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Abstract. Web data often manifest high levels of uncertainty. We focus
on categorical Web data and we represent these uncertainty levels as
first or second order uncertainty. By means of concrete examples, we
show how to quantify and handle these uncertainties using the Beta-
Binomial and the Dirichlet-Multinomial models, as well as how take into
account possibly unseen categories in our samples by using the Dirichlet
Process.

Keywords: Uncertainty, Bayesian statistics, Non-parametric statistics,
Beta-Binomial, Dirichlet-Multinomial, Dirichlet Process

1 Introduction

The World Wide Web and the Semantic Web offer access to an enormous amount
of data and this is one of their major strengths. However, the uncertainty about
these data is quite high, due to the multi-authoring nature of the Web itself and
to its time variability: some data are accurate, some others are incomplete or
inaccurate, and generally, such a reliability level is not explicitly provided.

We focus on the real distribution of these Web data, in particular of cate-
gorical Web data, regardless of whether they are provided by documents, RDF
(see [27]) statements or other means. Categorical data are the among the most
important types of Web data, because they include also URIs. We do not look for
correlations among data, but we stick to estimating how category proportions
distribute over populations of Web data.

We assume that any kind of reasoning that might produce new statements
(e.g. subsumption) has already taken place. Hence, unlike for instance Fukuoe
et al. (see [10]), that apply probabilistic reasoning in parallel to OWL (see [26])
reasoning, we will propose some models to address uncertainty issues on top
of that kind of reasoning layers. These models, namely the parametric Beta-
Binomial and Dirichlet-Multinomial, and the non-parametric Dirichlet Process,
will use first and second order probabilities and the generation of new classes of
observations, to derive safe conclusions on the overall populations of our data,
given that we are deriving those from possibly biased samples.

First we will describe the scope of these models (section 2), second we will
introduce the concept of conjugate prior (section 3), and then two classes of



models: parametric (section 4) and non-parametric (section 5). Finally we will
discuss the results and provide conclusions (section 6).

2 Scope of this work

2.1 Empirical evidence from the Web

Uncertainty is often an issue in case of empirical data. This is especially the case
with empirical Web data, because the nature of the Web increases the relevance
of this problem but also offers means to address it, as we will see in this section.
The relevance of the problem is related to the utilization of the mass of data that
any user can find over the network: can one safely make use of these data? Lots
of data are provided on the Web by entities the reputation of which is not surely
known. In addition to that, the fact that we access the Web by crawling, means
that we should reduce our uncertainty progressively, as long as we increment our
knowledge. Moreover, when handling our samples it is often hard to determine
how representative such a sample is of the entire population, since often we do
not own enough sure information about it.

On the other hand, the huge amount of Web data gives also a solution for
managing this reliability issue, since it can hopefully provide the evidence nec-
essary to limit the risk when using a certain data set.

Of course, even within the Web it can be hard to find multiple sources as-
serting about a given fact of interest. However, the growing dimension of the
Web makes it reasonable to believe in the possibility to find more than one data
set about the given focus, at least by means of implicit and indirect evidence.

This work aims showing how it is possible to address the described issues by
handling such empirical data, categorical empirical data in particular, by means
of the Beta-Binomial, Dirichlet-Multinomial and Dirichlet Process models.

2.2 Requirements

Our approach will need to be quite elastic in order to cover several issues, as
described below. The non-triviality of the problem comes in a large part from
the impossibility to directly handle the sampling process from which we derive
our conclusions. The requirements that we will need to meet are:

Ability to handle incremental data acquisition The model should be in-
cremental, in order to reflect the process of data acquisition: as long as we
collect more data (even by crawling), our knowledge will reflect that increase.

Prudence It should derive prudent conclusions given all the available informa-
tion. In case not enough information is available, the wide range of possible
conclusions derivable will clearly make it harder to set up a decision strategy.

