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Abstract. Standard semantic technologies propose powerfuaneefor
knowledge representation as well as enhanced rie@soapabilities to modern
applications. However, the question of dealing withcertainty, which is
ubiquitous and inherent to real world domain, i sbnsidered as a major
deficiency. We need to adapt those technologieth@ocontext of uncertain
representation of the world. Here, this issue sn@red through the evidential
theory, in order to model and reason about unceyain the assertional
knowledge of the ontology. The evidential theoitgpe&known as the Dempster-
Shafer theory, is an extension of probabilities praposes to assign masses on
specific sets of hypotheses. Further on, thankhéosemantics (hierarchical
structure, constraint axioms and properties definetthe ontology) associated
to hypotheses, a consistent frame of this theoayismatically created to apply
the classical combinations of information and deciprocess offered by this
mathematical theory.
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1 Introduction

Uncertainty is an important characteristic of datal information handled by real-
world applications. The term "uncertainty” refeosa variety of forms of imperfect
knowledge, such as incompleteness, vagueness, mamass, inconsistency and
ambiguity. In this approach, we consider only théstmic uncertainty, due to lack
of knowledge (incompleteness) and the inconsistedag to conflicting testimonies
or reports. This paper presents a proposal on silpesway to tackle the issue of
representing and reasoning on this type of unceytan semantic applications, by
using the Dempster—Shafer theory [1], also knowrieaglential theory” or “belief
function theory”. The general objective of our apgfions is to form the most
informative and consistent view of the situatiohserved by multiple sources. These
observations populate our domain ontology. Thus,caesider that the uncertainty



has to be embodied in the instantiation rather tinathe structural knowledge of
ontology. One of our requirements is that a sogereassign a belief on any instance
without worrying of any level of granularity or géntness of these instances. For
example, one source could assign a belief on aarios of clas¥ehicle and, at the
same time, another belief on an instance of @pe which inherits from the class
Vehicle.

The following section of this paper introduces tiasic definitions and notations of
the Dempster—Shafer theory. Section 3 presentsootmlogy modeling of the
representation of uncertainty, using evidentialotlge In the fourth section, we
address how to reason with the evidential theorijedtenefiting from the semantics
included in the domain ontology. Section 5 propogeposition our approach by
comparing it with already existing works in the dom of uncertainty and the
Semantic Web.

2 Basisof Dempster-Shafer Theory

The Dempster—Shafer theory [1] allows the combamatf distinct evidence from
different sources in order to calculate a globaloamt of belief for a given
hypothesis. It is often presented as a generaizatif the probability theory. It
permits to manage uncertainties as well as inacmsand ignorance.

2.1 Frame of Discernment

Let Q be the universal set, also called the discernifnante. It is the set of all the N
states (hypothesis) under consideration={H,,H,,.H .}

The universal set is supposed to be exhaustivealirid/potheses are exclusives.
Exhaustivity refers to the closed-world principlerom this universal set, we can
define a set, noted2lt is called the power set and is the set opaBisible sub-sets
of Q, including the empty set. It is defined as follows

22 ={AADQ}={@{H}...{H L{H, H,}.... ).

2.2 Basic Mass Assignment and Belief M easures

A source, who believes that one or more statehénpbwer set of2 might be true,
can assign belief mass to these states. Formaitass function is defined by:

m:2% o [O,l] ) (1)
Itis also called a basic belief assignment ait#& two properties:
m(@) =0 and Z m(A) =1. )
A2

This quantity differs from a probability since thatal mass can be given either to
singleton hypothesid,, or to composite ones.



The main other belief measures are belief and fidaitys Belief bel(A) for a setA is
defined as the sum of all the masses of the subséte set of interest:
bel (A) = > m(B) ODAOQ. 3)

BBOA

It is the degree of evidence that directly suppthes given hypothesid at least in
part, forming a lower bound. The plausibilfti(A) is the sum of all the masses of the
setsB that intersect the set of interdst

pl(A)= > m(B) OADQ. 4

B|Bn A%@

pl(A) can be interpreted as the part of belief which ddod potentially allocated #,
taking into account the elements that do not cdittahis hypothesis. It is seen as an
upper bound.

