
Recommending VideoLectures with Linear Regression

Martin Možina, Aleksander Sadikov, and Ivan Bratko

Faculty of Computer and Information Science
University of Ljubljana, Slovenia

{martin.mozina,aleksander.sadikov,ivan.bratko}@fri.uni-lj.si

Abstract. This paper describes our approach to the task 1 of the ECML PKDD
2011 VideoLectures.Net Recommender System Challenge. The task was to select a
set of lectures to be recommended to a visitor of the VideoLecture.Net homepage
after already seeing another lecture. Our proposed approach is a hybrid recom-
mender system combining content and collaborative approaches. The core of the
system is a linear regression model for predicting the rank of a lecture, whereas
by rank we mean the lecture’s position in the list of all lectures ordered by the
interest of the visitor. Due to the complexity of the problem, the model could
not be learned by a classical approach - instead, we had to employ the stochastic
gradient descent optimization. The present paper furthermore, through evalua-
tion, identifies and describes some interesting properties of the domain and of
the algorithm that were crucial to achieve a higher prediction accuracy. The final
accuracy of the model was enough to take the third place in the competition.

1 Introduction

In this paper, we describe our approach to the first task (cold start) of the ECML
PKDD 2011 Discovery Challenge (VideoLectures.Net Recommender System Challenge)
hosted by TunedIT1. The task was to make recommendations for video lectures on the
VideoLectures.Net website.

Our proposed approach is a hybrid recommender system [2] based on linear regression
for predicting the ranks of the newly acquired lectures after viewing some of the “older”
lectures. First, we give a short description of the domain, of the learning problem, and
present the attributes that we decided to use in learning. Afterwards, we define the
problem of learning ranks, present a method for learning a linear regression based on
stochastic gradient descent and use it to make content-based and collaborative-based
predictions. In section 4, we evaluate the method and assess the results. We finish the
paper with conclusions.

2 Domain description

The coldstart problem in the challenge was defined as:

1. after seeing an “old” lecture (a lecture present in the system for a while),

1 http://tunedit.org/challenge/VLNetChallenge

M. Možina, A. Sadikov, I. Bratko

2. recommend 30 of the “new” (published after the 1st of July 2009) lectures that the
user might like. The results have to be ranked - more “likeable” lectures should come
first.

The organizers collected 6983 training (old) lectures and 1122 test (new) lectures. The
task of competitors was to make a selection of 30 test lectures for almost each training
lecture and submit the results for evaluation.

The most important part of the provided data was the so-called pairs data set. It
contained the frequencies of co-occurrences of lectures from the training set. Two lectures
are said to co-occur if they were seen together (in the same browser session, not necessarily
consecutively) and the user watched at least half of each of the two lectures. The co-
occurrences between training and test lectures were withheld from the competitors and
were used to produce the true rankings, which were used to evaluate the submitted
solutions.

Provided lectures were described with the following attributes:

type of lecture (discrete; sample values: normal lecture, tutorial, debate, invited talk,
etc.)

language (discrete; sample values: Slovene, English, etc.)
recorded date (date value)
published date (date value)
title of lecture (textual attribute)
description (a short textual description of the lecture)
slide titles (textual attribute)
categories (discrete; a lecture can belong to multiple categories, e.g. machine learning,

reinforcement learning, etc.)
event (discrete; the event where the lecture was recorded)
author (discrete; a lecture can have several authors)
views (number of all views of the lecture; this information was given for the training

lectures only)

For categories, events and authors, additional information was provided. Each cate-
gory was specified by its name and a link to its description on Wikipedia. Events were
described with: type (normal event, project, etc.), language of the event, recorded
and published dates, name and a short description (both textual) of the event. Fi-
nally, for each author we were given his or her name, email, homepage, gender, and
organization.

