
Browsing Robust Clustering-Alternatives

Martin Hahmann, Dirk Habich, and Wolfgang Lehner

TU Dresden; Database Technology Group; Dresden, Germany
{martin.hahmann, dirk.habich, wolfgang.lehner}@tu-dresden.de

Abstract. In the last years, new clustering approaches utilizing the no-
tion of multiple clusterings have gained attention. Two general directions
— each with its individual benefits — are identifiable: (i) extraction of
multiple alternative clustering solutions from one dataset and (ii) com-
bination of multiple clusterings of a dataset into one robust consensus-
solution. In this paper, we propose a novel hybrid approach to generate
and browse robust, alternative clustering results. Our hybrid approach is
based on frequent-groupings as specialization of frequent-itemset mining.
In this way, the different benefits of the existing directions are combined,
offering new opportunities for knowledge extraction.

1 Introduction

Depending on which notion you follow, the information age has been around
for 20 to 40 years and brought with it a massive trend for digitalization and
data collection. Just like coal and steel in the prior age of industrialization,
information and data have become a crucial resource for today’s work. In contrast
to the diminishing natural raw materials, the deposits of data are constantly
growing. While data itself is already valuable, it is only capitalized to the full
extent if knowledge can be obtained from it. For this task, analysis techniques
like clustering have been developed [10]. The goal of clustering is to group a set
of data objects into different clusters, so that members of one cluster are similar
to each other, while different clusters are dissimilar.

A multitude of clustering algorithms has been proposed over the years [10],
whereas these traditional algorithms have several limitations. On the one hand,
they are not generally applicable or robust meaning that certain algorithms and
parametrizations only suit certain datasets and will yield poor results otherwise.
On the other hand, traditional techniques generate only a single clustering, but
as todays datasets become more complex and high-dimensional, in general there
are more clustering results possible for a dataset. Besides these data centric
problems, usability and applicability have become important issues as clustering
evolves from a niche application in research to a widespread analysis technique
employed in more and more areas. With this trend, new users come into contact
with clustering, who are often experts of their respective application domain but
have no experience in the area of clustering. This calls for clustering approaches
that can be versatilely applied and lack the complicated algorithm selection and
configuration of traditional approaches.

67

In recent years, a number of approaches have been proposed to tackle some of
these issues. The area of alternative clustering [2, 3] provides multiple clustering
solutions for a dataset. With this, several views on complex data can be offered,
while the availability of multiple clusterings in the first place, usually frees the
user from adjusting a single clustering that proves unsatisfactory. An opposing
approach is ensemble clustering [11, 4] in which a set of multiple clusterings is
integrated to form a single consensus clustering result. This input set is also
called clustering-ensemble and contains results that are generated using differ-
ent algorithms and parameters. The consensus result is often more robust than
clusterings generated by a single algorithm and set of parameters, which means
that this technique is more versatile in terms of the application scenario. Addi-
tionally, algorithm selection and configuration is eased as a range of methods and
parameters is utilized. On the downside, ensemble clustering provides just one
solution and therefore resembles traditional clustering at that point. To create
an alternative clustering solution, the user has to switch and/or re-parametrize
the employed clustering algorithms. This is a very challenging task because a set
of algorithms must be selected and configured.

To summarize, alternative clustering and ensemble clustering both have ben-
efits compared to traditional clustering approaches. However, from the user’s
point of view there is a decision to make. The user must decide if multiple al-
ternative solutions are chosen over one robust solution or vice versa, as it is not
possible to have both. In this paper we address this issue by proposing an idea
for combining the approaches of alternative and ensemble clustering, that makes
the creation of robust alternatives possible. We start with a short description
of alternative and ensemble clustering in Section 2. Then, we describe frequent-
groupings as the core concept our our novel hybrid approach in Section 3. Our
frequent-grouping technique is based in the idea of frequent-itemset mining [1]
and allows the identification of robust clusters, occurring throughout the clus-
tering ensemble. Subsequently, we present how these frequent-groupings can be
combined in order to create multiple robust alternatives in Section 4. We outline
an algorithm-driven as well as a user-driven approach that enables the creation
of alternatives by browsing and switching frequent-groupings. We conclude our
paper with a discussion of open issues in Section 5 and a short summary in
Section 6.

