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Abstract. Standard semantic technologies propose powerful means for 
knowledge representation as well as enhanced reasoning capabilities to modern 
applications. However, the question of dealing with uncertainty, which is 
ubiquitous and inherent to real world domain, is still considered as a major 
deficiency. We need to adapt those technologies to the context of uncertain 
representation of the world. Here, this issue is examined through the evidential 
theory, in order to model and reason about uncertainty in the assertional 
knowledge of the ontology. The evidential theory, also known as the Dempster-
Shafer theory, is an extension of probabilities and proposes to assign masses on 
specific sets of hypotheses. Further on, thanks to the semantics (hierarchical 
structure, constraint axioms and properties defined in the ontology) associated 
to hypotheses, a consistent frame of this theory is automatically created to apply 
the classical combinations of information and decision process offered by this 
mathematical theory.  
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1   Introduction 

Uncertainty is an important characteristic of data and information handled by real-
world applications. The term "uncertainty" refers to a variety of forms of imperfect 
knowledge, such as incompleteness, vagueness, randomness, inconsistency and 
ambiguity. In this approach, we consider only the epistemic uncertainty, due to lack 
of knowledge (incompleteness) and the inconsistency, due to conflicting testimonies 
or reports. This paper presents a proposal on a possible way to tackle the issue of 
representing and reasoning on this type of uncertainty in semantic applications, by 
using the Dempster–Shafer theory [1], also known as “evidential theory” or “belief 
function theory”. The general objective of our applications is to form the most 
informative and consistent view of the situation, observed by multiple sources. These 
observations populate our domain ontology. Thus, we consider that the uncertainty 



has to be embodied in the instantiation rather than in the structural knowledge of 
ontology. One of our requirements is that a source can assign a belief on any instance 
without worrying of any level of granularity or disjointness of these instances. For 
example, one source could assign a belief on an instance of class Vehicle and, at the 
same time, another belief on an instance of type Car, which inherits from the class 
Vehicle. 

The following section of this paper introduces the basic definitions and notations of 
the Dempster–Shafer theory. Section 3 presents our ontology modeling of the 
representation of uncertainty, using evidential theory. In the fourth section, we 
address how to reason with the evidential theory while benefiting from the semantics 
included in the domain ontology. Section 5 proposes to position our approach by 
comparing it with already existing works in the domain of uncertainty and the 
Semantic Web. 

2   Basis of Dempster-Shafer Theory 

The Dempster–Shafer theory [1] allows the combination of distinct evidence from 
different sources in order to calculate a global amount of belief for a given 
hypothesis. It is often presented as a generalization of the probability theory. It 
permits to manage uncertainties as well as inaccuracies and ignorance. 

2.1   Frame of Discernment  

Let Ω be the universal set, also called the discernment frame. It is the set of all the N 
states (hypothesis) under consideration: { }NHHH ,.., 21=Ω . 

The universal set is supposed to be exhaustive and all hypotheses are exclusives. 
Exhaustivity refers to the closed-world principle. From this universal set, we can 
define a set, noted 2Ω. It is called the power set and is the set of all possible sub-sets 
of Ω, including the empty set. It is defined as follows: 

{ } { } { } { }{ }Ω=Ω⊆=Ω ,...,,,,...,Ø,2 211 HHHHAA N . 

2.2   Basic Mass Assignment and Belief Measures 

A source, who believes that one or more states in the power set of Ω might be true, 
can assign belief mass to these states. Formally, a mass function is defined by: 

[ ]1,02: →Ωm  . (1) 

It is also called a basic belief assignment and it has two properties:  
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This quantity differs from a probability since the total mass can be given either to 
singleton hypothesis Hn or to composite ones. 



 
The main other belief measures are belief and plausibility. Belief bel(A) for a set A is 
defined as the sum of all the masses of the subsets of the set of interest: 
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It is the degree of evidence that directly supports the given hypothesis A at least in 
part, forming a lower bound. The plausibility pl(A) is the sum of all the masses of the 
sets B that intersect the set of interest A: 
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pl(A) can be interpreted as the part of belief which could be potentially allocated to A, 
taking into account the elements that do not contradict this hypothesis. It is seen as an 
upper bound. 

