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Abstract. We consider the fuzzy logic ALCI with semantics based on a
finite residuated lattice. We show that the problems of satisfiability and
subsumption of concepts in this logic are ExpTime-complete w.r.t. gen-
eral TBoxes and PSpace-complete w.r.t. acyclic TBoxes. This matches
the known complexity bounds for reasoning in crisp ALCI.

1 Introduction

OWL 2, the current standard ontology language for the semantic web, is based
on the crisp description logic (DL) SROIQ(D). As a crisp logic, it is not well
suited to express vague or imprecise concepts, such as HighTemperature, that can
be found in numerous domains; prominently, in the biomedical area.

Fuzzy extensions of DLs have been studied for over a decade, and the litera-
ture on the topic is very extensive (see [15] for a survey). However, most of those
approaches are based on the very simple Zadeh semantics where conjunction is
interpreted as the minimum, with truth values ranging over the interval [0, 1]
of rational numbers. The last lustrum has seen a shift towards more general se-
mantics for treating vagueness. On the one hand, the use of continuous t-norms
as the underlying interpretation function for conjunction was proposed in [14].
On the other hand, [18] allows lattice-based truth values, but still restricts to
Zadeh-like semantics.

Most of the work since then has focused on t-norm-based semantics over the
unit interval; yet, ontologies are usually restricted to be unfoldable or acyclic [4–
6]. Indeed, very recently it has been shown that general concept inclusion axioms
(GCIs) can cause undecidability even in fuzzy DLs based on ALC [2, 3, 9, 11].
These results motivate restricting the logics, e.g. to finitely-valued semantics.

If one considers the  Lukasiewicz t-norm over finitely many values, then rea-
soning is decidable even for very expressive DLs, as shown in [7] through a
reduction to crisp reasoning. When restricted to ALC without terminological
axioms, concept satisfiability is PSpace-complete as in the crisp case [10].1 In
the presence of general TBoxes, this problem becomes ExpTime-complete [8, 9],
again matching the complexity of the crisp case, even if arbitrary (finite) lattices
and t-norms are allowed. However, the complexity of subsumption of concepts

1 The paper [10] considers a syntactic variant of fuzzy ALC with only one role.



was left as an open problem, as the standard reduction used in crisp DLs does
not work with general t-norm semantics.

In this paper, we improve these complexity results to the fuzzy logic ALCIL
over finite lattices with general and acyclic TBoxes. More precisely, we show that
in this logic, concept satisfiability is ExpTime-complete w.r.t. general TBoxes,
and PSpace-complete w.r.t. acyclic TBoxes. Moreover, the same complexity
bounds also hold for deciding subsumption between concepts.

2 Preliminaries

We will first give a short introduction to residuated lattices, which will be used
for defining the semantics of our logic.2 Afterwards, we recall some results from
automata theory that will allow us to obtain tight upper bounds for the com-
plexity of deciding satisfiability and subsumption of concepts.

2.1 Residuated Lattices

A lattice is an algebraic structure (L,∨,∧) over a carrier set L with two binary
operations join ∨ and meet ∧ that are idempotent, associative, and commutative
and satisfy the absorption laws `1 ∨ (`1 ∧ `2) = `1 = `1 ∧ (`1 ∨ `2) for all
`1, `2 ∈ L. L induces the ordering `1 ≤ `2 iff `1 ∧ `2 = `1 for all `1, `2 ∈ L. L
is called distributive if ∨ and ∧ distribute over each other, finite if L is finite,
and bounded if it has a minimum and a maximum element, denoted as 0 and 1,
respectively. It is complete if joins and meets of arbitrary subsets T ⊆ L, denoted
by

∨
t∈T t and

∧
t∈T t respectively, exist. Every finite lattice is also bounded and

complete. Whenever it is clear from the context, we will simply use the carrier
set L to represent the lattice (L,∨,∧).