2 Related Work

The problems of traditional clustering, that we sketched in the introduction often
lead to multiple iterations in which different parameters or clustering algorithms
are tried out until a satisfactory clustering result is obtained. This trial-and-
error practice implicitly generates multiple clustering solutions for the analyzed
dataset. Over the last years, new approaches to clustering emerged, that explic-
itly utilize multiple clustering solutions for the knowledge discovery process. In
this section, we briefly review two of these approaches, namely: alternative clus-
tering, which provides the user with multiple clustering solutions for a dataset

68

and ensemble clustering, which integrates multiple clusterings of a dataset into
a single robust solution.

2.1 Alternative Clustering

The main goal of this clustering approach is to provide alternative clustering
solutions to the user. To create alternative solutions, at first an initial clustering
result is made, using a traditional clustering algorithm. Based on the informa-
tion contained in this initial clustering, alternative solutions are generated so
that these alternatives are dissimilar to the initial solution. As an example for
alternative clustering, we describe the COALA [2] algorithm. Given a Clustering
C with k clusters this method generates a dissimilar alternative S also having
k clusters. To express dissimilarity the authors use instance-based ’cannot-link’
constraints, that are derived from the initial clustering and are employed in the
construction of the alternative. Such a constraint can be expressed as a pair of
objects (xi, xj) with i 6= j. A clustering satisfies this constraint if xi and xj

are not located in the same cluster. In order to reach the maximum degree of
dissimilarity from C, the alternative S should place as much objects as possible
in different clusters, that were in the same cluster in C. Although this approach
seems plausible, strict adherence to it can lead to meaningless solutions, as a
clustering that maximizes dissimilarity most likely does not comply with the
general requirements of clustering, namely similar objects belong to the same
cluster while clusters are dissimilar. This means besides being dissimilar, an al-
ternative clustering must also satisfy a certain quality, that is, in the case of
COALA, expressed by the similarity of a pair of objects. The two goals of dis-
similarity and quality can be inversely related, for which case COALA offers a
parameter ω to control the trade-off between both. COALA works in an iterative
way: the initial clusters contain one object each and are successively merged un-
til k is reached. In each iteration two merge candidates are identified: one cluster
pair that pursues the quality goal by having the smallest distance (dqual) of all
pairs and one cluster pair pursuing dissimilarity, that has the smallest distance
(ddiss) of all pairs that fulfill the cannot-link constraints. The decision between
both candidates is based on an inequation: if dqual ≤ ω · ddiss the quality pair
is merged, else the dissimilarity pair. Another alternative clustering technique is
CAMI[3] which is also based on the goals of quality and dissimilarity but models
them in a different way as it represents clusters using gaussian mixtures.

2.2 Ensemble Clustering

In contrast to alternative clustering, ensemble clustering does not present mul-
tiple clusterings to the user, but uses them to generate a single clustering result.
This set of multiple clusterings is also called clustering-ensemble and contains
clustering results generated by executing multiple algorithms with multiple sets
of parameters. As is known, certain algorithms or parametrizations do not suit
certain datasets, thus producing poor results. By utilizing a wide range of dif-
ferent clustering algorithms and parametrizations, this problem can be tackled.

69

Thus, the final clustering solution—called consensus clustering—generated from
such a clustering ensemble is more robust and often has an increased quality [11].
In order to create such a clustering a consensus function is needed, that integrates
the cluster assignments of all ensemble members into a new clustering. The use
of the term consensus already shows that the goal of this integration is to iden-
tify clusters/structures that are detected by the majority of ensemble members
and preserve them in the final solution. In other words, similarities throughout
the clustering-ensemble are identified and used to create the consensus cluster-
ing. Two main classes of ensemble clustering techniques can be distinguished:
pairwise-similarity approaches and approaches based on cluster-labels.