2.4   Information Fusion 

Modeling by masses through the evidential theory would be useless without an 
adequate combination enabling the fusion of a set of information sources. This is 
especially the role of the Dempster’s rule of combination. Namely, it combines two 
independent sets of mass assignments (i.e. from difference sources). The combination 
(called the joint mass) is calculated from the two sets of masses m1 and m2 in the 
following manner: 
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K is a measure of the amount of conflict between the two mass sets. K is ranging from 
0 to 1. Dempster’s rule corresponds to the normalized conjunctive operator. Other 
combination rules exist, such as the disjunctive combination and other operators that 
reassign the amount of conflict differently [2]. 

3   DS-Ontology Modeling 

The first step of our approach is to model and represent the uncertainty through 
ontologies. Modeling is proposed through a specific ontology that needs to be 
imported in the initial domain ontology.  This initial domain ontology is the ontology 
we want to instantiate in an uncertain way. The imported ontology is called DS-
Ontology. It is described in the following.  



3.1   Structural Knowledge of the DS-Ontology  

This ontology is a formal representation of the theory of Dempster-Shafer, as it 
proposes a shared understanding of the main concepts: mass, belief, plausibility, 
source, etc. It is non-domain specific, since one can use it in every area of knowledge. 
It has been coded in OWL2 language [3]. Hereafter is an informal schema of the 
terminology of DS-Ontology.  

 

Fig. 1. Informal ontology structure schema. Yellow boxes represent OWL classes. Grey ones 
refer to datatypes (XML ones and user defined datatype). Arrows symbolize properties. 
Resources appearing without namespace prefix come from the DS-Ontology whose namespace 
is http://DS-Ontology.owl. 

The main classes are Uncertain_concept and DS_concept. The DS_concept class 
links the hypothesis, with the source and the numerical amount of belief related to the 
hypothesis. The hypothesis consists either of a singleton or a union of hypotheses. 
Hypotheses are in fact instances of the domain ontology. Instances are either 
individuals of classes or instances of properties. The Uncertain_concept class links 
together all the DS_concept that are related to the same context. Indeed, the 
uncertainty is embodied by several candidate instances (with an assigned belief) and 
the uncertainty is concretely instantiated through one instance of Uncertain_concept. 
Uncertain_concept enables to retrieve the set of hypotheses under consideration, i.e. 
the power set 2Ω.  

In order to represent uncertainty both on individuals and on asserted properties, 
DS_concept and Uncertain_concept have been specialized. They are specified in 
subclasses XX_class and XX_property (XX prefix representing both DS and 
Uncertain). Uncertain_concept is now an equivalent class to the union of 
Uncertain_property and Uncertain_class, while the latter two are disjoint. 
Respectively, this holds for DS-concept and its subclasses.  

The hasDS_hypothesis object property relates an instance of DS_class to a set of 
candidate individuals. Concerning candidate properties, things have been done 
differently. Indeed, OWL properties are not first-class citizens, contrary to OWL 



classes; as such OWL properties cannot be related to each others: a property cannot 
be the subject or object of another property. To get around this, an object property 
hasUncertain_property has been introduced. The original subject of the candidate 
property is the subject of hasUncertain_property. The domain of 
hasUncertain_property is intuitively the class Uncertain_Property. Then, 
DS_Property instances are directly the subject of the candidate properties while their 
object remains unchanged. 