A De Morgan lattice is a bounded distributive lattice extended with an in-
volutive and anti-monotonic unary operation ∼, called (De Morgan) negation,
satisfying the De Morgan laws ∼(`1∨`2) = ∼ `1∧∼ `2 and ∼(`1∧`2) = ∼ `1∨∼ `2
for all `1, `2 ∈ L.

A residuated lattice is a lattice L extended with two binary operators ⊗
(called t-norm) and ⇒ (called residuum) such that ⊗ is associative, commuta-
tive, and has 1 as its unit and for every `1, `2, `3 ∈ L, `1⊗`2 ≤ `3 iff `2 ≤ `1 ⇒ `3
holds. In a complete residuated lattice L, `1 ⇒ `2 =

∨
{x | `1 ⊗ x ≤ `2}.3 A

simple consequence of this is that for every `1, `2 ∈ L, (i) 1 ⇒ `1 = `1, and (ii)
`2 ≤ `2 iff `1 ⇒ `2 = 1. Additionally, the t-norm ⊗ is always monotonic.

In a residuated De Morgan lattice L, one can define the t-conorm ⊕ as
`1 ⊕ `2 := ∼(∼ `1 ⊗ ∼ `2). For example, the meet operator `1 ∧ `2 defines a
t-norm; its t-conorm is `1 ∨ `2.

2 For a more comprehensive view on residuated lattices, we refer the reader to [13, 12].
3 We could also define the operator ⇒ using this supremum, even if the complete

lattice L is not residuated without affecting the results from Section 4.



In the following section, we will describe the fuzzy description logic ALCIL,
whose semantics uses the residuum ⇒ and the negation ∼. We emphasize, how-
ever, that the reasoning algorithm presented in Section 4 can be used with any
choice of operators, as long as these are computable. In particular this means
that our algorithm could also deal with other variants of fuzzy semantics, e.g.
so-called Zadeh semantics [8, 18].

2.2 PSpace Automata

To obtain upper bounds for the complexity of reasoning in ALCIL, we will
make a reduction to the emptiness problem of looping automata on infinite
trees. These automata receive as input the (unlabeled) infinite k-ary tree K∗ for
K := {1, . . . , k} with k ∈ N. The nodes of this tree are represented as words
in K∗: the empty word ε represents the root node, and ui represents the i-th
successor of the node u. A path is a sequence v1, . . . , vm of nodes such that v1 = ε
and each vi+1 is a direct successor of vi.

Definition 1 (looping automaton). A looping automaton (LA) is a tuple
A = (Q, I,∆) where Q is a finite set of states, I ⊆ Q a set of initial states,
and ∆ ⊆ Q×Qk the transition relation. A run of A is a mapping r : K∗ → Q
assigning states to each node of K∗ such that r(ε) ∈ I and for every u ∈ K∗ we
have (r(u), r(u1), . . . , r(uk)) ∈ ∆. The emptiness problem for LA is to decide
whether a given LA has a run.

The emptiness of LA can be decided in polynomial time using a bottom-up
approach [19]. Alternatively, one can use a top-down approach, which relies on
the fact that if there is a run, then there is also a periodic run. To speed up the
top-down search, one wants to find the period of a run as early as possible. This
motivates the notion of blocking automata.

Definition 2 (m-blocking). Let A = (Q,∆, I) be a looping automaton. We
say that A is m-blocking for m ∈ N if every path v1, . . . , vm of length m in a
run r of A contains two nodes vi and vj (i < j) such that r(vj) = r(vi).

Clearly, every looping automaton is m-blocking for every m > |Q|. However,
the main interest in blocking automata arises when one can find a smaller bound
on m. One way to reduce this limit is through a so-called faithful family of
functions.

Definition 3 (faithful). Let A = (Q,∆, I) be a looping automaton on k-ary
trees. The family of functions fq : Q → Q for q ∈ Q is faithful w.r.t. A if for
all q, q0, q1, . . . , qk ∈ Q,

– if (q, q1, . . . , qk) ∈ ∆, then (q, fq(q1), . . . , fq(qk)) ∈ ∆, and
– if (q0, q1, . . . , qk) ∈ ∆, then (fq(q0), fq(q1), . . . , fq(qk)) ∈ ∆.