Cope with biased sampling The model should deal with the fact that we are
not managing a supervised experiment, that is, we are not randomly sam-
pling from the population. We are using an available data set to derive safe
consequences, but these data could, in principle, be incomplete, inaccurate
or biased, and we must take this into account.



Ability to handle samples from mixtures of probability distributions
The data we have at our disposal may have been drawn from diverse distri-
butions, so we can’t use the central limit theorem, because it relies on the
fact that the sequence of variables is identically distributed. This implies the
impossibility to make use of estimators that approximate by means of the
Normal distribution.

Ability to handle temporal variability of parameters Data distributions
can change over time, and this variability has to be properly accounted.

Complementarity with higher order layers The aim of the approach is to
quantify the intrinsic uncertainty in the data provided by the reasoning layer,
and, in turn, to provide to higher order layers (time series analysis, decision
strategy, trust, etc.) reliable data and/or metadata.

2.3 Related work

The models adopted here are applied in a variety of fields. For the parametric
models, examples of applications are: topic identification and document cluster-
ing (see [18, 6]), quantum physics (see [15]), and combat modeling in the naval
domain (see [17]). What these heterogeneous fields have in common is the pres-
ence of multiple levels of uncertainty (for more details about this, see sect. 4).

Also non-parametric models are applied in a wide variety of fields. Examples
of these applications include document classification [3] and haplotype inference
[30]. These heterogeneous fields have in common with the previous application
the presence of several layers of uncertainty, but they also show lack of prior
information about the number of parameters. These concepts will be treated in
section 5 where even the Wilcoxon sign-ranked test (see [29]), used for validation
purposes, falls into the non-parametric models class.

As to our knowledge, the chosen models have not been applied to categorical
Web data yet. We propose to adopt them, because, as the following sections will
show, they fit the requirements previously listed.

3 Prelude: Conjugate priors

To tackle the requirements described in the previous section, we adopt some
bayesian parametric and non-parametric models in order to be able to answer
questions about Web data.

Conjugate priors (see [12]) are the “leit motiv”, common to all the models
adopted here. The basic idea starts from the Bayes theorem (1): given a prior
knowledge and our data, we update the knowledge into a posterior probability.

P (A|B) = P (B|A) ∗ P (A)
P (B) (1)

This theorem describes how it is possible to compute the posterior probability,
P (A|B), given the prior probability of our data, P (A), the likelihood of the
model, given the data, P (B|A), and the probability of the model itself, P (B).



When dealing with continuous probability distributions, the computation of
the posterior distribution by means of Bayes theorem can be problematic, due to
the need to possibly compute complicated integrals. Conjugate priors allow us
to overcome this issue: when prior and posterior probability distributions belong
to the same exponential family, the posterior probability can be obtained by
updating the prior parameters with values depending on the observed sample
(see also [9]). Exponential families are classes of probability distributions having
their density functions sharing the form f(x) = ea(q)b(x)+c(q)+d(x), with q a
known parameter and a, b, c, d known functions. Exponential families include
many important probability distributions, like the Normal, Binomial, Beta, etc.,
see [5]. So, if X is a random variable that distributes as defined by the function
P (p) (for some parameter or vector of parameters p) and, in turn, p distributes as
Q(α) for some parameter (or vector of parameters) α called “hyperparameter”),
and P belongs to the same exponential family as Q,

p ∼ Q(α), X ∼ P (p)

then, after having observed obs,

p ∼ Q(α′)

where α′ = f(α, obs), for some function f . For example, the Beta distribution
is the conjugate of the Binomial distribution. This means that the Beta, shaped
by the prior information and by the observations, defines the range within which
the parameter p of the Binomial will probably be situated, instead of directly
assigning to it the most likely value. Other examples of conjugate priors are:
Dirichlet, which is conjugate to the Multinomial, and Gaussian, which is conju-
gate to itself.