An illustration of the use of the DS-Ontology is given in the next section. 
As with the Dempster-Shafer theory, the modeling of ignorance is made possible. It 

is realized through an instance of DS_concept linked to all hypothetical instances. 
Ontologies evolve within the open world assumption. However, the original 
evidential theory assumes a closed world and that is why the measure of the amount 
of conflict exists. Therefore, we should for instance opt for an Open Extended World 
extension of the Dempster-Shafer theory [4]. Applied to ontologies, it consists in 
modeling another concept, with prefix: “Other_Hypothesis”. This element is included 
in the DS-Ontology (both as a class and a property) and is asserted if needed to 
embody hypothesis, which does not correspond to any already defined concept in the 
domain ontology. 

We represent numerical evidential belief through a specificUncertaintyDatatype 
which is a user-defined datatype defined in our DS-Ontology to restrict its value to an 
xsd:double ranging from 0 to 1. 

In our model, Uncertain_concept and DS_concept are classes that let grouping 
together collected pieces of information about an uncertain instance we want to 
model and reason about. It can be viewed as a reification process, where an 
addressable object is created as a proxy for non-addressable objects. Informally, 
reification is often referred to as “making something a first-class citizen” within the 
scope of a particular system. Reification is one of the most frequently used techniques 
of conceptual analysis and knowledge representation. Even if RDF language enables 
reification process [5], we choose to model explicitly in an ontology our full 
representation, instead of using annotations not defined in the ontology. As a 
consequence, the uncertainty extension of OWL through the DS-Ontology is 
completely compliant with the basic principle of OWL ontologies to structure 
knowledge in two levels: structural and assertional. 

3.2   Instantiation Example 

Our applications aim mainly at observing real world situations through different 
perspectives (sources) and give an understandable and fused analysis of what is going 
on in this situation to the final decision maker. This simplified scenario involves here 
two distinct sources. One is a human while the other is an automatic sensor, such as 
radar. They both want to express that something is going into a specific direction; the 
“something” entity is the same object for both sources; however, they are not sure 
about how to identify this object. Indeed, the radar source can only distinguish a land 
vehicle from an aircraft; it assigns here a more important belief on the fact that it is an 
instance of a land vehicle. The second source is a human, who has a slight and far 
away view of the situation is assigning different beliefs to an instance of car which 



looks like red, or a fire truck or a more imprecisely one to a land vehicle. In most 
cases, we do not have to assess the belief assigned to hypotheses by ourselves, it is 
directly given by the sources according to their condition of use (e.g. meteorology, 
proximity, etc.) and we apply possibly a weakening coefficient according to the 
source reliability. The structural knowledge of this domain is modeled through an 
ontology (http://ontology-uri.owl), whose hierarchical structure is captured in figure 
2.  

 

Fig. 2. Protégé snapshot of the structural knowledge of the ontology. 

In addition to the hierarchical structure of the knowledge, domain and range of 
properties are also defined, as well as additional information concerning a priori 
information about the world. For instance, in this domain ontology, it is mentioned 
that a fire truck individual is always associated to the property hasMainColor with the 
value red.  According to the sources and to the domain ontology, the assertional 
knowledge of this ontology involves: 
- http://ontology-uri.owl#direction: an individual of class http://ontology-

uri.owl#Direction 
- respectively #landVehicle for class #LandVehicle 
- respectively #aircraft for class #Aircraft 
- respectively #fireTruck for class #FireTruck 
- respectively #red for class #Color 
- respectively #car for class #Car which is linked to the individual #red through the 

#hasMainColor property. 
The set of candidate instances are: {#landVehicle, #aircraft, #fireTruck, #car}. We 
refer here to IRI instances only with their local name, omitting the namespace. 
Regarding the Dempster-Shafer theory, the masses are assigned by the sources as: 

• mradar({#landVehicle}) = 0.6 ; mradar({#aircraft}) = 0.1 ; mradar({#landVehicle, 
#aircraft}) = 0.3 

• mhuman({#car}) = 0.2 ; mhuman({#fireTruck}) = 0.4 ; mhuman({#landVehicle}) = 0.4 
This domain ontology imports the DS-Ontology, in order to represent all these pieces 
of knowledge within the domain ontology. Two more individuals are created to 
represent the sources: 
- #human for class http://DS-Ontology.owl#Reporting_Source 
- #radar  for class http://DS-Ontology.owl#Reporting_Source 



The following figure illustrates through a non-formal ontological schema, how the 
instances are linked together.  