2.4 Information Fusion

Modeling by masses through the evidential theoryuldiobe useless without an
adequate combination enabling the fusion of a $éhformation sources. This is
especially the role of the Dempster’s rule of camalion. Namely, it combines two
independent sets of mass assignments (i.e. frdierelifce sources). The combination
(called the joint mass) is calculated from the tse&ts of massesy andm, in the
following manner:

SMEMC)  asg

BnC=A

(m O m)(A) =1 - ©)
O” A=0Q
where K, = > m(Bm,(C) . (6)
BnC=0@

K is a measure of the amount of conflict betweentto mass sets. K is ranging from
0 to 1. Dempster’s rule corresponds to the norredlizonjunctive operator. Other
combination rules exist, such as the disjunctivenlmioation and other operators that
reassign the amount of conflict differently [2].

3 DS-Ontology Modeling

The first step of our approach is to model and espnt the uncertainty through
ontologies. Modeling is proposed through a specditology that needs to be
imported in the initial domain ontology. This iaitdomain ontology is the ontology
we want to instantiate in an uncertain way. Thedrtgd ontology is called DS-
Ontology. It is described in the following.



3.1 Structural Knowledge of the DS-Ontology

This ontology is a formal representation of theotiyeof Dempster-Shafer, as it
proposes a shared understanding of the main cancepass, belief, plausibility,
source, etc. It is non-domain specific, since care use it in every area of knowledge.
It has been coded in OWL2 language [3]. Hereaftean informal schema of the

terminology of DS-Ontology.

rdfs:subClassof -~ \\\ rdfs:subClassOf
eporting_Source s X
DS_source s N
DS_concept hasDS_concept Uncertain_concept

specificUncertainty

Datatype /rdfs:subClassof / rdfs:subClassof

DS_property }[ DS_class ] [ Uncertain_class ][ Uncenain_propeny}

Other_Hypothesis_property r
hasDs_| othesis
Property  owl:topProperty Other_Hypothesis_class ]

—{ Class  owl:Thing )i hasUncertain_property

Fig. 1. Informal ontology structure schema. Yellow boxepresent OWL classes. Grey ones
refer to datatypes (XML ones and user defined yp&t Arrows symbolize properties.
Resources appearing without namespace prefix canetiie DS-Ontology whose namespace
is http://DS-Ontology.owl.

The main classes aténcertain_concept and DS concept. The DS concept class
links the hypothesis, with the source and the nicakamount of belief related to the
hypothesis. The hypothesis consists either of glefon or a union of hypotheses.
Hypotheses are in fact instances of the domain l@gyo Instances are either
individuals of classes or instances of properfidse Uncertain_concept class links
together all theDS concept that are related to the same context. Indeed, the
uncertainty is embodied by several candidate irnsmifwith an assigned belief) and
the uncertainty is concretely instantiated throogk instance ofJncertain_concept.
Uncertain_concept enables to retrieve the set of hypotheses undesideration, i.e.
the power set2

In order to represent uncertainty both on individuand on asserted properties,
DS concept and Uncertain_concept have been specialized. They are specified in
subclassesXX_class and XX _property (XX prefix representing both DS and
Uncertain). Uncertain_concept is now an equivalent class to the union of
Uncertain_property and Uncertain_class, while the latter two are disjoint.
Respectively, this holds f@S-concept and its subclasses.

The hasDS hypothesis objectproperty relates an instance DS class to a set of
candidate individuals. Concerning candidate préggrtthings have been done
differently. Indeed, OWL properties are not firtass citizens, contrary to OWL



classes; as such OWL properties cannot be relatedd¢h others: a property cannot
be the subject or object of another property. Toageund this, an object property
hasUncertain_property has been introduced. The original subject of thedickate
property is the subject of hasUncertain property. The domain of
hasUncertain_property is intuitively the class Uncertain_Property. Then,
DS Property instances are directly the subject of the candigabperties while their
object remains unchanged.

An illustration of the use of the DS-Ontology iven in the next section.