Pairwise-Similarities: Algorithms working on the basis of pairwise simi-
larities model the cluster assignment information by evaluating the assignments
of each object pair over the whole ensemble [4, 11]. There are two cases of pair-
wise similarity: (i) a pair objects is part of the same cluster or (ii) a pair of
objects is part of different clusters. For each local clustering of the ensemble
these similarities can be represented in the form of a so called coassociation
matrix, in which a cell contains a 1 if the respective pair of objects is located
in the same cluster or a 0 if an object pair is assigned to different clusters. By
adding up all the local matrices and normalizing each cell using the ensemble
size, a global coassociation matrix is build that contains the relative frequency
in which each pair of objects is located in the same cluster throughout the whole
ensemble. Based on this matrix, different consensus functions can be employed
to extract the final solution. As an example. we describe a very simple function
based on [4], which generates a consensus clustering on the following basis: if a
pair of objects is located in the same cluster in the majority of the ensemble, i.e.
at least 50% of the clusterings, it should also be part of the same cluster in the
consensus solution. Vice versa this also holds for object pairs mostly located in
different clusters. Therefore, the consensus clustering shows minimal dissimilar-
ities to the ensemble in terms of pairwise similarities. The consensus function is
realized by removing all cells from the global coassociation matrix that contain
a value smaller than 0.5 and use the remaining cells to generate the clustering.

Cluster-Labels: In contrast to pairwise-similarity based approaches, other
techniques for ensemble clustering directly use the cluster assignments from the
ensemble by working with the provided cluster labels only. As no coassociation
matrices are used, they are often less time-consuming. Various algorithms exist
in this class e.g. Ensemble-Merging [9] which assumes a clustering ensemble
having a constant number of clusters k, that are each represented by a centroid.
By grouping similar centroids of the ensemble, k global centroids are generated
which are then used to build the consensus clustering.

3 Finding Frequent Groupings

In the previous section, we described that ensemble clustering creates a sin-
gle consensus clustering out of a set of different multiple clusterings. We out-
lined the two major approaches to this task, namely cluster-labels and pairwise-

70

similarities. While the techniques of both approaches differ in their mode of
operation, they share the common goal to incorporate those parts of the dataset
into the final solution, whose cluster assignments agree with the majority of the
clustering-ensemble. In other words, clusters of the consensus solution are sets
of objects, that were frequently assigned to the same cluster throughout the
clustering-ensemble. For the purpose of illustration, we use the small clustering-
ensemble depicted in Figure 1 as a running example. Our example contains
a dataset D = {x1, x2, . . . , x9} of nine objects in a 2D feature space. For D
exists a clustering-ensemble C = {C1, C2, C3, C4} that contains four cluster-
ings, each with a different number of clusters and different cluster composition.
To model and evaluate the similarities of the cluster assignments of an object
in the ensemble, label-based approaches match cluster ids or representations,
while approaches based on pairwise-similarities count the co-occurence of object
pairs. To give an example for a consensus clustering, we apply the pairwise ap-
proach mentioned in Section 2 to C and obtain a clustering with the clusters
c1 = {x1, x2, x3}, c2 = {x4, x5}, and c3 = {x6, x7, x8, x9}. In addition to these
two principles, we propose a novel third way to identify the frequent assignment
of objects to the same cluster, which is based on the concept of frequent itemsets
[1].

Assuming a set of n items I = {i1, i2, . . . , in} and a set of transactions
T = {t1, . . . , tm} of which each transaction has a unique id an contains a subset
of I, a set of items X is called frequent if its support exceeds a given threshold.
The support of an itemset X is defined by the fraction of transactions of T that
contain X . At this point, the analogy to ensemble clustering should be obvious:
while frequent itemsets aim to identify items that co-occur in many transitions
while ensemble clustering searches for objects occuring together in the majority
of clusters. In the following, we map the concepts of I, T and support to the
domain of ensemble clustering in order to describe a method that allows the
identification of frequent-groupings.

While it is obvious that the items of I correspond to the objects of the dataset
for a clustering, the matching of the transaction concept is more intricate. As T
is a set of transactions, that each contain elements of I. At first sight, it could be
mapped to the clustering-ensemble, because the ensemble also consists of mul-
tiple clusterings, containing the elements of the dataset. However this mapping
should not be used, because it effectively prevents the identification of frequent
sets of objects, as in general, all objects of a dataset are assigned to a cluster.
Assuming the transaction-clustering analogy, this means that each transaction
contains all items of I, which makes it impossible to identify interesting, frequent
object groupings. Therefore we model T as the set of clusters from all members
of the clustering-ensemble, as each of them normally only contains a subset of
the data. Using the mappings made so far, the support of a set of data objects
X shows the fraction of the clustering-ensemble, in which X is part of the same
cluster. If support(X) exceeds a certain threshold, we call X a frequent-grouping.
A high support of X also shows that this set of objects is robust, because it was

71

(a) Clustering C1 (b) Clustering C2

(c) Clustering C3 (d) Clustering C4

Fig. 1. The clustering-ensemble of the running example.

identified as part of a cluster in many clusterings, regardless of the employed
algorithm and/or parameters.

