
Recommender System Based on Random Walks
and Text Retrieval Approaches

Max Chevalier, Taoufiq Dkaki, Damien Dudognon, Josiane Mothe

Institut de Recherche en Informatique de Toulouse
Université de Toulouse, France

FirstName.Surname@irit.fr

Abstract. This paper presents the approaches IRIT developed for the VLNetChallenge re-
garding recommender systems in the context of video lectures. The first task aims at re-
commending newly acquired lectures after viewing an “old” lecture. We use random walk
algorithms based on a graph composed of author, category, event, and lecture nodes and as-
sociated relationships. The second task aims at recommending 10 lectures from three lec-
tures extracted from a sequence of lectures. We use the categories associated to lectures in
addition to the lecture pairs (lectures viewed in a same session).

1 Introduction

IRIT participated to the two tasks of the VLNetChallenge.
Regarding the cold start task, which aims at recommending newly acquired lectures after

viewing an “old” lecture, we first built a graph from the data collection. Graph nodes are lectures
and associated meta-data (authors, events and categories). Graph links correspond to the various
types of relationships (links between lectures, between events and between categories as well as
cross-type links). Relationships were weighted differently according to the nature of the links.
The resulting graph was used in random walk algorithms. The best results on the test collection
have been obtained when the graph weights are significantly more important for the lecture pairs
and the authors-lectures relationships than for the remaining relationships.

Regarding the pooling lecture task, we first considered the lecture contents only; this method
showed poor results. We then consider the lecture categories. Since many lectures are not linked
to categories, we first defined a way to deal with this problem. Then, we use the frequency of
lecture visits, lecture pairs and the categories they belong to.

2 Data preparation

To begin with, we uploaded the CSV data provided to the participants in a PostgreSQL data-
base [15]. For each lecture, we extracted the categories, events and authors associated with it.

We also indexed lectures using the Solr search engine [14]. We used as content the name, de-
scription and slide_titles fields of each lecture. Indexing is based on a “bag of words” approach.
To build the Solr index, the stopwords were not removed and we did not use any stemming heu-
ristic similar to the Porter Stemmer [8]. Avoiding pre-processing steps allows us to store all the

Recommender System Based on Random Walks and Text Retrieval Approaches.

96

lectures in the same index, regardless of their language. The retrieval model used in Solr com-
bines Boolean Model [7] and Vector Space Model [11]. The documents are first selected by
Boolean Model and then are scored using Vector Space Model. The scoring function imple-
mented in Solr is derived from the VSM score, based on the Cosine similarity [10].

Solr was used in the two tasks. In the cold start task, Solr was used to build two matrices that
reflect the lecture similarities based on content. For the first one, we used MoreLikeThis from
Solr to calculate the similarities between each lecture pairs. For a given document, the MoreLi-
keThis module generates a query based on the representative terms of the document. These
terms are selected depending on several parameters which are: their length, their frequency in
the document and their frequency in the overall collection. The second matrix was built diffe-
rently: for each lecture, we calculate its similarities with all the other lectures, considering its
title as a query; lectures were favored if recent.

In the pooled sequences task, Solr was used to retrieve the most similar lectures from a given
lecture.

3 Cold start task

The cold start task aims at predicting “which of the newly acquired lectures at the site should
be recommended after viewing some of the 'older' lectures” [12].

To complete this task, we first built a graph from the data in which nodes and relationships
are typed. In addition we weighted some of the relationships. Then we applied two random-walk
models to compute document similarities and predict which new lectures should be recommend-
ed. Section 3.1 explains the way the graph is built and section 3.2 explains the way it is used.

3.1 Graph generation

From the data, we built a graph G={N,R} where N is a set of nodes and R a set of relation-
ships between nodes.

The set of nodes N is defined as: N={A, C, E, L} where:
- A is a set of author nodes,
- C a set of category nodes,
- E a set of event nodes, and
- L is a set of lecture nodes.