As with the Dempster-Shafer theory, the modelinggobrance is made possible. It
is realized through an instance 6 concept linked to all hypothetical instances.
Ontologies evolve within the open world assumptidtiowever, the original
evidential theory assumes a closed world and thathly the measure of the amount
of conflict exists. Therefore, we should for instaropt for an Open Extended World
extension of the Dempster-Shafer theory [4]. Applite ontologies, it consists in
modeling another concept, with prefixOther_Hypothesis’. This element is included
in the DS-Ontology (both as a class and a propexty) is asserted if needed to
embody hypothesis, which does not correspond tcalready defined concept in the
domain ontology.

We represent numerical evidential belief througlspecificUncertaintyDatatype
which is a user-defined datatype defined in our@®elogy to restrict its value to an
xsd:double ranging from 0O to 1.

In our model,Uncertain_concept and DS concept are classes that let grouping
together collected pieces of information about amceutain instance we want to
model and reason about. It can be viewed as aca#idhn process, where an
addressable object is created as a proxy for ndneadable objects. Informally,
reification is often referred to as “making somethia first-class citizen” within the
scope of a particular system. Reification is onthefmost frequently used techniques
of conceptual analysis and knowledge representafivan if RDF language enables
reification process [5], we choose to model explicin an ontology our full
representation, instead of using annotations ndinet® in the ontology. As a
consequence, the uncertainty extension of OWL tjinothe DS-Ontology is
completely compliant with the basic principle of @Wbntologies to structure
knowledge in two levels: structural and assertional

3.2 Ingtantiation Example

Our applications aim mainly at observing real wositbations through different
perspectives (sources) and give an understandadléuaed analysis of what is going
on in this situation to the final decision makehisTsimplified scenario involves here
two distinct sources. One is a human while the roih@n automatic sensor, such as
radar. They both want to express that somethimggiisg into a specific direction; the
“something” entity is the same object for both s@s; however, they are not sure
about how to identify this object. Indeed, the rastaurce can only distinguish a land
vehicle from an aircraft; it assigns here a morpartant belief on the fact that it is an
instance of a land vehicle. The second sourcehaman, who has a slight and far
away view of the situation is assigning differeeliéfs to an instance of car which



looks like red, or a fire truck or a more impreéysene to a land vehicle. In most
cases, we do not have to assess the belief assigrtegotheses by ourselves, it is
directly given by the sources according to theindibon of use (e.g. meteorology,
proximity, etc.) and we apply possibly a weakentagfficient according to the

source reliability. The structural knowledge ofsttdomain is modeled through an
ontology (http://ontology-uri.owl), whose hierarchli structure is captured in figure

%] & [a(]

v- . Thing
i~ ®Direction
@ Color
¥ -@Vehicle
Aircraft
¥-@LandVehicle
i Bicycle
car
v @O Truck
------ FireTruck
----- WaterCraft

v-matopObjectProperty
{mugoesDirection
" =mhasMainColor

Fig. 2. Protégé snapshot of the structural knowledgeebiitology.

In addition to the hierarchical structure of theowfedge, domain and range of
properties are also defined, as well as additionfdrmation concerning a priori
information about the world. For instance, in tbd@main ontology, it is mentioned
that a fire truck individual is always associatedie propertyhasMainColor with the
value red. According to the sources and to the alonontology, the assertional
knowledge of this ontology involves:

- http://ontology-uri.owl#direction: an individual ofclass http://ontology-
uri.owl#Direction

- respectively #landVehicle for class #LandVehicle

- respectively #aircraft for class #Aircraft

- respectively #fireTruck for class #FireTruck

- respectively #red for class #Color

- respectively #car for class #Car which is linkedhe individual #red through the
#hasMainColor property.

The set of candidate instances are: {#landVehigrcraft, #fireTruck, #car}. We

refer here to IRI instances only with their locahme, omitting the namespace.