 

Fig. 3. Uncertain individuals scenario 

4   Evidential Reasoning on DS-Ontology 

Once the uncertainty contained in the information has been represented, reasoning 
processes have to be conducted to fuse the different observation and eventually decide 
of the instance with the most likelihood. This section has to be viewed as the 
chronological steps that are realized by the system in order to reason on the uncertain 
pieces of information represented through the DS-Ontology. 

4.1   Generate automatically the Discernment Frame  

One Uncertain_concept instance of the DS-Ontology groups a set of candidate 
instances together (either individuals or properties). From this set of instances, we 
want to determine automatically a consistent frame of discernment, according to the 
Dempster-Shafer theory. The underlying assumptions of the theory are: an exhaustive 
frame of discernment and the exclusivity of elements of Ω  (see section 2.1). In this 
paper, we have already managed the first constraint within the Open World 
assumption of ontologies in the modelling of the DS-Ontology. The second constraint 
of the frame of discernment is the exclusivity of its elements. This implies that each 
singleton hypothesis (i.e. the elements of Ω) are disjoint. In other words, if H1 and H2 

are two singletons, we cannot have H1 ⊂ H2 or even H1 ∩ H2 ≠ ∅. In the instantiation 
example, #fireTruck and #car individuals are semantically “included” in 
#landVehicle. As there is an inclusion, #fireTruck and #car individuals have also a 
non-null intersection with the #landVehicle individual.  Moreover, #fireTruck has a 
non-null intersection with #car. Indeed, these two individuals are sharing many 



characteristics in common: they are both land vehicles and their main colors are in 
both cases red. 

To deal with this second constraint, we take into account the explicit and inferred 
semantics of the domain ontology to generate the discernment frame. The granularity 
of the set of candidate instances affects the generation of the discernment frame. The 
semantic will help us determining the inclusion of hypotheses as well as the semantic 
similarity between instances. The whole set of candidate instances will help us fixing 
a threshold for semantic distances.  

4.1.1   Semantic Inclusion/Intersection  
The semantic inclusion is quite straightforward to determine. Indeed, in case the 
instances are property assertions, for example if a property P1 has for ancestor P2, 
then we say that P1 is included in P2. Otherwise, in case the instances are individuals 
and they have zero or the same properties (or some included property), then there is 
an inclusion. In all other cases, the inclusion does not hold. 

Concerning semantic intersection, things go a little further. First of all, logically, if 
two instances have already a semantic inclusion, then they also have a non-null 
semantic intersection. In all other cases, we will consider that two instances have a 
non-null intersection when their semantic similarity is exceeding a certain threshold. 
More specifically, our similarity measure is a global function, which combines 
existing similarity measure defined in literature. As for individuals, it is a mixture of 
similarity measure of their respective types and similarity measures concerning their 
relations. Wu & Palmer similarity measure [6] is used to qualify the similarity 
between two instances based on their respective type. It takes into account the 
distance that separates two types in the hierarchy and their position with the root. 
Equation (7) depicts their formula. C1 and C2 are two classes. Class C is the 
immediate mother-class of C1 and C2 that subsumes both classes. depth(C) function 
is the number of edges separating C from the root. depthC(Ci) is the number of edges 
which separate Ci from the root while passing by C. 
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 The other combined similarity measures count the number of identical properties 
versus the number of different properties related to the two individuals. This is 
calculated both for object properties and datatype properties.  On equation (8), I1 and 
I2 are the two individuals for which the global semantic similarity measure is 
calculated. For object properties (respectively for datatype properties), nbProp(I) is 
the number of object properties (resp. of datatype properties) of individual I. 
nbPropComm(I1,I2) is the number of common properties - identical predicate and 
related individual or value - for the two individuals I1 and I2. These three similarity 
measures focusing on the similarity of the types of individuals and their 
characteristics (through the datatype and object properties) are combined through a 
weighted mean. 
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Once the cross-similarity measure of the set of all candidate instances is calculated, 
the threshold is fixed through a clustering method. The threshold is thus varying 
according to all the computed semantic similarities. This process permits to adapt the 
granularity of the set of candidate instances. It translates our general impression that 
the concept of a compact car is closer to the concept of minivan than of a plane’s; 
however the concept of a compact car is closer to the concept of plane than of a 
book’s. In the first case, the intersection should be brought by the pair (compact car, 
minivan), whereas in the latter, it should be brought by the pair of (compact car, 
plane). It should be noted that, in both cases, the concepts of compact car and plane 
have the same semantic similarity. As a consequence, the semantic intersection is 
seen as a Boolean condition on the similarity measure exceeding the threshold.  
Finally, we consider the evidential set inclusion (respectively intersection) as 
equivalent to the semantic inclusion (respectively intersection). In case of our 
scenario, the intersection and inclusion are graphically represented on the figure 
below. 

