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Abstract. We present a design for a (fragment of) Breast Cancer on-
tology encoded in the probabilistic description logic P-SROIQ which
supports determining the consistency of distinct statistical experimental
results which may be described in diverse ways. The key contribution is
a method for approximating sampling distributions such that the incon-
sistency of the approximation implies the statistical inconsistency of the
continuous distributions.

1 Introduction

The current amount of knowledge about breast cancer is overwhelming. For
example, a meta-study conducted in 2006 by Key et al. [4] covered 98 unique
studies focused only on the impact of a single risk factor, alcohol consumption. At
the same time there are no common knowledge bases which would combine and
formally represent findings produced by the multitude of studies.3 This makes
it difficult to have a global view of breast cancer risk factors and, consequently,
develop tools like risk assessment calculators.

The probabilistic description logic P-SROIQ can be used to represent gen-
eral knowledge about breast cancer in the form of a probabilistic ontology (the
BRC ontology) [5]. However, a general knowledge ontology need not support risk
entailments for various combinations of risk factors — that is, compete (poorly)
with narrowly specific risk calculators4 which have a direct implementation of
simple equations derived from statistical risk models (such as the Gail model
[2]). Instead, its main goal is to formally and unambiguously describe the back-
ground theory of breast cancer embracing as many reliable findings as possible
and serving as a common knowledge base for more specific tools, such as risk
assessment calculators or decision support systems. This sort of task seems to
be a better fit for a probabilistic logic.

The set of use cases for the general knowledge ontology is wider than for the
BRC ontology. In addition to maintaining a birds-eye view of breast cancer, it
may be used for finding and analyzing inconsistencies in outcomes of different

3 There are some lower level databases, such as ROCK (http://rock.icr.ac.uk/)—a
cancer specific functional genomic database. However, they do not explicitly repre-
sent case study findings and do not support such services as risk assessment.

4 Such as http://www.cancer.gov/bcrisktool



studies. It can support studying mechanisms of interactions between risk factors,
for example, how alcohol consumption affects estrogen level. Finally, it may play
a useful role in planning and coordination of future medical studies by helping to
identify the most controversial or insufficiently studied risk factors or exposures.

In this paper, we present a design of general P-SROIQ ontology about
breast cancer (i.e., the BRC ontology) which incorporates a substantial amount
of statistical knowledge. While we do not present a fully fleshed out instance
of this design, we do tackle a major representational challenge, namely, the
representation of the statistical results of experiments. We present a method for
approximate representations of different sampling distributions and their use in
determining consistency between experimental data.

2 Preliminaries of P-SROIQ

P-SROIQ [8] is a probabilistic extension of the DL SROIQ [3]. It provides
means for expressing probabilistic relationships between arbitrary SROIQ con-
cepts and a certain class of probabilistic relationships between classes and indi-
viduals. Any SROIQ, and thus OWL 2 DL (as it can be seen as a notational
variant of SROIQ), ontology can be used as a basis for a P-SROIQ ontology,
which facilitates transition from classical to probabilistic ontologies. We presume
the reader is reasonbly familiar with class/object oriented description logics such
as SROIQ, though very little in this paper turns on specific details.

The only syntactic construct in P-SROIQ (in addition to all of the SROIQ
syntax) is the conditional constraint.

Definition 1 (Conditional Constraint). A conditional constraint is an ex-
pression of the form (D|C)[l, u], where C and D are concept expressions in
SRIQ (i.e., SROIQ without nominals) called evidence and conclusion, re-
spectively, and [l, u] ⊆ [0, 1] is a closed real-valued interval. In the case where C
is > the constraint is called unconditional.

Ontologies in P-SROIQ are separated into a classical and a probabilistic
part. It is assumed that the set of individual names NI is partitioned onto two
sets: classical individuals NCI and probabilistic individuals NPI .