Regarding the Dempster-Shafer theory, the massessargned by the sources as:
Mradal{#landVehicle}) = 0.6 ; myga({#aircraft}) = 0.1 ; maga({#landVehicle,

#aircraft}) = 0.3

Mumad {#car}) = 0.2 ; Mumad{#fireTruck}) = 0.4 ; muma{{#landVehicle}) = 0.4

This domain ontology imports the DS-Ontology, id@rto represent all these pieces

of knowledge within the domain ontology. Two morividuals are created to

represent the sources:

- #human for class http://DS-Ontology.owl#Reportingu®e

- #radar for class http://DS-Ontology.owl#ReportiBgurce



The following figure illustrates through a non-fahontological schema, how the
instances are linked together.
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Fig. 3. Uncertain individuals scenario

4 Evidential Reasoning on DS-Ontology

Once the uncertainty contained in the informati@s been represented, reasoning
processes have to be conducted to fuse the diffebmervation and eventually decide

of the instance with the most likelihood. This gmtthas to be viewed as the

chronological steps that are realized by the systeander to reason on the uncertain
pieces of information represented through the D$sl0gy.

4.1 Generate automatically the Discernment Frame

One Uncertain_concept instance of the DS-Ontology groups a set of caatdid
instances together (either individuals or propsjtié&rom this set of instances, we
want to determine automatically a consistent frathdiscernment, according to the
Dempster-Shafer theory. The underlying assumptidrte theory are: an exhaustive
frame of discernment and the exclusivity of elermasftQ (see section 2.1). In this
paper, we have already managed the first constraithin the Open World
assumption of ontologies in the modelling of the-O&ology. The second constraint
of the frame of discernment is the exclusivity tsf €lements. This implies that each
singleton hypothesis (i.e. the element$fare disjoint. In other words, if +and B

are two singletons, we cannot haveHH, or even H n H,# @. In the instantiation
example, #fireTruck and #car individuals are semaly “included” in
#landVehicle. As there is an inclusion, #fireTrumkd #car individuals have also a
non-null intersection with the #landVehicle indival. Moreover, #fireTruck has a
non-null intersection with #car. Indeed, these timdividuals are sharing many



characteristics in common: they are both land Vekiand their main colors are in
both cases red.

To deal with this second constraint, we take irdooant the explicit and inferred
semantics of the domain ontology to generate teeednment frame. The granularity
of the set of candidate instances affects the g¢inarof the discernment frame. The
semantic will help us determining the inclusionhgpotheses as well as the semantic
similarity between instances. The whole set of @atd instances will help us fixing
a threshold for semantic distances.

4.1.1 Semantic Inclusion/I nter section

The semantic inclusion is quite straightforward determine. Indeed, in case the
instances are property assertions, for examplepfoperty P1 has for ancestor P2,
then we say that P1 is included in P2. Otherwiseaise the instances are individuals
and they have zero or the same properties (or socheded property), then there is

an inclusion. In all other cases, the inclusionsdioet hold.

Concerning semantic intersection, things go alittirther. First of all, logically, if
two instances have already a semantic inclusioen tthey also have a non-null
semantic intersection. In all other cases, we wdlhsider that two instances have a
non-null intersection when their semantic similaig exceeding a certain threshold.
More specifically, our similarity measure is a giblfunction, which combines
existing similarity measure defined in literatufes for individuals, it is a mixture of
similarity measure of their respective types amdilarity measures concerning their
relations. Wu & Palmer similarity measure [6] isedsto qualify the similarity
between two instances based on their respective. titptakes into account the
distance that separates two types in the hieraactty their position with the root.
Equation (7) depicts their formuldfl and C2 are two classes. Clas3 is the
immediate mother-class @1 andC2 that subsumes both classéspth(C) function
is the number of edges separatihdrom the rootdepthc(Ci) is the number of edges
which separat€i from the root while passing by.

