 494 334 221 227 372 50 83 67 0
ME64 710 677 697 716 875 854 796 670 684 977 260 198 395 269 0

TABLE III: Sample distance matrix – First time period
DTW2 AE80 AE81 AE82 AE83 AE84 AE85 AE86 AE87 AE88 AE89 ME90 ME91 ME92 ME93 ME94

AE80 0
AE81 34 0
AE82 34 41 0
AE83 50 63 47 0
AE84 52 58 43 49 0
AE85 217 213 179 227 206 0
AE86 139 130 152 150 145 325 0
AE87 117 103 144 154 147 339 81 0
AE88 55 52 52 91 82 140 154 121 0
AE89 65 63 60 71 65 233 105 125 92 0
ME90 293 245 270 355 310 236 336 302 228 328 0
ME91 227 198 208 295 252 245 275 262 165 259 54 0
ME92 339 298 322 419 387 288 393 348 273 413 45 106 0
ME93 617 625 569 617 699 473 518 415 473 770 202 260 117 0
ME94 388 425 492 540 582 293 469 376 395 582 67 150 40 100 0

TABLE IV: Sample distance matrix – Second time period
DTW AE50 AE51 AE52 AE53 AE54 AE55 AE56 AE57 AE58 AE59 AE80 AE81 AE82 AE83 AE84 AE85 AE86 AE87 AE88 AE89

AE50 0
AE51 63 0
AE52 98 64 0
AE53 125 71 105 0
AE54 116 65 67 101 0
AE55 63 113 136 167 157 0
AE56 114 80 76 127 67 155 0
AE57 104 68 76 115 73 147 63 0
AE58 74 66 63 111 59 105 37 49 0
AE59 233 173 86 177 82 317 165 152 122 0
AE80 74 51 47 95 75 112 65 67 50 168 0
AE81 75 51 50 102 69 119 64 59 47 179 34 0
AE82 67 40 48 96 54 104 74 66 57 179 34 41 0
AE83 94 63 58 94 58 121 78 75 68 129 50 63 47 0
AE84 90 54 57 87 44 120 65 53 49 124 52 58 43 49 0
AE85 84 238 265 259 251 147 352 303 268 453 217 213 179 227 206 0
AE86 223 145 111 192 141 306 128 145 110 92 139 130 152 150 145 325 0
AE87 179 126 126 190 170 252 84 108 96 203 117 103 144 154 147 339 81 0
AE88 45 63 77 132 105 82 87 83 64 217 55 52 52 91 82 140 154 121 0
AE89 133 70 55 120 52 185 67 77 65 109 65 63 60 71 65 233 105 125 92 0

TABLE V: Distances between genuine signatures from both time periods

with a standard deviation of 24.33%.

IV. DIFFERENT TIME PERIOD

Since a signature can change over time, we decided to
examine how this affects the DTW distances of the accelera-
tion signals of signatures. We recorded genuine and forged
signatures from 20 authors in two time periods this year:
between January and April and between May and June.

Table III and IV are two (DTW) distance matrices calculated
for the same subject in the two time periods.

The intersection of the first 10 columns and 10 rows shows
the distance values between the genuine signatures (obtained
from the same person). The intersection of the first 10 rows and
the last 5 columns tells us the distances between genuine and
the corresponding forged signatures. The rest (the intersection
of the last 5 rows and last 5 columns) shows the distances
between the corresponding forged signatures.

In Table III [Table IV] the distance between the genuine
signatures varies from 60 to 317 with an average of 108 and a
standard deviation 53 [from 34 to 334 with an average value of

117 and a standard deviation 73], but between a genuine and
a forged signature it varies from 158 to 977 with an average
of 393 and a standard deviation of 211 [from 165 to 770 with
an average value of 382 and a standard deviation of 142]. The
distance matrices for other persons are similar to those given
above.

In most cases there were no significant differences between
distance matrices calculated for different time periods (and
from the same author). Table V shows the DTW distance
between genuine signatures taken from the same author for
the different time periods. AE50-59 are from the first period,
while AE80-89 are from the second. The average distance is
114, the minimum is 34, the maximum is 453 and the standard
deviation of the distances is 70.3.

Figures 4a and 4b show the false reject and false accept rates
as a function of the constant multiplier m of the minimum
distance got from the training dataset.

We can see that in both time intervals we get a zero false
accept rate when m = 7. The curves decrease quite quickly,
while the increase of the false reject rate is less marked. The
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main difference between the two time intervals and the false
reject rate curves is that in the first time interval it increases
faster than in the second. The reason is probably that in the
second time interval the acceleration signals were quite similar
(see tables III and IV).

(a) 1st time period

(b) 2nd time period

Fig. 4: False acceptance and false rejection rates

V. CONCLUSIONS

In this paper an online signature verification method was
proposed for verifying human signatures. The new procedure
was implemented and then tested. First, a test dataset was
created using a special device fitted with an accelerometer.
The dataset contained 600+300 = 900 signatures, where 600
signatures were genuine and 300 were forged. By applying
a time series approach and various metrics we were able to
place signature samples into two classes, namely those that
are probably genuine and those that are probably forged.

Based on our earlier experiments, we examined how the
training set selection varies over a period of weeks (in most
cases it was a few months) and how time influences the false
acceptance and false rejection rates. We found that a person’s
signature does not vary much over a period of weeks or
months, but it could vary more over longer periods.
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