Definition 2 (PTBox, PABox, and Probabilistic Knowledge Base). A
probabilistic TBox (PTBox) is a pair PT = (T ,P) where T is a classical
(finite) SROIQ TBox and P is a finite set of conditional constraints. A proba-
bilistic ABox (PABox) is a finite set of conditional constraints associated with
a probabilistic individual op ∈ NPI . A probabilistic knowledge base (or a
probabilistic ontology) is a triple PO = (T ,P, {Pop}op∈NPI ), where the first two
components define a PTBox and the last is a a set of PABoxes.

Informally, a PTBox constraint (D|C)[l, u] expresses a conditional statement
of the form “if a randomly chosen individual is an instance of C, the probability
of it being an instance of D is in [l, u]”. A PABox constraint, which we write



as (D|C)o[l, u] where o is a probabilistic individual, states that “if a specific
individual (that is, o) is an instance of C, the probability of it being an instance
of D is in [l, u]”. For more details we refer the reader to [8].

3 The Classical Part

The classical part of a P-SROIQ ontology (or OWL part) provides a medical
vocabulary which can be used on its own in a variety of applications or used in the
representation of probabilistic knowledge. In this paper we focus on providing
an OWL terminology for probabilistic statements. The ontology contains the
following main class hierarchies (taxonomies):

Taxonomy of breast cancers Breast cancer is a heterogeneous disease. Some
risk factors can be associated with increase in risk of developing one partic-
ular type of breast cancer and not the other. Thus it is important to classify
types of breast cancer. In particular, our ontology distinguishes breast can-
cers by hormone receptor status. Estrogen and progesterone positive breast
cancers are modeled using concepts ERPositiveBRC and PRPositiveBRC

while their complements are modeled using ERNegativeBRC and
PRNegativeBRC (we use shorthands ER+/- and PR+/- with obvious mean-
ing.). Another important classification is based on histology. The ontology
distinguishes between invasive and non-invasive (e.g. in situ) cancers.

Taxonomy of risk factors Dozens of risk factors are known so far. Some are
established and strongly associate with increased risks, such as BRCA1(2)
gene mutations, while others are controversial. The ontology should provide
vocabulary for both to support current and future findings. It includes a
taxonomy of concepts rooted at RiskFactor. We distinguish between known
risk factors (those which can be reported via a questionnaire, such as alcohol
intake) and inferred risk factors which require medical examination.

Taxonomy of risks The ontology differentiates absolute and relative risks of
developing breast cancer. Absolute risks are further divided into the life-
time risk and the short-term risk. Relative risks are divided into increased
and reduced risks. Level of increases is a continuous variable which requires
discretization (see below).

The last two taxonomies induce the corresponding classifications of women,
i.e., classes of women w.r.t. risk factors and w.r.t. risk. For example, any risk
factors RF gives rise to a class of women Woman u ∃hasRiskFactor.RF. Women
having various combinations of risk factors are modeled as conjunctive concept
expressions. Analogously, given a certain kind of risk R the expression Woman u
∃hasRisk.R models those women who are in the risk group R, for example, have
moderately increased risk of developing ER+ breast cancer. These taxonomies
of women may or may not be explicitly present in the ontology. In other words,
it is possible, but not essential, to generate a concept name for each interesting
class of women since P-SROIQ (and our reasoner Pronto) allows for complex
concept expressions in conditional constraints.



A future, more complete version of the ontology would certainly make use of
existing bio-medical ontologies which cover substantial portions of the domain
either by direct reuse or by ontology alignment techniques.

4 The Method for Approximating Distributions in the
Probabilistic Part

The probabilistic part of the ontology captures statistical background knowl-
edge about breast cancer. We distinguish between knowledge which explicitly
associates quantifies specific risk factors and more general statistical relation-
ships which are not necessarily risk related. The distinction could be useful for
importing knowledge from other medical ontologies. We begin with the latter.