*
conSm(CLC2) = 2" depth(C) . ()
depth,. (C1) + depth. (C2)
The other combined similarity measures count thever of identical properties
versus the number of different properties relatedthe two individuals. This is
calculated both for object properties and datapyoperties. On equation (8), and
12 are the two individuals for which the global sewa similarity measure is
calculated. For object properties (respectively datatype propertiespbProp(l) is
the number of object properties (resp. of datatypeperties) of individuall.
nbPropComm(11,12) is the number of common properties - identicadiate and
related individual or value - for the two individsdl andl2. These three similarity
measures focusing on the similarity of the types ioflividuals and their
characteristics (through the datatype and objegpgmties) are combined through a
weighted mean.

propSm(11,12) =

2* nbPropComm(I1112) ©)
nbProp(l 1) + nbProp(l 2)




Once the cross-similarity measure of the set otafldidate instances is calculated,
the threshold is fixed through a clustering methéte threshold is thus varying
according to all the computed semantic similaritiglsis process permits to adapt the
granularity of the set of candidate instancestalbhdlates our general impression that
the concept of a compact car is closer to the qunoEminivan than of a plane’s;
however the concept of a compact car is closehéocbncept of plane than of a
book’s. In the first case, the intersection shduddbrought by the pair (compact car,
minivan), whereas in the latter, it should be bitdubgy the pair of (compact car,
plane). It should be noted that, in both casesctmeepts of compact car and plane
have the same semantic similarity. As a consequeheesemantic intersection is
seen as a Boolean condition on the similarity messuceeding the threshold.

Finally, we consider the evidential set inclusiorespectively intersection) as
equivalent to the semantic inclusion (respectiveltersection). In case of our
scenario, the intersection and inclusion are gilyi represented on the figure
below.

#landVehicle

#aircraft
#ear #fireTruck

Fig. 4. Inclusion and intersection of candidate instances

4.1.2 From the Set of Candidates I nstancesto the Discernment Frame

Once the intersection and inclusion of candidastainces identified, we are able to
set up a consistent frame of discernment. For thésreframe the set of candidate
instances into single or composite disjoint hypsése

In case of a discovered intersection between twudidate instances #instl and
#inst2, #instl is reformulated as the union of sigletons {H, Hiyerg and #inst2 as
{H 2, Hinerg- In case of discovered inclusions between twodédaite instances #instl
and #inst2, where #instl is included in #inst2,stfinis represented by a single
hypothesis {H} and #inst2 by the union of hypotheses,{i;}. Single hypotheses,
grouped together, constitute the frame of discemmea fact, each initial candidate
instance belongs to the power-set of the frameisifednment. Taking our scenario,
each candidate instance can now be decomposedtlas su

- #aircraft = {Hy}

- #car ={H, H3}

- #fireTruck = { Hs, Hy}

- #landVehicle = {H, Hs, H,, Hs}

Indeed, relying on Figure 4, #aircraft instance hasntersection nor inclusion; thus,
it constitutes a single hypothesis within the fraofediscernment. The non-null
intersection, between #fireTruck and #car instant@s been modeled through a
common and shared single hypothesis;. Hinally, the inclusion brought by
#landVehicle results in the union of the set ofglinhypotheses of #fireTruck and
#car, in addition to its own singletory.H



4.2 Use Dempster-Shafer Calculations on DS-Ontology

Once the discernment frame has been obtained, weefarmulate in the Dempster-
Shafer formalism, the basic mass assignment cdbrario:

« Mragaf{H 2, Ha, Ha, Hs}) = 0.6 ; Maga({H 1}) = 0.1 ; Magaf{H 1, Hz, H3, Ha, Hs}) = 0.3

* mhumar({H 2 H3}) =0.2 ; m1umal({H 3 H4}) =04 ; rrhumar({H 2y H3, H4- HS}) =04

We are now able to apply directly the classical bvation rules found in the
Dempster-Shafer theory, and then go through thisidecprocess.

5 Reated Work

During the last decade, approaches considering tnatbrtainty and the Semantic
Web have been proposed. In this section, we merg@mne of them in order to
position and compare our work. We consider theialgonderlying mathematical
theory and processes.