Conjugacy guarantees ease of computation, which is a desirable characteristic
when dealing with very big data sets as Web data sets often are. Moreover, the
model is incremental, and this makes it fit the crawling process with which
Web data are obtained, because crawling, in turn, is an incremental process.
Both the heterogeneity of the Web and the crawling process itself increase the
uncertainty of Web data. The probabilistic determination of the parameters of
the distributions adds a smoothing factor that helps to handle this uncertainty.

4 Parametric bayesian models for categorical Web data
In this section we will handle situations where the number of categories is known
a priori, by using the Dirichlet-Multinomial model and its special case with two
categories, i.e. the Beta-Binomial model [9]. As generalized versions of the Bino-
mial and Multinomial distribution, they describe the realization of sequences of
mutually exclusive events. Categorical data can be seen as examples of such se-
quences. These models are parametric, since the number and type of parameters
is given a priori, and they can also be classified as “empirical bayesian models”.
This further classification means that they can be seen as an approximation of
a full hierarchical bayesian model, where the prior hyperparameters are set to
their maximum likelihood values according to the analyzed sample.



4.1 Case study 1: Deciding between alternatives - ratio estimation

Suppose that a museum has to annotate a particular item I of its collection.
Suppose further, that the museum does not have expertise in the house about
that particular subject and, for this reason, in order to correctly classify the
item, it seeks judgments from outside people, in particular from Web users that
provide evidence of owning the desired expertise.

After having collected judgements, the museum faces two possible classifica-
tions for the item, C1 and C2. C1 is supported by four experts, while C2 by only
one expert. We can use these numbers to estimate a probability distribution that
resembles the correct distribution of C1 and C2 among all possible annotations.

A basic decision strategy that could make use of this probability distribu-
tion, could accept a certain classification only if its probability is greater or
equal to a given threshold (e.g. 0.75). If so, the Binomial distribution repre-
senting the sample would be treated as representative of the population, and
the sample proportions would be used as parameters of a Bernoulli distribution
about the possible classifications for the analyzed item: P (class(I) = C1) =
4/5 = 0.8, P (class(I) = C2) = 1/5 = 0.2. (A Bernoulli distribution describes
the possibility that one of two alternative events happens. One of these events
happens with probability p, the other one with probability 1 − p. A Binomial
distribution with parameters n, p represents the outcome of a sequence of n
Bernoulli trials having all the same parameter p.)

However, this solution shows a manifest leak. It provides to the decision
strategy layer the probabilities for each of the possible outcomes, but these
probabilities are based on the current available sample, with the assumption
that it correctly represents the complete population of all existing annotations.
This assumption is too ambitious. (Flipping a coin twice, obtaining a heads and
a tails, does not guarantee that the coin is fair, yet.)

In order to overcome such a limitation, we should try to quantify how much
we can rely on the computed probability. In other words, if the previously com-
puted probability can be referred as a “first order” probability, what we need to
compute now is a “second order” probability (see [15]). Given that the conjugate
prior for the Binomial distribution representing our data is the Beta distribution,
the model becomes:

p ∼ Beta(α, β), X ∼ Bin(p, n) (2)

where α = #evidenceC1 + 1 and β = #evidenceC2 + 1.
By analyzing the shape of the conjugate prior Beta(5,2), we can be certain

enough about the probability of C1 being safely above our acceptance threshold.
In principle, our sample could be drawn by a population distributed with a
40%−60% proportion. If so, given the threshold of acceptance of 0.75, we would
not be able to take a decision based on the evidence. However, the quantification
of that proportion would only be possible if we know the population. Given that
we do not have such information, we need to estimate it, by computing (3), where
we can see how the probability of the parameter p being above the threshold is
less than 0.5. This manifests the need for more evidence: our sample suggests to



accept the most popular value, but the sample itself does not guarantee to be
representative enough of the population.

P (p ≥ 0.75) = 0.4660645, p ∼ Beta(5, 2) (3)

Table 1 shows how the confidence in the value p being above the threshold grows
as long as we increase the size of the sample, when the proportion is kept. By ap-
plying the previous strategy (0.75 threshold) also to the second order probability,
we will still choose C1, but only if supported by a sample of size at least equal to
15.