 

Fig. 4. Inclusion and intersection of candidate instances 

 4.1.2   From the Set of Candidates Instances to the Discernment Frame  
Once the intersection and inclusion of candidate instances identified, we are able to 
set up a consistent frame of discernment. For this, we reframe the set of candidate 
instances into single or composite disjoint hypotheses.  
In case of a discovered intersection between two candidate instances #inst1 and 
#inst2, #inst1 is reformulated as the union of two singletons {H1, Hinters} and #inst2 as 
{H 2, Hinters}. In case of discovered inclusions between two candidate instances #inst1 
and #inst2, where #inst1 is included in #inst2, #inst1 is represented by a single 
hypothesis {H1} and #inst2 by the union of hypotheses {H2, H1}.  Single hypotheses, 
grouped together, constitute the frame of discernment. In fact, each initial candidate 
instance belongs to the power-set of the frame of discernment. Taking our scenario, 
each candidate instance can now be decomposed as such: 
- #aircraft = {H1} 
- #car = {H2, H3} 
- #fireTruck = { H3, H4} 
- #landVehicle = {H2, H3, H4, H5} 
Indeed, relying on Figure 4, #aircraft instance has no intersection nor inclusion; thus, 
it constitutes a single hypothesis within the frame of discernment. The non-null 
intersection, between #fireTruck and #car instances, has been modeled through a 
common and shared single hypothesis: H3. Finally, the inclusion brought by 
#landVehicle results in the union of the set of single hypotheses of #fireTruck and 
#car, in addition to its own singleton H5. 



4.2   Use Dempster-Shafer Calculations on DS-Ontology 

Once the discernment frame has been obtained, we can reformulate in the Dempster-
Shafer formalism, the basic mass assignment of the scenario: 
• mradar({H 2, H3, H4, H5}) = 0.6 ; mradar({H 1}) = 0.1 ; mradar({H 1, H2, H3, H4, H5}) = 0.3 
• mhuman({H 2, H3}) = 0.2 ; mhuman({H 3, H4}) = 0.4 ; mhuman({H 2, H3, H4, H5}) = 0.4 
We are now able to apply directly the classical combination rules found in the 
Dempster-Shafer theory, and then go through the decision process.   

5    Related Work 

During the last decade, approaches considering both uncertainty and the Semantic 
Web have been proposed. In this section, we mention some of them in order to 
position and compare our work. We consider their goal, underlying mathematical 
theory and processes. 