2.1 Attributes used in Learning

We manually constructed a set of attributes to be used in learning. Some of them were
simply taken as originally provided, while some were combinations of the original at-
tributes. The set of used attributes is summarized in Table 1. Published date is the
number of days between the day the lecture was published and the day the snapshot of
the database was taken (31st July 2010). Categories is a list of categories that the lecture
belongs to. The authors attribute contains the names of actual authors and also their
domain names extracted from their email addresses. Therefore, if a lecture was presented

72

Recommending VideoLectures with Linear Regression

by two persons coming from Google, lecture’s value of authors attribute would be: “name
of first author”, “name of second author”, and “google.com”. Significant title words are
a selection of specific words found in the titles of lectures that, as assumed, imply a
higher number of views. These words are: “introduction”, “tutorial”, “basic”, “lecture
1:”, “lecture 2:”,“lecture 3:”,“lecture 4:”, and “lecture”. The last attribute, Title words,
contains all words mentioned at least once in a title.

The constructed attributes include almost all the information provided, with the
exception of the textual attributes, where only titles of lectures were used. Original at-
tributes not included in our model are: recording date of lectures, lecture’s description
and slide titles, lecture’s number of views, description of categories on Wikipedia, any-
thing about events, authors homepage and organization.

Table 1. An overview of attributes used in learning. No. of values is the number of distinct
values found in the training and test data. The column Can have multiple values? specifies
whether a single lecture can have several values (e.g. a lecture can belong to several categories)
or not.

Name Type No. of values Can have multiple values?

Published date continuous n/a no
Type discrete 17 no
Language discrete 9 no
Categories discrete 291 yes
Authors discrete 8109 yes
Events discrete 520 yes
Significant title words discrete 9 yes
Title words discrete 12812 yes

3 Content Based Recommendations with Linear Regression

3.1 Terminology

Throughout the remainder of the paper we will use the following conventions. Lectures
LO and LN will correspond to the “old” and “new” lectures, respectively. To address the
attribute value of a lecture we will use a dot and the name of the attribute. For instance,
LN .pub date is the published date of a new lecture. Greek letters β and γ will be used
as parameters of the linear regression model. Abbreviation Attr will represent the set of
learning attributes from Table 1, and Train will be the set of all training lectures.

3.2 The Linear Regression Model for Predicting Rank

In this section, we will describe our linear regression model for predicting the rank of
a lecture LN given that the user has already seen another lecture LO. To learn such a
model, we needed to estimate the true ranks of lectures in the training data and use them
as the values of the class variable. Let Rank(LO, LN) be the rank of lecture LN , given

73

M. Možina, A. Sadikov, I. Bratko

LO has been seen by the user, and let Pairs(LO, LN) be the number of co-occurrences
of LO and LN taken from the pairs data set. To compute ranks Rank(LO, LN) for all
training lectures LN , we used the standard ranking algorithm:

1. For a given training lecture LO, create a list of co-occurrences Pairs(LO, LN) for all
LN , where LN 6= LO and LN and LO are not from the same event.

2. Order list in ascending sequence.
3. The rank Rank(LO, LN) is the position of Pairs(LO, LN) in the above ordered list.

The pair with the lowest Pairs(LO, Llow) gets rank 1 and the pair with the highest
value gets rank that equals the length of the list. In the case of ties, a mean rank is
assigned.

4. Divide all ranks Rank(LO, LN) by the length of the ordered list;

Rank(LO, LN)←
Rank(LO, LN)

Length of list
.

This procedure is repeated for every training lecture LO. We avoided using lectures
from the same event (first step) to make learn data more alike to test data. Namely,
two lectures, one from the learn set and one from the test set, always belong to different
events. The second and the third step are standard steps in ranking. The normalization
in the last step was applied to avoid different maximal ranks when the lengths of lists
differ.

The main reason to use ranking, instead of predicting Pairs(LO, LN) directly, was
to minimize the influence of lecture LO. For example, if LO is a tutorial, it will for this
reason have a high number of views, and hence also Pairs(LO, LN) will be relatively
high for all LN . On the other hand, the ranks depend only on LN and on similarities
between LO and LN , but not much on LO itself.