General statistical knowledge mostly includes relationships between vari-
ous risk factors. For example, Ashkenazi Jew women are more likely to de-
velop BRCA gene mutations, while early menarche, late first child (or no live
births), lack of breastfeeding and alcohol consumption all increase levels of es-
trogen in blood.5 Such relationships are important because they can help to
infer the presence of some risk factors given the set of known factors. They
are typically easy to represent by using conditional constraints of the form
(Womanu∃hasRiskFactor.RFY|Womanu∃hasRiskFactor.RFX)[l,u] which says
that the chances of having risk factor RFY given RFX are between l and u.
One possible source of complications is continuous variables, e.g. the level of
estrogen, which are discussed below.

Most of statistical findings available in medical literature quantitatively de-
scribe risk increase for categories of women with specific risk factors. Such find-
ings are presented by giving estimated parameters of a probability distribution
where the random variable represents the relative risk of a random woman in
the population. Such parameters include the estimated mean value and the esti-
mated variance. Table 1 presents an example of the reported association between
alcohol intake and the risk increase among postmenopausal women taken from
[10]. There are two main difficulties with representing this kind of data in P-
SROIQ. First, the risk increase is a continuous random variable so it needs
to be discretized. Second, the available language supports only conditional con-
straints so a straightforward encoding of probability distributions is not possible.

Table 1. Example of a reported association between alcohol intake and the risk of
hormone receptor-specific breast cancer (excerpt from [10])

Alcohol (g) ER+ ER- PR+ PR-
RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI)

0 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

≤4 1.06 (0.91 - 1.22) 1.40 (1.00 - 1.96) 1.04 (0.89 - 1.23) 1.24 (0.95 - 1.62)

≥4 1.07 (0.90 - 1.26) 1.64 (1.14 - 2.35) 1.12 (0.93 - 1.34) 1.28 (0.96 - 1.71)

5 See http://tinyurl.com/4jpsdvk



Discretization of a continuous variable is technically straightforward. We in-
troduce a set of disjoint concept names each of which models women in the
corresponding group of risk. Specifically, we define concepts WomenAtWeakRisk,
WomenAtModerateRisk and WomenAtHighRisk with the obvious meanings de-
scribed using OWL 2 datatype support to describe the exact boundaries. We
have chosen ranges (1, 1.5], (1.5, 3.0] and (3.0, + inf) respectively.6

The inability to represent distributions is a more severe limitation. It leaves
the modeler with the only option of approximating the continuous distribution
using a finite set of points. In other words, each distribution, for example, risk in-
crease for women consuming a certain amount of alcohol, can be approximated by
specifying the probability that a randomly taken woman with the given exposure
belongs to a specific group of risk, i.e. WomenAtWeakRisk, WomenAtModerateRisk
or WomenAtHighRisk. This is the semantics of P-SROIQ conditional constraints.

Assuming that the random variable is real-valued, a standard way of ap-
proximating a continuous distribution is to take each interval and compute the
probability that the variable takes on a value in that interval. Then the ap-
proximation of a distribution Pr(x) w.r.t. a finite set of intervals U is simply a
function P̂ r such that P̂ r(Ui) =

∫
Ui

Pr(x)dx.

Unfortunately, this approximation of results of statistical experiments is un-
satisfactory because it maps every interval to a single point. The problem is that
any arbitrarily small difference between two or more sampling distributions will
results in conflicting probabilistic statements for every interval (because the
point-valued probabilities will be different) even though the results can confirm
each other from a purely statistical point of view. Consequently this approach
does not support working with results reported by multiple studies.

Our goal is to approximate sampling distributions in P-SROIQ in a sta-
tistically coherent way. Informally it means that satisfiability of probabilistic
formulas representing two or more sampling distributions must agree with their
mutual statistical consistency, i.e., whether they support a common statistical
hypothesis. The hypothesis, in this case, is that there exists a distribution (not
necessarily a unique one) over G with parameters µ, σ such that it is supported
by all sampling distributions with the required level of confidence.