Fuzzy and rough set theories aim to model vagueness and uncertainty. Regarding 
fuzzy sets, classes are considered to have unsharp definitions. fuzzyDL approach [7] 
aims to represent and reason about a membership function specifying the degree to 
which an instance belongs to a class. Even if it could be interesting to take into 
account fuzzy aspect of hypotheses especially those formulated by human sources, it 
is not the purpose of our approach to model more precisely our knowledge, but to 
decide among multi hypotheses and have a more coherent and reliable view of the 
situation. Approaches in [8, 9] are relying on rough set theory – which considers the 
indiscernability between objects. In that case, classes are not restricted to a crisp 
representation; they may be coarsely described with approximations. In [9], the 
author is using rough classes to generate new subclasses or relations by mining an 
important set of instances already existing. This can be part of the ontology 
engineering process. The goal is here also different to ours; however, some notions 
and process are similar. First, the design of a rough OWL ontology can be seen as the 
matching piece to our DS-Ontology for the Dempster-Shafer theory. Moreover, the 
use of p-indistinguishable properties notion for two individuals can be linked to our 
so-called common properties in Equation (8) when processing the similarity measure 
between two instances. Finally, descriptions for lower and upper approximation – 
through intersection and inclusion considerations - remind us the definition of the 
exclusivity of our frame of discernment; however, they consider here intersection and 
inclusion between two classes whereas we calculate it between two individuals. 

Probabilistic adaptations or extensions (Pr-OWL [10], BayesOWL [11], Fire [12]) 
are more relevant to our objective of assessing the most likelihood instances that 
holds. However, probabilities suffer from the lack of ignorance and imprecision 
management in comparison to evidential theory.  

Approaches in [13, 14 and 15] are more related to our chosen mathematical theory 
as they directly deal with evidential theory. [13] and [14] transform uncertain 
statements in belief networks. However, these network representations are themselves 
extensions of evidential theory. Moreover, they do not take into account the semantic 
attached to the hypotheses, in order to consider the most conflicting hypotheses or on 



the inverse the implied hypotheses. Looking this way, they can be considered 
complementary to ours. A recent published approach [15] is concentrating on 
uncertain reasoning on instances of an ontology using the evidential theory and some 
similarity measures. While we handle the same mentioned tools, our process and 
aspiration are quite different. Indeed, their main objective is to propose an alternative 
ABox inductive reasoning - by classifying individuals (determining their class- or 
role- memberships or value for datatype properties) through a prediction based on an 
evidential nearest neighbor procedure. Their reasoning addresses here another way to 
tackle automatic inference from a classical ontology. This automatic inference aims 
to derive new or implicit knowledge about the current representation of the world, on 
the basis of the asserted knowledge. Whereas, our current reasoning goal is to rely on 
the semantic description of candidate instances (hypothesis) describing a same and 
unique entity or phenomenon in order to decide which candidate instances should be 
chosen. 

Other reports enlarging the state-of-the-art to all ontology languages can be found 
in [17, 18]. 

6    Conclusion and Future Work 

This paper proposes a solution in order to handle uncertainty within ontologies. Our 
approach is relying on current W3C standards. Modeling of uncertainty is realized 
through an imported pre-defined ontology: the DS-Ontology. Uncertain instantiation 
of the domain ontology is performed through the use of this imported DS-Ontology. 
The DS-Ontology relies on the theory of Dempster-Shafer, which manages 
uncertainty, as well as imprecision and ignorance. This paper has underlined some 
key issues that have to be dealt when implementing such parallelism between a formal 
mathematical theory to manage uncertainty and semantic world. The assumption of 
Open World in ontologies is one of these issues. Reasoning on uncertainty is made 
possible through an automatic generation of the frame of discernment. For that 
purpose, Boolean semantic operators, such as the intersection and inclusion, have 
been developed based on the semantic expressivity of the domain ontology. As a 
consequence, this paper provides a double and mutual contribution in the domains of 
the Semantic Web and of uncertain theories, which benefits clearly from the 
semantics of the hypotheses.  

Further researches are also in discussion to extend the reasoning over the Boolean 
inclusion and intersection of candidate instances. Indeed, it could be interesting to 
keep the semantic similarity degree (which is a real ranging from 0 to 1) and use it 
instead of Boolean notions within the theory of Dempster-Shafer. This could be made 
by rearranging the basic measures of belief and plausibility and of the rules of 
combination. 
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