The set of relationships R is defined as:
R={CR, ERei,ej, ARli,aj, DRli,cj, TRli,ej, LRli,lj} where:
- CR is a relationship defined between two categories.

 CR(ci,cj) = 1 if categories ci and cj have a hierarchical relationship in the
database;
 = 0 otherwise.

- ER is a relationship between two events. As for CR, ER(ei,ej) is either 0 or 1, based on
the hierarchical relationship defined between events ei and ej using parent_id attribute.

- AR is a relationship between a lecture and an author.
- DR is a relationship between a lecture and a category.

M. Chevalier, T. Dkaki, D. Dudognon, J. Mothe

97

(1)

- PR is a relationship between a lecture and an event.
For those three relationships, when the items are associated in the data set, the relationship is

weighted 1; 0 otherwise.
- LR is a relationship between two lectures. We defined two types of LR relationships. They

can be either content based similarities or deduced from pairs of lectures. Lecture pairs were
provided to participants; the deduced LR_P relationships were weighted considering the fre-
quency of each pair and the number of views associated to its related lectures. Lecture similari-
ties were calculated as described in section 2 and conduced to weighted LR_S relationships.
LR_P and LR_S relationships were fused considering a linear combination, such as:
����� , ��� = � ∗ ������,��� + � ∗ ��_�(�� , ��)

where li and lj are two lectures. In the experiments, β=1.5 and γ=0.05. These values have
been obtained through manual tuning.

Finally, each type of relationships receives a relative weight. For example, AR(li,aj) rece-

ives a relative weight of 3 between li and aj if the lecture and the author are linked. Figure 1
depicts the various types of relationships that link nodes.

Fig. 1. Nodes and relationships between nodes.

3.2 Random walks

We considered two random walk algorithms: Katz [6] and Random-Forest based Algorithm
[5] that consider route accessibility and relative forest accessibility [4]. More details on these
methods are presented by Fouss et al. [5]. In this latter paper, more methods are also discussed.

Katz. The method proposed by Katz to compute similarities takes into account both direct
and indirect links between items [6]. The similarity matrix is defined as:

	 =
� +
��� +⋯+
��� +⋯ = (� −
�)	
 − �
where A is the adjacency matrix, I the identity and α constant.
A is the adjacency matrix generated from the complete graph (rows and columns of the matrix
are the nodes of the various types) and thus represents direct links between the graph’s nodes. An
represents the indirect links through paths of length n. Both direct and indirect links are taken
into account but a coefficient of attenuation is used: αn represents the attenuation in importance
of the links of length n, K exists provided that the attenuation coefficient α is less than the in-

Categories

Authors

Events

Lectures

ER, Is Parent of :
0.1

DR: Describe :
0.35

LR_S, Is Similar to :
0.05

LR_P, Is Viewed with :
1.5

PR, Is Part of :
0.15

AR: Is Author of :
3

CR : Is Parent of :
0.1

Recommender System Based on Random Walks and Text Retrieval Approaches.

98

(2)

verse of the spectral radius of A. In our experiments, we use α =0.05. This value should have
been tuned; but we did not for time reasons.

Random-forest based algorithm (RFA). In RFA, the similarity matrix S between the nodes
of a graph G is based on relative forest accessibility. Let F(G) = F be the set of all spanning
forests of graph G. A spanning forest is any subgraph of G that is cycle free and includes every
vertex of G. For any two nodes i and j of G, Fij denote the subset of F where i and j belong to
the same tree. The relative forest accessibility of i and j is defined as sij = ε(Fij)/ε(F). ε is the
weight function defined in [4]. For unweighted graphs ε(Fij)/ε(F)= |Fij |/|F|

[4] demonstrates (I + L)−1 exists for any undirected weighted graphs and that :
S = (I + L)−1

where L is the laplacian matrix from the adjacency matrix A generated from the complete
graph G (see section 3.1).

RFA which can be seen as a rough Laplacian regularization is closely related to the similarity
measure associated to the pseudo-inverse of graphs Laplacian L+(see [4] for more details). L+ is
a valid kernel that preserves the Euclidian commute time distance in graphs. We did not experi-
ment the similarity measure based on L+ in the context of VLNetChallenge for lack of time to
solve a technical problem.