The linear regression model for predicting rank has the form:

R̂ank(LO, LN) = β0 + βdate ×min(L0.pub date, LN .pub date) +

+
∑

a∈Attr\{pub date}

[∑

v∈LN .a

βa.v

]
+

+
∑

a∈Attr\{pub date}

[∑

v∈LN .a∩LO.a

γa.v

]
(1)

The first term β0 is the intercept and is usually close to 0.5, which is the average
normalized rank of lectures. The second term contains βdate, the parameter that models
the influence of published date. This parameter has to be positive, as lectures with low
published date were published later and therefore had less chances to be viewed. The
third term is the sum over all remaining attributes and values of the lecture LN . Each
attribute value has an assigned parameter βa.v that models the increase (or decrease) of
the rank of a lecture if the lecture contains this value. The last term is again the sum
over all attributes, however considering only the values that are the same for LO and
LN . The parameter γa.v, therefore, models the change of rank of LN if both lectures have
the same value of attribute a. This parameter is usually positive, as lectures with same
values are more alike, therefore it is more probable they that will be viewed together.

74

Recommending VideoLectures with Linear Regression

Such a process, where the recommendation relies only on the characteristics of the
lectures, is commonly called content-based recommendation [2]. In section 4, we will
describe a possible approach to extend this model to exploit some techniques from col-
laborative filtering.

3.3 The Learning Algorithm

The learning algorithm has to find such parameters (βs and γs) to minimize the residual
sum of squares. A penalty factor λ, as in ridge regression [1], was included to prevent
overfitting:

Err =

[∑

LO∈Train

LO.event6=LN .event∑

LN∈Train

(
R̂ank(LO, LN)−Rank(LO, LN)

)2
]
+

+ λ ∗

β2

date +
∑

a∈Attr\{pub date}

(∑

v∈a

(
β2

a.v + γ2

a.v

)
)
 (2)

Usually, the parameters of linear regression are fit easily using the formula for linear
regression that involves matrix multiplication and inversion. However, considering 6983
training lectures, we have approximately 69832 = 48762289 ranks to predict. Moreover,
we are dealing with a large number of parameters, as adding all values from the Table 1
and multiplying by 2 sums up to 43544 parameters. The data matrix, in statistics called
the design matrix, would therefore be enormous. If each multi-valued attribute would
have only one value, it would still add up to 48762289*43544 values. Even with optimal
coding, where each value takes only 1 byte, such matrix would still require over 2TB in
memory. The data could be coded more efficiently by considering sparseness of the input
(most of the values are 0), however we believe it would still present a problem for many
implementations of linear regression.

Instead, we used the stochastic gradient descent algorithm. This algorithm iteratively
updates the model given one learning example at a time and removes the need to have the
complete data set stored. An outline of the algorithm is given in Alg. 1. The algorithm
begins by setting all parameters to 0. With the third line, it commences an iteration over
all attributes (including an attribute with constant value 1 to learn the β0 parameter).
In each iteration, the parameters for the values of only one attribute will be fit. The
algorithm will keep optimizing parameters of one attribute until the error of the model
is decreasing (5th line).

Lines 8-17 contain the core of the stochastic gradient descent algorithm. Here, the
algorithm makes one sweep over the pairs of training lectures (avoiding those with the
same event) and updates the values of parameters in the updateFeatures procedure. The
update of parameters consists of the two classical steps of gradient optimization: 1) it
computes the gradient of the error function (Eq. 2) on the current learning example for
all relevant parameters, and 2) updates these parameters for a small negative ratio of
the corresponding gradient.

The learning is governed by 4 hyperparameters of the algorithm:

– ITER: the number of passes over attributes made by the algorithm.

75

M. Možina, A. Sadikov, I. Bratko

Algorithm 1 Skeleton of the algorithm for fitting parameters of the linear regression
model. Inputs: training data Train and the hyperparameters: ITER, MP, λ, MF. Out-
puts: parameters βs and γs of the linear model.