With regard to our running example, this means that D acts as itemset,
while the clustering-ensemble C provides a set of 14 clusters/transactions. As
transactions are required to have unique identifiers, we label them in a special
way e.g. c1.2 marks cluster 2 of clustering C1. To simplify the calculation of
support, we make the following assumption: each xi ∈ D is assigned to exactly
one cluster in each Ci ∈ C. With this, an object can only occur in one cluster
resp. transaction per clustering. To illustrate what this means, we regard the
group of objects (x1, x2, x3) from our running example. These objects occur in
the three clusters c1.1, c2.2, and c4.1 thus this itemset has a support of 3/4 resp.
0.75 as it occurs in three clusterings C1, C2, and C4.

In order to generate the frequent-groupings from our running example, we
first must specify a threshold for the support to decide whether a group of
objects occurs frequently or not. Following the assumptions of [4] we regard a
set of objects as frequent, if it occurs at least in 50% of the clustering-ensemble,
which means two clusterings in our example. The obtained frequent-groupings
are depicted in Figure 2 in the form of a graph structure. Each node represents a

72

Fig. 2. Structure of the frequent-groupings generated from the running example.

frequent-grouping and contains its associated objects as well as its support, while
edges indicate subset/superset relations between nodes. To build this structure
we initially create and insert a node for each cluster found in the ensemble. If a
node already exists in the graph structure it is not inserted again but the support
of the existing node is increased by one e.g. the objects {x1, x2, x3} are contained
in the clusters c1.1, c2.2, and c4.1, thus only one node with a support of three
is generated. From the initial graph all nodes that are not frequent, i.e. with a
support less than two are filtered—e.g. c3.2—and are displayed in a faded grey.
For each remaining frequent-grouping a new set of nodes is created, containing
all of its possible subsets. At last all frequent-grouping nodes that are not closed
are filtered i.e. each node, having a direct superset with the same support is
removed from the graph. Eventually this procedure leads to the nine frequent-
groupings fg1, fg2, . . . , fg9 displayed in Figure 2. Please note that the described
procedure only illustrates the formation of the depicted graph structure. There
already exist sophisticated methods for mining closed frequent itemsets, that
can be applied to generate frequent-groupings more efficiently [12].

By interpreting the obtained frequent-groupings as clusters, we can gener-
ate a consensus clustering by combining them in a way, that all objects of D are
located in a cluster. As the frequent-groupings overlap, multiple alternative com-
binations can be produced. For our running example, six alternative consensus
clusterings can be created, which are shown in Table 1. We will discuss the ac-
tual construction of these alternatives in the following section. In contrast to the
alternative clusterings generated by existing approaches, our solutions feature a
certain degree of robustness, as for each cluster a consensus exists throughout the
ensemble, which is defined via the support threshold. Thus our frequent-grouping
approach represents a hybrid between alternative and ensemble clustering, that
combines the benefits of both domains, namely alternative solutions and robust-
ness. In addition our approach has some advantages over the cluster-label and
pairwise-similarity based techniques. Most label based approaches require that
the number of clusters in the consensus solution is specified in advance. This
is not necessary with pairwise-similarities or frequent-groupings as the number
of consensus clusters results from the co-occurrence of objects in the ensemble.
Although this characteristic is a similarity between both techniques there is a
difference. As pairwise-similarity methods work with the smallest possible group-

73

A1 {x1, x2, x3} {x4, x5} {x6} {x7, x8, x9}
A2 {x1, x2, x3} {x4, x5} {x6, x8} {x7, x9}
A3 {x1, x2, x3} {x4, x5} {x6} {x8} {x7, x9}
A4 {x1, x3} {x2} {x4, x5} {x6} {x7, x8, x9}
A5 {x1, x3} {x2} {x4, x5} {x6, x8} {x7, x9}
A6 {x1, x3} {x2} {x4, x5} {x6} {x8} {x7, x9}

Table 1. Alternative consensus clusterings of the running example.

ings i.e. pairs, they are prone to transitive effects. Assume two object pairs (p, q)
and (q, r), each one occuring in the same cluster in 50% of the ensemble. Such
a setting can lead to (p, q, r) being placed in the same cluster of the consensus
solution, even if (p, r) never occurs in the same cluster in the whole ensemble.
This cannot happen with frequent-groupings as it evaluates co-occurrence in a
different way.