Table 1: The proportion within
the sample is kept, so the most
likely value for p is always exactly
that ratio. However, given our 0.75
threshold, we are sure enough only
if the sample size is 15 or higher.

#C1 #C2 P (p ≥ 0.75)
p ∼ Beta(#C1 + 1,#C2 + 1)

4 1 0.4660645
8 2 0.5447991
12 3 0.8822048
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Fig. 1: Comparison between Binomial
and Beta-Binomial with increasing sam-
ple size. As the sample size grows, Beta-
Binomial approaches Binomial.

Finally, these considerations could
also be done on the basis of the
Beta-Binomial distribution, which is
a probability distribution represent-
ing a Binomial which parameter p is
randomly drawn from a Beta distribu-
tion. The Beta-Binomial summarizes
model (2) in one single function (4).
We can see from Table 2 that the ex-
pected proportion of the probability
distribution approaches the ratio of
the sample (0.8), as the sample size
grows. If so, the sample is regarded as
a better representative of the entire
population and the Beta-Binomial, as
sample size grows, will converge to the
Binomial representing the sample (see
Fig. 1).

X ∼ BetaBin(n, α, β) = p ∼ Beta(α, β), X ∼ Bin(n, p) (4)

4.2 Case study 2: deciding proportions - confidence intervals
estimation

The Linked Open Piracy1 is a repository of piracy attacks that happened around
the world in the period 2005 - 2011, derived from reports retrieved from the ICC-
1 http://semanticweb.cs.vu.nl/lop



X E(X) p = E(X)/n
BetaBin(5,5,2) 3.57 0.71
BetaBin(5,9,3) 3.75 0.75
BetaBin(5,13,4) 3.86 0.77

Table 2: The sample proportion is
kept, but the “expected propor-
tion” p of Beta-Binomial passes the
threshold only with a large enough
sample. E(X) is the expected value.

CCS website.2 Attack descriptions are provided, in particular covering their type
(boarding, hijacking, etc.), place, time, as well as ship type.

Data about attacks is provided in RDF format, and a SPARQL (see [28])
endpoint permits to query the repository. Such a database is very useful, for
instance, for insurance companies to properly insure ships. The premium should
be related to both ship conditions and their usual route. The Linked Open Piracy
repository allows an insurance company to estimate the probability to be victim
of a particular type of attacks, given the programmed route. Different attack
types will imply different risk levels.
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Fig. 2: Attack type proportion and
confidence intervals

However, directly estimating the
probability of a new attack given the
dataset, would not be correct, because,
although derived from data published
from an official entity like the Chamber
of Commerce, the reports are known to
be incomplete. This fact clearly affects
the computed proportions, especially
because it is likely that this incom-
pleteness is not fully random. There are
particular reasons why particular at-
tack types or attacks happening in par-
ticular zones are not reported. There-
fore, beyond the uncertainty about the
type of next attack happening (first or-
der uncertainty), there will be an addi-
tional uncertainty order due to the un-
certainty in the proportions themselves. This can be handled by a parametric
model that will allow to estimate the parameters of a Multinomial distribution.
The model that we are going to adopt is the multivariate version of the model
described in section 4, that is, the Dirichlet-Multinomial model (see [6, 17, 18]):

Attacks ∼ Multinom(params), params ∼ Dirichlet(α) (5)

where α is the vector of observations per attack type (incremented by one unit
each, as the α and β parameters of Beta probability distribution). By adopting
this model, we are able to properly handle the uncertainty carried by our sample,
due to either time variability (over the years, attack type proportions could
have changed) or biased samples. Drawing the parameters of our Multinomial
2 http://www.icc-ccs.org/



distribution from a Dirichlet distribution instead of directly estimating them,
allows us to compensate for this fact, by smoothing our attacks distribution. As
a result of the application of this model, we can obtain an estimate of confidence
intervals for the proportions of the attack types (with 95% of significance level,
see (6)). These confidence intervals depend both on the sample distribution and
on its dimension (Fig. 2).