The subautomaton AS = (Q,∆S , I) of A induced by this family has the transi-
tion relation ∆S = {(q, fq(q1), . . . , fq(qk)) | (q, q1, . . . , qk) ∈ ∆}.



Lemma 4 ([1]). Let A be a looping automaton and AS its subautomaton in-
duced by a faithful family of functions. A has a run iff AS has a run.

The construction that we will present in Section 4 produces automata that
are exponential on the size of the input. For such cases, it has been shown that
if the automata are m-blocking for some m bounded polynomially on the size
of the input (that is, logarithmically on the size of the automaton), then the
emptiness test requires only polynomial space.

Definition 5 (PSpace on-the-fly construction). Assume that we have a
set I of inputs and a construction that yields, for every i ∈ I, an mi-blocking
automaton Ai = (Qi, ∆i, Ii) working on ki-ary trees. This construction is called
a PSpace on-the-fly construction if there is a polynomial P such that, for every
input i of size n

– mi ≤ P (n) and ki ≤ P (n),
– every element of Qi is of a size bounded by P (n), and
– one can non-deterministically guess in time bounded by P (n) an element of
Ii, and, for a state q ∈ Qi, a transition from ∆i with first component q.

Theorem 6 ([1]). If the looping automata Ai are obtained from the inputs i ∈ I
by a PSpace on-the-fly construction, then the emptiness problem for Ai can be
decided in PSpace.

In Section 5 we will use this theorem to give PSpace upper bounds on the
complexity of reasoning in the logic ALCIL, which we introduce next.

3 The Fuzzy Logic ALCIL

For the rest of this paper, L denotes a fixed residuated, complete De Morgan
lattice with the t-norm ⊗. The fuzzy description logic ALCIL is a generalization
of the crisp DL ALCI that uses the elements of L as truth values, instead of
just the Boolean true and false. The syntax of ALCIL is the same as in ALCI:
given the sets NC and NR of concept and role names, the set of complex roles is
NR ∪ {r− | r ∈ NR}, and ALCIL concepts are built using the syntactic rule

C ::= A | C1 u C2 | C1 t C2 | ¬C | ∃s.C | ∀s.C | > | ⊥,

where A ∈ NC and s is a complex role. For a complex role s, the inverse of s
(denoted by s) is s− if s ∈ NR and r if s = r−.

The semantics of this logic is based on interpretation functions that map
every concept C to a function specifying the membership degree of every domain
element to C.

Definition 7 (semantics of ALCIL). An interpretation is a pair I = (∆I , ·I)
where ∆I is a non-empty (crisp) domain and ·I is a function that assigns to
every concept name A and every role name r functions AI : ∆I → L and
rI : ∆I ×∆I → L, respectively. The function ·I is extended to ALCIL concepts
as follows for every x ∈ ∆I :



– >I(x) = 1, ⊥I(x) = 0,
– (C uD)I(x) = CI(x)⊗DI(x), (C tD)I(x) = CI(x)⊕DI(x),
– (¬C)I(x) = ∼CI(x),
– (∃s.C)I(x) =

∨
y∈∆I sI(x, y)⊗ CI(y),

– (∀s.C)I(x) =
∧
y∈∆I sI(x, y)⇒ CI(y),

where (r−)I(x, y) = rI(y, x) for all x, y ∈ ∆I and r ∈ NR.

Notice that, unlike in crisp ALCI, existential and universal quantifiers are
not dual to each other, i.e. in general, (¬∃s.C)I(x) = (∀s.¬C)I(x) does not hold.

The axioms of this logic also have an associated lattice value, which expresses
the degree to which the restriction must be satisfied.

Definition 8 (axioms). Terminological axioms are (labeled) concept defini-
tions of the form 〈A .

= C, `〉 or (labeled) general concept inclusions (GCIs)
〈C v D, `〉, where A ∈ NC, C,D are ALCIL concepts, and ` ∈ L.