4 Browsing Alternatives

Aside from being able to identify frequent-groupings, we need a combination
procedure to generate alternative solutions. The challenging part here is the high
combinatorial diversity resulting from the concept of frequent-itemsets and our
idea of combination. To illustrate this issue we again look at our running example
D, which contains nine objects. All possible frequent-groupings that can occur in
a dataset D are contained in the power set of D. As we do not need the empty set,
there are 2|D| − 1 possible groupings—i.e. 511 for our example—to begin with.
This extremely high number indicates the general scale, we are dealing with but
has no direct impact on our approach, as we only consider the groupings that
were found in the ensemble and their respective subsets. Besides the reduction
by clustering, further candidates for frequent-groupings are removed via the
support threshold and the condition that frequent-groupings must be closed.
Notably this last filter criterion is important as it keeps the number of small
and singleton frequent-groupings low. These small groupings inflate the number
of possible alternative consensus clusterings by allowing additional combinations
that differ only in the assignment of one or two objects. For our running example
this is neglectable but for larger data, this issue must be considered i.e. too
small frequent-groupings must be removed. In section 3, we have assumed that
each object is assigned to one cluster in each clustering of the ensemble, which
means that potentially |D| singleton groupings with a support of 100% exist,
each containing one element of D. If these are not considered, the number of
alternative solutions rises and even the trivial solution of a clustering that assigns
each object to its own cluster is possible.

Having discussed the necessity of frequent-grouping filtering we are now faced
with the question of obtaining different alternative clustering solutions. To get all
possible alternatives it would be necessary to generate all possible combinations
of frequent-groupings—the power set of the set of frequent-groupings—and select

74

all combinations that contain D and only consist of disjoint frequent-groupings.
Obviously this approach is very expensive, thus we propose the use of a greedy
approach for the construction of alternatives. By varying the optimization crite-
rion a set of alternatives can be generated. Using the frequent-groupings shown in
Figure 2, we extracted the three alternatives depicted in Figure 3 by using three
different selection criterions. The alternative in Figure 3(a) was generated with
the goal of maximizing cluster size, therefore it contains the frequent-groupings
fg2, fg4, fg6, fg7 and matches alternative A1 from Table 1. Furthermore, alterna-
tive A6 of Figure 3(b) maximizes the support, while A5 of Figure 3(c) aims to
maximize the number of equal-sized clusters. Naturally it is possible to employ
other optimization goals than frequent-grouping size and support. The identi-
fication of such goals and more complex greedy heuristics is a topic for future
research.

(a) A1: maximize cluster
size

(b) A6: maximize support (c) A5: equal cluster size

Fig. 3. Alternative consensus clusterings extracted with different greedy approaches.

Using greedy approaches to extract alternatives means that the user needs
to specify the number of alternatives, a number of greedy heuristics, and maybe
additional parameters. Regarding different levels of user experience and the char-
acteristics of different application domains, this can be a challenging task. There-
fore, we propose a second way to generate robust alternatives that allows users
to actually browse through alternatives using high-level feedback. This approach
relies on our previous work described in [5], where we propose a feedback-driven
process for ensemble clustering that allows users to iteratively refine a consen-
sus clustering using a visual-interactive interface [6, 7] and a special paiwise-
similarity based ensemble clustering approach [8]. Our proposed process provides
an initial clustering solution, which the user interpretes in terms of intra-cluster
composition and inter-cluster relations via the proposed visual-interactive in-
terface. Depending on the users evaluation, the initial result can be adjusted
using a set of four feedback operations: merge, split, refine, and restructure. In
the following we transfer the general idea of this process and its feedback op-
tions to the setting of our frequent-groupings approach. Therefore we assume