We assume a (finite) population G of size NG and a random variable X
which is normally distributed across G. We also make the realistic assumption
that G is large enough so that evaluating X for all members of G is not feasible.
A common approach is to take one or more random samples from G, evaluate
X for them and estimate the actual distribution over G based on the sampling
distributions. We use µ, σ to denote the mean and the variance of the actual

distribution and X(i), S(i) for the mean and the variance of the sample X(i). For
simplicity we finally assume that the population distribution is normal.

The mainstream approach for comparing two or more sampling distributions
is based on statistical hypothesis tests. For example, given two normal distribu-

6 The choice of intervals is obviously ambiguous but this issue is orthogonal to the
approximation method presented in this paper.



tions X(1), S(1), X(2), S(1) it is common to take X(1)−X(2), which is a normally
distributed random variable, and perform a z-test (or a Student’s t-test depend-
ing on the sample sizes) to see if the difference can be taken as 0 with the required
level of confidence. It amounts to calculating standard errors of the mean (SE)
for both distributions and then computing the difference in units of SE. If the
probability of observing such difference given the null hypothesis,7 which can be
found in standard tables, is low enough, e.g., ≤ 0.05, a statistician would accept
the hypothesis that both distributions are consistent.

Our approach is slightly different from the outlined above. It is not based on
tests but on confidence regions for sampling distributions. The approach, which
generalizes confidence intervals and dates back to Mood [9], is to estimate a
region Rγ in the parameter space for (µ, σ2) such that it will contain the µ, σ2

pair of the actual distribution 100(1 − γ)% times as the number of estimations
goes to infinity. More formally, a 100(1− γ)% confidence region Rγ is a random
set for parameters (µ, σ2) based on a group of independent normally distributed
variables X (i.e., a sample) such that [1]:8

P ((µ, σ2) ∈ Rγ) = 1− γ, for all (µ, σ2) (1)

Informally, the confidence region specifies how far sampling distributions can
deviate from the population distribution while supporting it with 100(1 − γ)%
confidence. Following Mood [9] we will show that for the normal distribution the
region is a convex set and, therefore can be represented by boundary values of
(µ, σ2) such that any sampling distribution inside the boundary will be consistent
with the current distribution.

Consider the sample X1, . . . , Xn where all Xi are independent random vari-
ables with the normal distribution (N(µ, σ2)). Then X = 1

n

∑n
i=1Xi and S2 =

1
n−1

∑n
i=1 (Xi −X)2, i.e., the sample mean and the sample variance, are ran-

dom variables. It is well known that X has the normal distribution N(µ, σ
2

n ) (or,

equivalently, X−µ
σ/
√
n
∼ N(0, 1)) while (n−1)S2/σ2 has the chi-square distribution

with n− 1 degrees of freedom [9].

The standard tables for N(0, 1) and χ2
n−1 provide numbers a, b, c such that

for fixed p1, p2 the following equalities hold [1]:

P (−a < X − µ
σ/
√
n
< a) = p1,

P (b < (n− 1)S2/σ2 < c) = p2

7 The null hypothesis is a default position which, in this case, could be that the
population mean is different from at least one of X(1), X(2).

8 We deliberately leave out a precise definition of random set. For the purposes of this
paper it is sufficient to think of a random set as of a random variable which takes
on subsets of some space.



The crucial fact is that the two random variables are independent (see [9] for
a proof) which implies that:

p1p2 =

P (−a < X − µ
σ/
√
n
< a, b <

(n− 1)S2

σ2
< c) =

P (X − a σ√
n
< µ < X + a

σ√
n
,

(n− 1)S2

c
< σ2 <

(n− 1)S2

b
)

Thus, the 100(p1)(p2)% confidence region for (µ, σ2) takes the following form:

Rp1,p2(X,S) =

{
(µ, σ2) : X − α σ√

n
< µ < X + α

σ√
n
, (2)

(n− 1)S2

γ
< σ2 <

(n− 1)S2

β

}
Figure 1 shows the joint confidence region R in the parameter space (µ, σ2).