A general TBox is a finite set of GCIs. An acyclic TBox is a finite set of
concept definitions such that every concept name occurs at most once in the left-
hand side of an axiom, and there is no cyclic dependency between definitions. A
TBox is either a general TBox or an acyclic TBox.4

An interpretation I satisfies the concept definition 〈A .
= C, `〉 if for every

x ∈ ∆I , (AI(x) ⇒ CI(x)) ⊗ (CI(x) ⇒ AI(x)) ≥ ` holds. It satisfies the GCI
〈C v D, `〉 if for every x ∈ ∆I , CI(x)⇒ DI(x) ≥ `. I is a model of the TBox
T if it satisfies all axioms in T .

If T is an acyclic TBox, then all concept names occuring on the left-hand
side of some axiom of T are called defined, all others are called primitive. If T is
a general TBox, then all concept names appearing in it are primitive. A concept
is an atom if it is either a primitive concept name, or it is a quantified concept,
i.e. a concept of the form ∃s.C or ∀s.C for some complex role s and concept C.

We emphasize here that ALCI is a special case of ALCIL, where the un-
derlying lattice contains only the elements 0 and 1, which may be interpreted
as false and true, respectively, and the t-norm and t-conorm are just conjunc-
tion and disjunction, respectively. Accordingly, one can generalize the reasoning
problems for ALCI to the use of other lattices. We will focus on deciding strong
`-satisfiability and `-subsumption [8].

Definition 9 (satisfiability, subsumption). Let C,D be ALCIL concepts, T
a TBox, and ` ∈ L. C is strongly `-satisfiable w.r.t. T if there is a model I of
T and an x ∈ ∆I such that CI(x) ≥ `. C is `-subsumed by D w.r.t. T if every
model I of T is also a model of 〈C v D, `〉.

In previous work we have shown that satisfiability is undecidable in ALCL [9],
and hence also in ALCIL, in general. For this reason, we assume that L is

4 Notice that we do not consider mixed TBoxes. We could allow axioms of the form
〈A v C, `〉 in acyclic TBoxes, as long as they do not introduce cyclic dependencies.
To avoid overloading the notation, we exclude this case.



finite for the rest of this paper. As we will show in the next sections, under this
restriction we obtain the same complexity upper bounds for deciding satisfiability
and subsumption as in the crisp case; that is, the lattice based semantics do not
increase the complexity of the logic.

4 Deciding Strong Satisfiability and Subsumption

Recall that the semantics of the quantifiers require the computation of a supre-
mum or infimum of the membership degrees of a possibly infinite set of elements
of the domain. To obtain an effective decision procedure, one usually restricts
reasoning to witnessed models [14].

Definition 10 (witnessed model). Let n ∈ N. A model I of a TBox T is
called n-witnessed if for every x ∈ ∆I and every concept of the form ∃r.C there
are n elements x1, . . . , xn ∈ ∆I such that

(∃r.C)I(x) =

n∨
i=1

rI(x, xi)⊗ CI(xi),

and analogously for the universal restrictions ∀r.C. In particular, if n = 1, then
the suprema and infima from the semantics of ∃r.C and ∀r.C become maxima
and minima, respectively. In this case, we simply say that I is witnessed.

We can restrict reasoning to n-witnessed models w.l.o.g.: since L is finite, we
always have the n-witnessed model property for some n ∈ N.

Lemma 11. If the cardinality of the largest antichain of L is n, then ALCIL
has the n-witnessed model property.

To simplify the description of the algorithm, in the following we consider
n = 1. The algorithm and the proofs of correctness can easily be adapted for
any other n ∈ N.

Our algorithm for deciding satisfiability and subsumption of concepts exploits
the fact that a TBox T has a model iff it has a well-structured tree model, called
a Hintikka tree. Intuitively, Hintikka trees are abstract representations of models
that explicitly express the membership value of all “relevant” concepts. We will
construct automata that have exactly these Hintikka trees as their runs, and use
the initial states to verify that an element in the model verifies the satisfiability
or violates the subsumption condition, respectively. Reasoning is hence reduced
to the emptiness test of these automata.