1: set values of all parameters (βs and γs) to 0.
2: for n = 1→ ITER do
3: for each a in Attr do
4: oldError, newError ← 1, 0 {To satisfy the condition in while clause.}
5: while oldError > newError do
6: oldError ← newError

7: call shuffle(Train) {Shuffling order of training examples is a standard step in
stochastic gradient descent optimization.}

8: for each LO in Train do
9: for each LN in Train do
10: if LO.event == LN .event or LO in less than MP pairs then
11: continue
12: end if
13: newError ← newError + (predictRank(LO, LN)− trueRank(LO, LN))2

14: call updateFeatures(LO , LN , a, λ,MF)
15: {Function updateFeatures computes derivatives and updates features accord-

ingly.}
16: end for
17: end for
18: end while
19: end for
20: end for

– MP: the minimal number of pairs Pairs(LO, LN) for a given LO, where Pairs(LO, LN) >
0. A high number of non-zero pairs assures that the ranks Rank(LO, LN) were esti-
mated better.

– λ: the penalty factor from the error function in Equation 2.
– MF: minimal frequency of an attribute value. In order to update a parameter for

an attribute value, at least MF of lectures must have this value. Otherwise, the
parameter’s value will remain at 0. For example, if MF=10, and since there are only
6 lectures in Russian language in the training set, the parameters related to Russian
language would remain at 0.

4 Towards a Collaborative Approach

When the description of a lecture LO is inadequate or even wrong, the content-based
approach by itself cannot provide good results. In such cases, it might be better to predict
using some of the lectures that were often viewed together with LO. The question is how
to select these lectures? A natural choice to measure the importance of a “friendly”
lecture is the number of its co-occurrences with LO. A weighted sum, where weights are
the co-occurrences, implements this idea:

Coll(LO, LN) =

∑
j∈Train Pairs(LO, Lj) ∗ R̂ank(Lj, LN)∑

j∈Train Pairs(LO, Lj)
, (3)

76

Recommending VideoLectures with Linear Regression

where ranks R̂ank(Lj , LN) are estimated with the linear model described in the previous
section.

The above formula neglects the content-based prediction R̂ank(LO, LN) completely.
A “hybrid” approach, combining content and collaborative approaches, could result in a
more accurate predictor:

Hybrid(LO, LN) =
R̂ank(LO, LN) + CC ∗ Error(LO) ∗ Coll(LO, LN)

1 + CC ∗ Error(LO)
, (4)

The term Error(LO) is the mean squared error of the content-based predictor with
respect to the lecture LO:

Error(LO) =

∑LN .event6=LO .event

LN∈Train

(
R̂ank(LO, LN)−Rank(LO, LN)

)2

Number of lectures in Train
. (5)

The motivation to use the error term is to give a larger weight to the collaborative pre-
dictor when the content-based predictor makes less accurate predictions. The parameter
CC sets the proportion of the error to be used as a weight.

5 Evaluation

The submitted rankings were evaluated with the mean average R-precision score (MARp),
a measure commonly used in information retrieval. Initially, we tried to produce a repre-
sentative holdout set from the provided training data, which would be used to optimize
the algorithm’s hyperparameters. However, as we were unable to sample a set that would
give similar results to those on the leaderboard, we decided to use the available number
of submissions (60) to select the hyperparameters.

Table 2. The results of the experiments on 20% of test data (for the leaderboard) during param-
eter optimization. Only the relevant experiments are shown. The initial values were: MF=10,
λ = 200, MP=0, CC=0, ITER=4. The final values (in bold) are: MF=3, λ=200, MP=200,
CC=3, ITER=8. Alongside the values, MARp’s achieved on leaderboard are provided in brack-
ets.

MF 10 (0.157) 5 (0.162) 3 (0.264)
λ 200 (0.264) 100 (0.263) 50 (0.262)
MP 0 (0.264) 50 (0.271) 100 (0.288) 200 (0.290)
CC (MP=100) 0 (0.288) 3 (0.290) 6 (0.289)
ITER 4 (0.292) 8 (0.307)

Table 2 shows some of the relevant experiments. We omit several initial experiments
and all experiments not leading to the final model. At the start, the values of the hyper-
parameters were MF=10, λ = 200, MP=0, CC=0, and ITER=4.