Note that it is possible, although technically messy, to generalize the definition
(2) to the case of several independent sampling distributions. The simultane-
ous confidence region for k samples X(1), . . . , X(k) will be a region in the 2k-
dimensional parameter space which projections on each plane (µ(i), (σ(i))2) will
look as (2). Then the notion of consistency of sampling distributions can be
defined as follows (we limit the attention to two samples for clarity):

Fig. 1. Joint confidence region for (µ, σ2)



Definition 3. Let Pr(X(1)), P r(X(2)) be distributions on two samples X(1), X(2)

drawn independently from a population G. They are said to be consistent with

confidence 100p% if there exists a point (µ, σ2) which belongs to both Rp(X(1), S(1))

and Rp(X(2), S(2)).

Now we can return to the issue of approximating a continuous sampling
distribution by a discrete set of points. Assume that the domain E of a continuous
real-valued random variable X is a disjoint union of a finite number of intervals
U = {(−∞, r1], (r1, r2], . . . , (rl−1, rl], (rl,+∞)}. Then the approximation of the
sampling distribution Pr(X) with mean and variance (X,S2) is the function P̂ r
which maps each interval Ui to the following real-valued set:

P̂ r(Ui;X,S) = {g(µ, σ2)|(µ, σ2) ∈ Rp1,p2(X,S)} (3)

g(µ, σ2) =
1√

2πσ2

∫
Ui

e−
(x−µ)2

2σ2 dx

Now we are ready to define the notion of approximate consistency of sampling
distribution with respect to a set of intervals U :

Definition 4. Two sampling distributions Pr(X(1)), P r(X(2)) are approximately

consistent given a finite set of intervals U if P̂ r(Ui;X(1), S(1)) ∩ P̂ r(Ui;X(2), S(2))
is non-empty for all Ui ∈ U .

As with any approximation, the utility of approximations of sampling distri-
butions depends on what conclusions they help to draw about the distributions
themselves. Given that we are interested in the matter of consistency, it is im-
portant to understand the relationships between the notions of consistency and
approximate consistency of sampling distributions. Fortunately, consistency im-
plies approximate consistency regardless of partitioning of the real line:

Theorem 1. If two sampling distributions Pr(X(1)), P r(X(2)) are consistent,
then they are approximately consistent for any choice of real-valued intervals.

Proof. For the distribution Pr(X(1)) a confidence region Rp1,p2(X(1), S(1)) is
connected (see Definition 2). The function g(µ, σ2) (Definition 3) is continuous on

it which implies that for any Ui, the set P̂ r(Ui;X(1), S(1)) is a real-valued interval

(l1, u1). Now consider a point µ0, σ
2
0 ∈ Rp1,p2(X(1), S(1)) ∩ Rp1,p2(X(2), S(2))

which exists since the distributions are consistent. It follows that l1 < g(µ0, σ
2
0) <

u1 (and analogously l2 < g(µ0, σ
2
0) < u2 for P̂ r(Ui;X(2), S(2))), so g(µ0, σ

2
0) is

a common point for both approximations on Ui. As such the distributions are
approximately consistent.

The following corollary from the above theorem is at heart of our method.
As we demonstrate below, the inconsistency of approximations can be proved
by logical reasoning in P-SROIQ (i.e., by solving the probabilistic satisfiabil-
ity problem), which means that the result enables approximate reasoning about



sampling distributions in a purely logical way. Even though the power of such rea-
soning is currently limited to consistency checking, its integration with OWL/DL
reasoning and the ability to use common, formally defined terminology for rep-
resentation of statistical experiments is promising.

Corollary 1. If sampling distributions Pr(X(1)), P r(X(2)) are approximately
inconsistent for some choice of real-valued intervals, then they are inconsistent.