We denote by sub(C, T ) the set of all subconcepts of C and of the concepts
A, E, and F for all axioms 〈E v F, `〉 or 〈A .

= F, `〉 in T . The nodes of the
Hintikka trees are labeled with so-called Hintikka functions over the domain
sub(C, T ) ∪ {ρ}, where ρ is an arbitrary new element, which will be used to
express the degree with which the role relation to the parent node holds.

Definition 12 (Hintikka function). A Hintikka function for C, T is a partial
function H : sub(C, T ) ∪ {ρ} → L such that:



(i) H is defined for ρ and for all atoms,
(ii) if H(D uE) is defined, then H(D) and H(E) are also defined and it holds

that H(D u E) = H(D)⊗H(E),
(iii) if H(D tE) is defined, then H(D) and H(E) are also defined and it holds

that H(D t E) = H(D)⊕H(E),
(iv) if H(¬D) is defined, then H(D) is defined and H(¬D) = ∼H(D).

It is compatible with the concept definition 〈A .
= E, `〉 if, whenever H(A) is

defined, then H(E) is defined and (H(A) ⇒ H(E))⊗ (H(E) ⇒ H(A)) ≥ `.5 It
is compatible with the GCI 〈E v F, `〉 if H(E) and H(F ) are always defined
and H(E)⇒ H(F ) ≥ ` holds.

The Hintikka trees have a fixed arity k determined by the number of existen-
tial and universal restrictions, i.e. concepts of the form ∃s.F or ∀s.F , contained
in sub(C, T ). Intuitively, each successor will act as the witness for one of these
restrictions. Since we need to know which successor in the tree corresponds to
which restriction, we fix an arbitrary bijection

ϕ : {E | E ∈ sub(C, T ) is of the form ∃s.F or ∀s.F} → K.

Definition 13 (Hintikka condition). The tuple (H0, H1, . . . ,Hk) of Hintikka
functions for C, T satisfies the Hintikka condition if:

(i) For every existential restriction ∃s.G ∈ sub(C, T )
– Hϕ(∃s.G)(G) is defined and H0(∃s.G) = Hϕ(∃s.G)(ρ)⊗Hϕ(∃s.G)(G), and
– Hϕ(E)(G) is defined and H0(∃s.G) ≥ Hϕ(E)(ρ) ⊗ Hϕ(E)(G) for every

restriction E ∈ sub(C, T ) of the form ∃s.F or ∀s.F .
(ii) For every universal restriction ∀s.G ∈ sub(C, T )

– Hϕ(∀s.G)(G) is defined and H0(∀s.G) = Hϕ(∀s.G)(ρ)⇒ Hϕ(∀s.G)(G),
– Hϕ(E)(G) is defined and H0(∀s.G) ≤ Hϕ(E)(ρ) ⇒ Hϕ(E)(G) for every

restriction E ∈ sub(C, T ) of the form ∃s.F or ∀s.F .
(iii) For every existential restriction ∃s.G ∈ sub(C, T ) and every restriction E ∈

sub(C, T ) of the form ∃s.F or ∀s.F , H0(G) is defined and Hϕ(E)(∃s.G) ≥
Hϕ(E)(ρ)⊗H0(G).

(iv) For every universal restriction ∀s.G ∈ sub(C, T ) and every restriction E ∈
sub(C, T ) of the form ∃s.F or ∀s.F , H0(G) is defined and Hϕ(E)(∀s.G) ≤
Hϕ(E)(ρ)⇒ H0(G).

The tuple is compatible with the axiom t if the Hintikka functions H0, . . . ,Hk

are compatible with t.

Condition (i) makes sure that an existential restriction ∃s.G is witnessed by
its designated successor ϕ(∃s.G) and all other s-successors do not contradict the
witness. Condition (iii) deals with inverse roles, ensuring that the s-restrictions
are propagated backwards through the s-relation. Conditions (ii) and (iv) treat
the universal restrictions analogously.