75

that the user is provided with an initial alternative, created by an arbitrary
greedy approach. Furthermore we assume that access to some sort of clustering
visualization is available. In this setting the user can now use the four feedback
operations to browse through the structure given by our frequent-groupings and
their subset/superset relations. In doing so, the user can create different robust
alternative clusterings. Subsequently, we use our running example to illustrate
this feedback-driven browsing and describe the implementation of our feedback
operations in this context. An overview of the implementation is depicted in
Figure 4. As intial consensus clustering, we assume alternative A5 shown in Fig-
ure 3(c). Should the user not be satisfied with the clusters fg1, fg3 it is possible
to combine them into one cluster by applying the merge feedback operation to
both. To realize the merge, the superset relations resp. the ascending edges of
fg1 and fg3 are checked inside the graph structure. If these relations meet in a
frequent-grouping that is a superset of the originating clusters and equals their
union, both original clusters are replaced by the new found superset. In our run-
ning example this requirement is fulfilled, thus fg1 and fg3 are replaced by fg2

which effectively transforms A5 into A2. By issuing this simple operation the user
has generated a new robust alternative. If there exists no suitable superset, then
merge is not applicable. Based on this, the split operation is implemented by
traversing the subsets resp. the descending edges of a frequent-grouping towards
the nearest set of frequent-groupings, that are subsets of the original grouping
and exactly contain all of its members. In our example, the split of fg5 would
replace this frequent-grouping with fg6 and fg8, thus transforming A5 into A6.
Again, if there are no suitable subsets—e.g. for fg4—then a split is not possible.
By analyzing the frequent-groupings in advance, availability of split an merge
operations can be determined for each frequent-grouping and displayed in the
visualization.

Fig. 4. Implementation of high-level feedback for browsing frequent-groupings.

The remaining feedback operations refine and restructure are always appli-
cable as they do not navigate through the frequent-groupings but are used to
remove or re-create them. With refine, frequent-groupings that do not exceed a

76

certain size are filtered. This allows the removal of clusters considered too small,
in the respective application domain and the already mentioned singletons, thus
reducing the number of available alternative consensus clusterings. Applying re-
fine in order to eliminate singletons in our running example results in the pruning
of fg3, fg6, and fg9, and thus would reduce the available alternatives to A2. Al-
though this seems like a harsh reduction in our small scale example this method
has its merits for larger datasets. Furthermore, use of the refine operation can
result in objects of D not being covered by any frequent-grouping. In this case
these objects can be considered as noise in the consensus clustering, as they
cannot be assigned to a robust cluster of significant size. This notion of noise
also influences the number of available alternatives which we will demonstrate
using the already mentioned application of refine to the running example. If we
rule out the existence of noise, the only possible consensus clustering is A2. On
the other hand, the existence of noise makes new alternatives possible, for exam-
ple A1 would become {x1, x2, x3} {x4, x5} {x7, x8, x9} with x6 being noise, thus
presenting a clustering solution that not only contains robust clusters but also
identifies those parts of the dataset for which satisfactory consensus cannot be
found. Based on this, it could be possible to draw conclusions regarding dataset
structure and pre-processing. Therefore the handling and implications of this
kind of noise will be part of our future research.

At last, restructure allows the reconfiguration of certain frequent-groupings.
Lets assume that a user is especially interested in a specific area of the dataset,
but the available frequent-groupings provide no or not enough alternatives resp.
split/merge possibilities for this area. In this case restructure builds a new
clustering-ensemble and new frequent-groupings for the specified subset of D.
Application of this operation to fg7 means for example, that fg7, fg8, and fg9 are
replaced by the frequent-groupings, resulting from a new clustering-ensemble
generated for {x7, x8, x9}. The restructure operation should only be used if,
based on domain knowledge, other frequent-groupings can be expected in the
respective area.

5 Open Issues

Regarding the generation of frequent-groupings, existing algorithms for frequent
itemset mining should be adapted to this domain, focusing especially on pruning
techniques, measures for interestingness and the influence of different support
thresholds. Other areas of interest are the creation of frequent-groupings from
fuzzy clustering-ensembles and more generally the evaluation of support without
the assumptions, that an object is always assigned to exactly one cluster in each
clustering.