5 Example of Approximate Modelling

Now we present an example of approximate representation of sampling distri-
butions in P-SROIQ. The task is to take two results of statistical experiments
aimed at investigating associations between alcohol consumption and the in-
creased risk of breast cancer among postmenopausal women. Unfortunately it is
common for medical papers to not explicitly present all parameters that char-
acterize results of their statistical analyses. Typically, only the estimated mean
and the confidence interval are presented while, for example, the kind of distri-
bution is left to the reader to infer from other information. Due to that fact and
because the approach above has only been developed for normal distributions,
we illustrate it on an artificial example. The information given in the example
is analogous to that given in medical literature, e.g. [10, 11], but is complete in
the sense that all parameters and the type of sampling distributions are known.

Example 1. Consider two hypothetical papers which report results of indepen-
dent studies of associations between alcohol consumption among postmenopausal
women and their relative risk of developing breast cancer. According to study
A the mean relative risk (RR) of ER+ breast cancer for women drinking ≥ 4g
of ethanol a day is 1.8 and has variance of 0.5. Study B has reported that the
mean RR of ER+ breast cancer for the same level of drinking is 2.2 (variance
0.7). The number of cases in the studies was 230 and 150 respectively.

We propose the following four step procedure for an approximate representa-
tion of statistical results, similar to those in the example above, in P-SROIQ:

1. Preparing concepts The first step is to define the concepts/roles used
to describe the distribution. In our case evidence concepts should describe cat-
egories of women with respect to specific risk factors, e.g. alcohol intake, while
conclusion concepts describe groups of women stratified by risk increase. For in-
stance, the concept expression C ≡ Womanu ∃hasRiskFactor.(Postmenopauseu
ModerateConsumption) is used to model postmenopausal women with moderate
level of alcohol intake.9 On the other hand the expression:

D ≡ Woman u ∃hasRisk.(ModeratelyIncreasedRisk u ∃riskOf.ERPositiveBRC)

9 The level of intake is a continuous variable which we also split onto categories
LimitedConsumption, ModerateConsumption and HeavyConsumption which corre-
spond to ≤ 4, 4− 9.9 and ≥ 10g of ethanol per day.



models women who are at moderately increased risk of developing ER-positive
breast cancer. Using these expressions the modeler can specify the probability
than a random women the class C also belong the risk group D as (D|C)[l,u].

2. Determining parameters of sampling distributions (if required)
Sometimes parameters of sampling distributions can be determined from other
information. For example, knowing the kind of distribution, sample mean, sample
size, confidence interval and the methodology of its estimation, one can calculate
the sample variance.10 In our case it is not needed as the distributions are normal
and the parameters are known.

3. Choosing intervals Choice of intervals for an approximation of a con-
tinuous random variable is driven by balancing the quality of the approxima-
tion (i.e., how closely it models the continuous distribution) and the number of
statements required. The latter has a direct impact on performance. For Ex-
ample 1 we use three concepts WomenAtWeakRisk, WomenAtModerateRisk and
WomenAtHighRisk which correspond to relative risk intervals of (1,1.5], (1.5,

3.0] and (3.0,+∞) respectively.
4. Computing the approximation The final (and the central) step is to

compute probability intervals for the statements that approximate the contin-
uous distribution. Each statement specifies the lower and upper probabilities
that the continuous random variable X will fall into an interval Ui given that
parameters of the distribution can vary within the confidence region (2). More
formally, given the interval Ui, e.g. (1,1.5] for WomenAtWeakRisk, and the sam-
pling distribution (X,S2) the interval [li, ui] can be computed by solving the
following non-linear optimization problem ():

li (resp. ui) = min (resp. max) g(µ, σ2) s.t. (4)

(µ, σ2) ∈ Rp1,p2(X,S)

g(µ, σ2) =
1√

2πσ2

∫
Ui

e−
(x−µ)2

2σ2 dx

In other words, [li, ui]=[inf P̂ r(Ui;X,S), sup P̂ r(Ui;X,S)].
The last preparatory step is to calculate confidence regions according to (2).