We started off with larger values of MF and noticed a significant growth in perfor-
mance when MF was reduced to 3. As it seems, there must be some attribute values

77

M. Možina, A. Sadikov, I. Bratko

occurring in only three training lectures, yet are critical to make good predictions for
the new lectures. The following parameter tested was λ, which appeared to have a small
influence on prediction. There was a slight decline in precision when λ was decreased,
however the change was negligible.

After fixing MF and λ we moved on to MP. We increased its value from 0 up to 200 and
noticed that values over 100 clearly lead to more accurate models. As described above,
with high values of MP the algorithm will learn from lectures with better estimations of
ranks. In machine learning terms, we are removing examples with large noise levels in
class value. Since the increase of precision was minimal when MP went from 100 to 200,
we set 200 as the final value of the parameter.

Afterwards, we investigated whether the hybrid approach helps to improve the model.
The CC weighs the importance of the collaborative predictor; setting it to zero will
result in the use of content predictor only, high numbers will give preference to the
collaborative predictor. As it turned out (to our surprise), different values of CC did not
affect the performance much. The results suggest that both approaches make similarly
good predictions, but their combination brings only a slight improvement. The final value
of CC was set to 3.

Lastly, we explored the ITER parameter. This parameter is the number of passes made
by the algorithm over all attributes. Initially, it was set to 4 and was then increased to
8. According to the obtained results, where 8 repeats lead to notably better results, it
seems that our algorithm slowly converges towards the global optimum and it would be
useful to let it run even longer. However, we were out of available submissions.

The final score on the leaderboard was 0.307, while the final results on the complete
test set were only 0.277. Such a difference was expected as the hyperparameters of the
algorithm were optimized using the leaderboard data. This was just enough to achieve
the third place in competition with a small advantage over the fourth place (0.271). The
first and the second place competitors scored 0.359 and 0.307, respectively.

6 Conclusions

In this paper, we have presented a model for predicting the ranks of lectures. It is a
large-scale linear regression model that can not be fit by conventional methods, hence we
used the stochastic gradient descent. We implemented content-based and collaborative-
based approaches. Both approaches exhibited similar prediction accuracies with a small
improvement if they were used together. The evaluation showed an interesting property
of the data; there are some rare attribute values occurring in only 3 (out of 6983) training
lectures that are critical for a good prediction on the test data. It would be interesting
to further examine this matter and seek out which are these values. Furthermore, it
turned out that it is important to have reliable class values. Removing the lectures with
low number of views and learning the model from well represented lectures resulted in
significantly better models.

During experiments we noticed that our stochastic gradient descent only slowly con-
verged towards an optimum. Increasing the number of passes visibly improved the ac-
curacy of the model and we believe that letting it run even further would result in even
larger improvements. Another way of improving our model would be to consider the tex-
tual attributes, to which we did not pay much attention. Finally, it would be also useful

78

Recommending VideoLectures with Linear Regression

to construct more sensible attributes for the given domain. A possible approach would be
to use argument based machine learning (ABML), where new attributes are constructed
from arguments (explanations) given to some of the critical learning examples [4, 3].

Acknowledgements

This work was partly supported by the Guru Cue d.o.o. company
(http://www.gurucue.com/), and Slovene Agency for Research and Development (ARRS).
We would also like to thank the organizers for putting up an interesting challenge.

References

1. Hoerl, A.E., Kennard, R.W.: Ridge regression: Applications to nonorthogonal problems. Tech-
nometrics 12(1), 69–82 (1970)

2. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduc-
tion. Cambridge University Press (2010)

3. Možina, M., Guid, M., Krivec, J., Sadikov, A., Bratko, I.: Fighting knowledge acquisition
bottleneck with argument based machine learning. In: The 18th European Conference on
Artificial Intelligence (ECAI). pp. 234–238. Patras, Greece (2008)

4. Možina, M., Žabkar, J., Bratko, I.: Argument based machine learning. Artificial Intelligence
171(10/15), 922–937 (2007)

79