3.3 Implementation issues

All experiments were conducted on Linux computers with a 2.9 GHz Intel Core2 Duo proces-
sor P9700 and 6 GB of RAM.

The graphs we handled in the context of VLNetChallenge contain around 15 000 nodes. The
approaches we explored are then based on inverting matrices (Ο(n3)) of size 15 000 x 15 000.
Our attempt to use Scilab [16] (with memory stack set to the maximum) was unfruitful and
ended with a stack overflow error after more than 20 hours of running time. After shifting to
atlas [17] the Automatically Tuned Linear Algebra Software, the running time was about 20
minutes.

3.4 Results

When considering the preliminary results on the training collection (based on 20% of the final
collection), our method obtained from 0.1434 to 0.22465, depending both on the random walk
method used and on the weight used for the relationships. The best results have been obtained
for RFA using the weights presented in bold font in Figure 1. These weights have been obtained
through a rough manual-tuning that used the entire training collection.

When considering the final collection, our method is ranked 9 over 58 submissions without
nil results or errors. We obtained a score of 0.24044 while the best result is 0.35857. Interesting
enough, when considering the approaches better than ours, we can see that the results decrease
from the preliminary results to the final results. One hypothesis could be that those approaches
over learnt on test data.

M. Chevalier, T. Dkaki, D. Dudognon, J. Mothe

99

4 Pooled sequences

In this task participants “are asked to recommend a ranked list of ten lectures that should be
recommended after viewing a set of three lectures” [13].

To complete this task, we followed an empirical approach according to our knowledge mainly
acquired in Information Retrieval field. This knowledge has been transposed and adapted to
recommender systems. We tried two approaches that are related to the work we presented in [2]:
one was based on lecture content only; the second one considered the categories associated to
lectures and lecture pair frequency.

4.1 Content-based approach

In this approach, we considered the lecture content only. We used Solr search engine [14] as
explained in section 2. For each lecture of a given triplet, we search for the 50 most similar doc-
uments. Then we fused the three retrieved document list using CombSum function [8] that con-
sists in the sum of the document’s individual scores.

When applied to the training collection, the results were slightly above 0.04. Indeed when
analyzing the learning data set, we identify that users read lectures related to various topics to
complete their knowledge. This variety of topics cannot be captured with a standard content
similarity-based measure. For this reason, we did not continue with this content-only approach.
Thanks to the work done in the cold-start task, we decided to particularly study lecture pair fre-
quency (importance of LR_P in section 3.1) and categories.

4.2 Category-based approach

Rather than considering the lecture content only, we concentrated on the categories of the lec-
tures. The first issue to solve was the fact that many lectures were not associated with any cate-
gory. For those lectures, we first associated them with a category considering the hierarchy of
events. Once the lectures are associated with a category, we then consider the lectures that have
been visited with one of the lectures of the target triplet within close categories in the category
hierarchy.

Association of categories to lectures. Some of the lectures are not associated with any cate-

gory; for those lectures, we applied two algorithms. First for any lecture that is not in catego-
ries_lectures, we browsed the lecture-event hierarchy using a bottom up approach and associated
the current lecture to the category or categories associated to the closest event (considering the
hierarchy). When such a parent does not exist, we associated the category (or categories) of the
most similar lectures or events, based on its content or description.

Frequency of lecture pairs. For each lecture of the current triplet, we search for the 100

most visited lectures with the current lecture. We then calculate the lecture score (3). The score
of the retrieved lecture li is computed as its frequency times the distance between categories.
Indeed, this distance between categories allows the system to identify recommendations close in
sibling categories. In that way, we emphasize the selection of information in close categories in

Recommender System Based on Random Walks and Text Retrieval Approaches.

100

order to simulate the user behavior according to what we have extracted from the training data
set analysis.