The 95% confidence regions for distributions (X(1), S(1)), (X(2), S(2)) in Example

1 (abbreviated as R
(1)
0.95 and R

(2)
0.95) are defined by the following inequalities:

R
(1)
0.95 =

{
(µ, σ2) : 1.8− 2.241σ√

230
< µ < 1.8 +

2.241σ√
230

, 0.409 < σ2 < 0.623

}
R

(2)
0.95 =

{
(µ, σ2) : 2.2− 2.241σ√

150
< µ < 2.2 +

2.241σ√
150

, 0.548 < σ2 < 0.923

}
10 The variable T = (X − µ)/(S/

√
n) has the t-dustribution with n − 1 degrees

of freedom. Confidence interval is standardly computed as [X − a,X + a] where
a = t 1−α

2
,n−1

S√
n

(t 1−α
2

,n−1
is the α−percentile of the Student distribution). If the

confidence interval and α are known, then S can be calculated.



Now the optimization problem (4) can be solved numerically11 to obtain the
following approximations for both sampling distributions:

inf P̂ r((1, 1.5];X(1), S(1)) = 0.219 sup P̂ r((1, 1.5];X(1), S(1)) = 0.298

inf P̂ r((1.5, 3.0];X(1), S(1)) = 0.655 sup P̂ r((1.5, 3.0];X(1), S(1)) = 0.878

inf P̂ r((3.0,+∞);X(1), S(1)) = 0.239 sup P̂ r((3.0,+∞);X(1), S(1)) = 0.586

inf P̂ r((1, 1.5];X(2), S(2)) = 0.116 sup P̂ r((1, 1.5];X(2), S(2)) = 0.224

inf P̂ r((1.5, 3.0];X(2), S(2)) = 0.562 sup P̂ r((1.5, 3.0];X(2), S(2)) = 0.769

inf P̂ r((3.0,+∞);X(2), S(2)) = 0.189 sup P̂ r((3.0,+∞);X(2), S(2)) = 0.568

So, for this example, the sampling distributions are approximately represented
in P-SROIQ using the following conditional constraints.

{(W u ∃hR.(WeaklyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.219, 0.298],

(W u ∃hR.(ModeratelyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.655, 0.878],

(W u ∃hR.(StronglyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.239, 0.586]}
and

{(W u ∃hR.(WeaklyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.116, 0.224],

(W u ∃hR.(ModeratelyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.562, 0.769],

(W u ∃hR.(StronglyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.189, 0.568]}
where W and hR abbreviate Woman and hasRisk, respectively and

C ≡ W u ∃hasRiskFactor.(Postmenopause u ModerateConsumption)

Probabilistic consistency of the above set of statements can be proved by
solving the probabilistic satisfiability problem (PSAT). Modern algorithms can
decide PSAT for over a thousand of P-SROIQ statements (in addition to thou-
sands of OWL axioms), so the method could be computationally practical [6].

6 Conclusion

Checking consistency of sampling distributions in P-SROIQ may well appear
cumbersome and pointless given that the same task can be done in a much
simpler way and without any logical reasoning, e.g. via testing or by analyzing
confidence regions. However, our aim is not to reduce statistical testing to log-
ical reasoning (that aim is indeed pointless). Our aim is to represent results of
statistical experiments using common, unambiguously defined logical vocabulary
and be able to reason about them. Even though probabilistic reasoning about
statistical results is currently limited to approximate consistency checking, the

11 We use Wolfram Mathematica for this purpose.



potential benefits are in combining it with reasoning about the classical knowl-
edge. For example, the BCRA ontology contains a little taxonomy of breast
cancers by hormone receptor status. This enables us to combine results of the
studies which are of different levels of granularity. For instance, Sellers et al. [10]
report associations between alcohol intake and ER(+/-) breast cancer risk, while
Suzuki et al. [11] divide it further to ER(+/-)PR(+/-) risks. In that simple case
non-logical reasoning about the reported results becomes much less straightfor-
ward, while studies can also distinguish histologic types of breast cancer (see [7]).
In such complex situations reasoning about findings does involve reasoning about
background knowledge, e.g. the taxonomy of breast cancers, so a combination of
OWL and probabilistic reasoning is potentially beneficial.
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