∀p ∈ param,CIp = (p− θ1, p+ θ2), P (p− θ1 ≤ p ≤ p+ θ2) = 0.95 (6)

5 Non-parametric bayesian models

In some situations, the previously described parametric models do not fit our
needs, because they set a priori the number of categories, but this is not al-
ways possible. In the previous example, we considered and handled uncertainty
due to the possible bias of our sample. The proportions showed by our sample
could be barely representative of the entire population because of a non-random
bias, and therefore we were prudent in estimating densities, even not discard-
ing entirely those proportions. However, such an approach lacks in considering
another type of uncertainty: we could not have seen all the possible categories
and we are not allowed to know all of them a priori. Our approach was to look
for the prior probability to our data in the n-dimensional simplex, where n is
the number of categories, that is, possible attack types. Now such an approach
is no more sufficient to address our problem. What we should do is to add yet
another hierarchical level and look for the right prior Dirichlet distribution in
the space of the probability distributions over probability distributions (or space
of simplexes). Non-parametric models differ from parametric models in that the
model structure is not specified a priori but is instead determined from data.
The term non-parametric is not meant to imply that such models completely
lack parameters, but that the number and nature of the parameters are flexible
and not set in advance. Hence, these models are also called “distribution free”.

5.1 Dirichlet Process

Dirichlet Processes [8] are a generalization of Dirichlet distributions, since they
correspond to probability distributions of Dirichlet probability distributions.
They are stochastic processes, that is, sequences of random variables (distributed
as Dirichlet distributions) which value depends on the previously seen ones. Us-
ing the so-called “Chinese Restaurant Process” representation (see [22]), it can
be described as follows:

Xn =
{
X∗k with probability numn−1(X∗

k )
n−1+α

new draw from H with probability α
n−1+α

(7)

where H is the continuous probability measure (“base distribution”) from which
new values are drawn, representing our prior best guess. Each draw from H will



return a different value with probability 1. α is an aggregation parameter, inverse
of the variance: the higher α, the smaller the variance, which can be interpreted
as the confidence value in the base distribution H: the higher the α value is,
the more the Dirichlet Process resembles H. The lower the α is, the more the
value of the Dirichlet Process will tend to the value of the empirical distribution
observed. Each realization of the process is discrete and is equivalent to a draw
from a Dirichlet distribution, because, if

G ∼ DP (H,α) (8)

is a Dirichlet Process, and {B}ni=1 are partitions of S, we have that

(G(B1)...G(Bn)) ∼ Dirichlet(αH(B1)...αH(Bn)) (9)

If our prior Dirichlet Process is (8), given (9) and the conjugacy between
Dirichlet and Multinomial distribution, our posterior Dirichlet Process (after
having observed n values θi) can be represented as one of the following two
representations:

(G(B1)...G(Bn))|θ1...θn ∼ Dirichlet(αH(B1) + nθ1 ...αH(Bn) + nθn
) (10)

G | θ1...θn ∼ DP
(
α+ n,

α

α+ n
H + n

α+ n

Σn
i=1δθi

n

)
(11)

where δθi is the Dirac delta function (see [4]), that is, the function having density
only in θi. The new base function will therefore be a merge of the prior H and
the empirical distribution, represented by means of a sum of Dirac delta’s. The
initial status of a Dirichlet Process posterior to n observations, is equivalent to
the nth status of the initial Dirichlet Process that produced those observations
(see De Finetti theorem, [13]).

The Dirichlet process, starting from a (possibly non-informative) “best guess”,
as long as we collect more data, will approximate the real probability distribu-
tion. Hence, it will correctly represent the population in a prudent (smoothed)
way, exploiting conjugacy like the Dirichlet-Multinomial model, that approxi-
mates well the real Multinomial distribution only with a large enough data set
(see section 4). The improvement of the posterior base distribution is testified
by the increase of the α parameter, proportional to the number of observations.