Score (lj) = Frequency (lj) * similarity (category (lj), category (li))

When a lecture has more than one category, we use the most general category. This treatment

is repeated for the three lectures of the triplet and the three lists are fused using CombSum. The
distance between categories is inspired from our previous work detailed in [1].

We then ranked the retrieved lectures by decreasing scores. The recommendations are the top
10 lectures. Using this method, it occurs that we obtained less than 10 recommendations. In
those cases, we then add lectures to the recommended list.

Completing the recommended list. When less than 10 lectures are recommended using the

previous method, we complete the list by considering the lecture content rather than the lecture
visits. For each lecture, we search for the 10 most similar lectures. For each lecture, we search
for the 100 lectures the most visited with the current lecture and calculate the score of the lec-
tures using the same method as previously. When this process fails to complete the list, it is
completed with the lectures the most visited thanks to the frequency of lecture views.

4.3 Results

Considering the training set, using our method, we obtained from 0.04453 to 0.18725 (de-
pending on the approach used).

Regarding the complete set, we are ranked 12th with the score of 0.18943. The best score be-
ing 0.62415.

The results we obtained show that the visits on lectures has a great importance; more than the
content itself.

5 Conclusion

In this paper, we describe the methods we developed for the two tasks defined in VLNetChal-
lenge. With regard to the cold start task, our method was not over trained. We tried various val-
ues for the different parameters. A more systematic tuning could help improving the results.
With regard to the pooled sequence task, we identified that content only approach is not suffi-
cient. Furthermore, we think that categories could have been used more. For example, for a giv-
en triplet, we could have kept only those retrieved lectures that share a category with any lecture
of the triplet.

In the two tasks, we also identified the importance of the frequency of lecture pairs. As a con-
clusion, we expect that combining various dimensions in recommender systems can improve
recommendation quality.

(3)

M. Chevalier, T. Dkaki, D. Dudognon, J. Mothe

101

References

1. G. Cabanac, M. Chevalier, C. Chrisment, and C. Julien, An Original Usage-based Metrics for Building
a Unified View of Corporate Documents, International Conference on Database and Expert Systems
Applications (DEXA), Springer-Verlag, LNCS 4653, pp. 202-212, 2007.

2. L. Candillier, M. Chevalier, D. Dudognon, and J. Mothe, Diversity in Recommender Systems: bridg-
ing the gap between users and systems, Centrics, to appear 2011.

3. P. Y. Chebotarev and E. V. Shamis. The matrix-forest theorem and measuring relations in small social
groups. Automation and Remote Control, Vol. 58, N°9, pp. 1505–1514, 1997.

4. P. Y. Chebotarev and E. V. Shamis, On proximity measures for graph vertices, Automation and Re-
mote Control, Vol. 59, N°10, pp. 1443–1459, 1998.

5. F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, Random-walk computation of similarities be-
tween nodes of a graph, with application to collaborative recommendation, IEEE Transactions on
Knowledge and Data Engineering, 2006.

6. L. Katz. A new status index derived from sociometric analysis. Psychmetrika, 18(1), pp 39–43, 1953.
7. F. W. Lancaster, E. G. Fayen, Information Retrieval On-Line, Melville Publishing Co., Los Angeles,

California, 1973.
8. J. H. Lee. Analyses of multiple evidence combination, Proceeding of SIGIR’97, pp. 267–276, 1997.
9. M. F. Porter, An algorithm for suffix stripping, Program, pp. 130–137, 1980.

10. G. Salton and M. J. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, 1983.
11. G. Salton, A. Wong, and C. Yang, A vector space model for automatic indexing, Commu- nications of

the ACM, 18(11), pp. 613–620, 1975.
12. http://tunedit.org/challenge/VLNetChallenge/task_1, June 2011.
13. http://tunedit.org/challenge/VLNetChallenge/task_2, June 2011.
14. http://wiki.apache.org/solr/, June 2011.
15. http://www.postgresql.org/, 2011.
16. http://www.scilab.org, August 2011.
17. http://math-atlas.sourceforge.net, August 2011