5 This method, called lazy unfolding, is only correct for acyclic TBoxes.



A Hintikka tree for C, T is an infinite k-ary tree T labeled with compat-
ible Hintikka functions for C, T such that T(ε)(C) is defined and the tuple
(T(u),T(u1), . . . ,T(uk)) satisfies the Hintikka condition for every node u ∈ K∗.
The definition of compatibility ensures that all axioms are satisfied at any node
of the Hintikka tree, while the Hintikka condition makes sure that the tree is in
fact a witnessed model.

The proof of the following theorem uses arguments similar to those in [1]. The
main difference is the presence of successors witnessing the universal restrictions.

Theorem 14. Let C be an ALCIL concept, T a TBox, and ` ∈ L. Then C is
strongly `-satisfiable w.r.t. T (in a witnessed model) iff there is a Hintikka tree
T for C, T such that T(ε)(C) ≥ `.

Proof (Sketch). Every witnessed model I of T with a domain element x ∈ ∆I
for which CI(x) ≥ ` holds can be unraveled into a Hintikka tree T for C, T as
follows. We start by labeling the root node by the (total) Hintikka function that
records the membership values of x for each concept from sub(C, T ). We then
create successors of the root by considering every E ∈ sub(C, T ) of the form
∃s.F or ∀s.F and finding the witness y ∈ ∆I for this restriction. We create a
new node for y which is the ϕ(E)-th successor of the root node and is labeled by
a Hintikka set H with H(ρ) = sI(x, y). The fact that I is a model of T ensures
that these successors satisfy the Hintikka condition. By continuing this process,
we construct a Hintikka tree T for C, T for which T(ε)(C) ≥ ` holds.

Conversely, we show that a Hintikka tree can be seen as a witnessed model
with domain K∗ and interpretation function given by the Hintikka functions.
Notice that from the partial function labeling each node we can obtain a valua-
tion for each concept name that satisfies all the axioms in T . Indeed, if T is a
general TBox, then every concept name is primitive, and hence the valuation is
already defined. The fact that the Hintikka function is compatible with all the
axioms in T implies that every node satisfies the TBox. On the other hand, if T
is an acyclic TBox, and H is undefined for some concept names, then consider
an axiom 〈A .

= C, `〉 for which H(A) is undefined, but H(B) is defined for every
atom appearing in C. The acyclicity of T ensures that such an axiom always
exists. Thus, we can compute a value for H(C) that still satisfies the conditions
of Definition 12. If we set H(A) := H(C), then H is still compatible with T . By
an induction argument, we can define a compatible total Hintikka function, and
thus a valuation for every concept name that satisfies T .

For this valuation to be an interpretation, it only remains to be shown that
the semantics of the existential and universal restrictions are satisfied. This is
ensured by the Hintikka condition. The choice of the successors also ensures that
the interpretation is witnessed. As explained above, it is compatible, and hence
also a model of T . Thus, if there is a Hintikka tree T for C, T with T(ε)(C) ≥ `,
then C is strongly `-satisfiable w.r.t. T . ut

Hintikka trees can also be used for deciding (non-)subsumption between
ALCIL concepts. The proof of the following theorem is analogous to the one
of Theorem 14.



Theorem 15. Let C,D be ALCIL concepts, T a TBox, and ` ∈ L. Then C is
not `-subsumed by D (in a witnessed model) iff there is a Hintikka tree T for
C uD, T such that T(ε)(C)⇒ T(ε)(D) � `.6

Notice that this does not yield a reduction from subsumption to satisfiability,
since the residuum ⇒ cannot in general be expressed using only the t-norm, t-
conorm and negation, and in Theorem 14 the value of C at the root is restricted
to a value greater or equal to `, while Theorem 15 negates this restriction.