5.2 Case study 3: Classification of piracy attacks - unseen types
generation

We aim at predicting the type distributions of incoming attack events. In order
to build an “infinite category” model, we need to allow for event types to be
randomly drawn from an infinite domain. Therefore, we map already observed
attack types with random numbers in [0..1] and, since all events are a priori
equally likely, then new events will be drawn from the Uniform distribution,
U(0, 1), that is our base distribution (and is a measure over [0..1]). The model
then is:



– type1 ∼ DP (U(0, 1), α): the prior over the first attack type in region R;
– attack1 ∼ Categorical(type1): type of the first attack in R during yeary.

After having observed attack1...n during yeary, our posterior process becomes:

typen+1 | attack1...n ∼ DP
(
α+ n,

α

α+ n
U(0, 1) + n

α+ n

Σn
i=1δattacki

n

)
where α is a low value, given the low confidence in U(0, 1), and typen+1 is the
prior of attackn+1, that happens during yeary+1. A Categorical distribution is
a Bernoulli distribution with more than two possible outcomes (see Section 4).

Results Focusing on each region at time, we simulate all the attacks that hap-
pened there in yeary+1. Names of new types generated by simulation are matched
to the actual yeary+1 names, that do not occur in yeary, in order of decreasing
probability. The simulation is compared with a projection of the proportions of
yearn over the actual categories of yearn+1. The comparison is made by measur-
ing the distance of our simulation and of the projection from the real attack types
proportions of yeary+1 using the the Manhattan distance (see [16]). This metric
simply sums, for each attack type, the difference between the real yeary+1 prob-
ability and the one we forecast. Hence, it can be regarded as an error measure.
Table 3 summarizes the results over the entire dataset.3 Our simulation reduces
the distance (i.e. the error) with respect to the projection, as confirmed by a
Wilcoxon signed-rank test [29] at 95% significance level. (This non-parametric
statistical hypothesis test is used to determine whether one of the means of the
population of two samples is smaller/greater than the other.) The simulation
improves when large amount of data is available and the category cardinality
varies, as in case of Region India, which results are reported in Fig. 3 and 4a.

Table 3: Averages and variances of
the error of the two forecasts. The
simulation gets a better performance.

Simulation Projection
Average distance 0.29 4 0.35
Variance 0.09 4 0.21
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Fig. 3: Comparison between the projection forecast and the simulation forecast
with the real-life year 2006 data of region India.

3 The code can be retrieved at http://www.few.vu.nl/~dceolin/DP/Dir.R
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Fig. 4: Error distance from real distribution of the region India (fig. 4a) and
differences of the error of forecast based on simulation and on projection (fig. 4b).
Positive difference means that the projection predicts better than our simulation.

6 Conclusions and future work

The fact that our proposed models fit well with the expressed requirements is
apparently a good hypothesis to continue to explore, because we have seen how it
is possible to handle such uncertainty and to transform it in a smoothing factor
of the probability distribution that we estimate given our evidence, by allowing
the parameters of our distributions to be probabilistically determined. Moreover,
we have built models able to produce reliable forecasts also when not every class
is know a priori. We also provided case study validation of the suggested models.

The set of models will be extended to deal with concrete domain data (e.g.
time intervals, measurements), for instance, by adopting the Normal or the Pois-
son Process (see [9]). Moreover, automatic model selection will be investigated,
in order to choose the best model also when the limited information about our
problems could make more models suitable. From a pure Web perspective, our
models will be extended to properly handle contributions coming from differ-
ent sources together with their reputation. This means, on one side, considering
also provenance (like in [1]) and, on the other side, using Mixture Models ([23]),
Nested ([24]) and Hierarchical Dirichlet Processes ([25]), eventually employing
Markov Chain Monte Carlo algorithms (see [7, 21]) to handle lack of conjugacy.
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