For the automatic extraction of robust alternatives, it is necessary to develop
additional greedy heuristics. These heuristics should incorporate the notions of
quality and dissimilarity that are found in many existing alternative-clustering
approaches into the extraction process in an advatageous way. As frequent-
groupings and their superset/subset relations can be interpreted as nodes and

77

edges of a graph, methods for graph-partitioning also promise to be a viable op-
tion for the creation of alternative clustering solutions. Additionally, the notion
of noise introduced in the previous section must be explored further. On the
one hand, methods for filtering too small frequnet-groupings must be developed
in order to keep the number of robust alternative clusterings manageable. On
the other hand, the meaning of this noise i.e. of objects for which no satisfying
consensus can be found, needs to be explored further, as this could allow con-
clusions regarding the pre-processing of the data or the fit between dataset and
employed algorithms/parameters.

Regarding the proposed user-driven browsing of robust alternatives there are
open issues like the integration of specific information like support or relations
between frequent-groupings into our visual-interactive interface. Furthermore it
is necessary to find a way to handle large numbers of alternatives i.e. meth-
ods for communicating the availability of many alternatives to the user must
be found. In additon the stepping for navigating through alternatives must be
chosen adequately. We are positive that our frequent-groupings approach offers
many additional opportunities for further research.

6 Summary

In this paper we proposed our idea of combining the concepts of alternative
and ensemble-clustering. Based on the well-known technique of frequent item-
set mining, we introduced our notion of frequent-clusters as robust/frequently
occuring parts of the clustering ensemble. After describing the creation process
of frequent-clusters, we proposed an algorithmic and an user-driven approach
for the construction of alternative consensus-clusterings from frequent-clusters.
The algorithmic approach uses greedy extraction methods and different opti-
mization goals and thus needs to be parametrized by the user. The user-driven
browsing on the other hand employs a small set of high-level feedback options,
that allows users to navigate and adjust frequent-clusters in order to compose
different consensus-clusterings. The clustering results that are obtained with
our approach combine benefits from the domains of alternative and ensemble-
clustering, namely multiple alternative solutions that are robust.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. pages
487–499, 1994.

2. E. Bae and J. Bailey. Coala: A novel approach for the extraction of an alternate
clustering of high quality and high dissimilarity. In Proceedings of the 6th IEEE
International Conference on Data Mining (ICDM 2006), pages 53–62, 2006.

3. X. H. Dang and J. Bailey. Generation of alternative clusterings using the cami
approach. In Proceedings of the Tenth SIAM International Conference on Data
Mining, pages 118–129, 2010.

4. A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. In Proc. of ICDE,
2005.

78

5. M. Hahmann, D. Habich, and W. Lehner. Evolving ensemble-clustering to a
feedback-driven process. In Proceedings of the IEEE ICDM Workshop on Visual
Analytics and Knowledge Discovery (VAKD), 2010.

6. M. Hahmann, D. Habich, and W. Lehner. Visual decision support for ensemble-
clustering. In Proceedings of the 22nd International Conference on Scientific and
Statistical Database Management (SSDBM), 2010. (to appear).

7. M. Hahmann, D. Habich, and W. Lehner. Touch it, mine it, view it, shape it. In
Proceedings der 14. GI-Fachtagung für Datenbanksysteme in Business, Technology
und Web (BTW 2011, February 28 - March 4 2011, Kaiserslautern, Germany),
2011.

8. M. Hahmann, P. Volk, F. Rosenthal, D. Habich, and W. Lehner. How to control
clustering results? flexible clustering aggregation. In Advances in Intelligent Data
Analysis VIII, pages 59–70, 2009.

9. P. Hore, L. Hall, and D. Goldgof. A cluster ensemble framework for large data
sets. In IEEE International Conference on Systems, Man, and Cybernetics, 2006.

10. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Comput.
Surv., 31(3), 1999.

11. A. Strehl and J. Ghosh. Cluster ensembles — a knowledge reuse framework for
combining multiple partitions. Journal of Machine Learning Research, 3, 2002.

12. M. J. Zaki and C. jui Hsiao. Charm: An efficient algorithm for closed itemset
mining. pages 457–473, 2002.

79