Fuzzy and rough set theories aim to model vaguemedsuncertainty. Regarding
fuzzy sets, classes are considered to have undeéingtions. fuzzyDL approach [7]
aims to represent and reason about a membershitidarspecifying the degree to
which an instance belongs to a class. Even if itl¢de interesting to take into
account fuzzy aspect of hypotheses especially tfarseulated by human sources, it
is not the purpose of our approach to model moeeigely our knowledge, but to
decide among multi hypotheses and have a more eohand reliable view of the
situation. Approaches in [8, 9] are relying on rowgpt theory — which considers the
indiscernability between objects. In that casess#a are not restricted to a crisp
representation; they may be coarsely described eftproximations. In [9], the
author is using rough classes to generate new asg®d or relations by mining an
important set of instances already existing. Thism de part of the ontology
engineering process. The goal is here also diffex@ours; however, some notions
and process are similar. First, the design of glmidDWL ontology can be seen as the
matching piece to our DS-Ontology for the Demp&befer theory. Moreover, the
use of p-indistinguishable properties notion footindividuals can be linked to our
so-called common properties in Equation (8) wheatessing the similarity measure
between two instances. Finally, descriptions fordp and upper approximation —
through intersection and inclusion consideratiorremind us the definition of the
exclusivity of our frame of discernment; howevéey consider here intersection and
inclusion between two classes whereas we calcitlatgween two individuals.

Probabilistic adaptations or extensions (Pr-OWL],[BayesOWL [11], Fire [12])
are more relevant to our objective of assessingntbst likelihood instances that
holds. However, probabilities suffer from the lack ignorance and imprecision
management in comparison to evidential theory.

Approaches in [13, 14 and 15] are more relatedutochosen mathematical theory
as they directly deal with evidential theory. [18hd [14] transform uncertain
statements in belief networks. However, these ndtwapresentations are themselves
extensions of evidential theory. Moreover, theyndb take into account the semantic
attached to the hypotheses, in order to considemibst conflicting hypotheses or on



the inverse the implied hypotheses. Looking thisy,wdoey can be considered
complementary to ours. A recent published approfdj is concentrating on
uncertain reasoning on instances of an ontologyguéie evidential theory and some
similarity measures. While we handle the same roeetl tools, our process and
aspiration are quite different. Indeed, their malijective is to propose an alternative
ABox inductive reasoning - by classifying individsigdetermining their class- or
role- memberships or value for datatype properti®®ugh a prediction based on an
evidential nearest neighbor procedure. Their réagoaddresses here another way to
tackle automatic inference from a classical ontpldthis automatic inference aims
to derive new or implicit knowledge about the catreepresentation of the world, on
the basis of the asserted knowledge. Whereas,ustert reasoning goal is to rely on
the semantic description of candidate instancepdtiesis) describing a same and
unique entity or phenomenon in order to decide itigndidate instances should be
chosen.

Other reports enlarging the state-of-the-art tooatblogy languages can be found
in[17, 18].

6 Conclusion and Future Work

This paper proposes a solution in order to handteriainty within ontologies. Our
approach is relying on current W3C standards. Modebf uncertainty is realized
through an imported pre-defined ontology: the DSelrgy. Uncertain instantiation
of the domain ontology is performed through the oéhis imported DS-Ontology.
The DS-Ontology relies on the theory of Dempsteaf8h which manages
uncertainty, as well as imprecision and ignoraridd@s paper has underlined some
key issues that have to be dealt when implemeistiict) parallelism between a formal
mathematical theory to manage uncertainty and séenamorld. The assumption of
Open World in ontologies is one of these issuessBing on uncertainty is made
possible through an automatic generation of thendraof discernment. For that
purpose, Boolean semantic operators, such as theséction and inclusion, have
been developed based on the semantic expressivitiyeodomain ontology. As a
consequence, this paper provides a double and hedogibution in the domains of
the Semantic Web and of uncertain theories, whielmebts clearly from the
semantics of the hypotheses.

Further researches are also in discussion to esttendeasoning over the Boolean
inclusion and intersection of candidate instan¢edeed, it could be interesting to
keep the semantic similarity degree (which is d raaging from 0 to 1) and use it
instead of Boolean notions within the theory of [paster-Shafer. This could be made
by rearranging the basic measures of belief andspidity and of the rules of
combination.
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