From the last two theorems it follows that satisfiability and subsumption of
ALCIL concepts can be reduced to deciding the existence of a Hintikka tree
with additional restrictions in the root. By building looping automata whose
runs correspond exactly to those Hintikka trees, we reduce ALCIL reasoning to
the emptiness problem of these automata. For the following, we focus only on
deciding satisfiability and explain the minor modifications required for deciding
subsumption.

Definition 16 (Hintikka automaton). Let C be an ALCIL concept, T a
TBox, and ` ∈ L. The Hintikka automaton for C, T , ` is AC,T ,` = (Q, I,∆),
where Q is the set of all compatible Hintikka functions for C, T , I contains all
Hintikka functions H with H(C) ≥ `, and ∆ is the set of all (k + 1)-tuples of
Hintikka functions that satisfy the Hintikka condition.

The runs of AC,T ,` are exactly the Hintikka trees T having T(ε)(C) ≥ `.
Thus, C is strongly `-satisfiable w.r.t. T iff AC,T ,` is not empty. To obtain an
automaton deciding `-subsumption between C and D, one needs only modify the
set of initial states I to contain all Hintikka functions H with H(C)⇒ H(D) 6≥ `.
In that case, we have that C is `-subsumed by D iff the automaton is empty.

The size of the automaton AC,T ,` is exponential in the input C, T . Hence,
we have an ExpTime algorithm for this logic. For general TBoxes, this gives
a tight upper bound for the complexity of satisfiability and subsumption, since
these problems are already ExpTime-hard for crisp ALC [16].

Theorem 17. Deciding strong satisfiability and subsumption in ALCIL w.r.t.
general TBoxes is ExpTime-complete.

5 PSpace Results for Acyclic TBoxes

If one restricts to acyclic TBoxes, then the upper bound obtained by the empti-
ness test of the automaton from Definition 16 does not match the PSpace lower
bound given by crisp ALCI with acyclic TBoxes. We will now improve this upper
bound and show that satisfiability and subsumption of ALCIL concepts w.r.t.
acyclic TBoxes are also PSpace-complete problems.

The idea is to modify the construction of the Hintikka automata into a
PSpace on-the-fly construction. Notice that AC,T ,` satisfies all but one of the

6 Using C u D only ensures that T(ε)(C) and T(ε)(D) are defined, but imposes no
further restriction on their values.



conditions from Definition 5: (i) the arity of the automata is given by the number
of existential and universal concepts in sub(C, T ); (ii) every Hintikka function
has size bounded by |sub(C, T )|; (iii) building a state or a transition of the
automaton requires only guessing values for all concepts in sub(C, T ) and then
verifying that this is indeed a valid state or transition, which can be done in time
polynomial in |sub(C, T )|. However, it is easy to build runs of the automata con-
structed by this reduction where blocking occurs only after exponentially many
transitions, violating the first condition of PSpace on-the-fly constructions.

We will use a faithful family of functions to obtain a reduced automaton that
guarantees blocking after at most polynomially many transitions, thus obtaining
the PSpace upper bound. The idea is that it suffices to consider only transitions
that reduce the maximal role depth (w.r.t. T ) in the support of the states.

The role depth w.r.t. T (rdT ) of ALCIL concepts is recursively defined as
follows: rdT (A) = rdT (>) = rdT (⊥) = 0 for every primitive concept name
A; rdT (C u D) = rdT (C t D) = max{rdT (C), rdT (D)}; rdT (¬C) = rdT (C);
rdT (∃r.C) = rdT (∀r.C) = rdT (C) + 1; and rdT (A) = rdT (C) for every definition
〈A .

= C, `〉 ∈ T . For a Hintikka function H for C, T , we denote as support(H)
the set of all concepts in sub(C, T ) such that H(C) is defined and H(C) > 0.
We define rdT (H) as the maximum rdT (D) such that D ∈ support(H).

Definition 18 (functions fH). Let H and H ′ be two states of AC,T ,` with
rdT (H) = n. The function fH(H ′) is given by:

fH(H ′)(D) =


0 if D is an atom and rdT (D) ≥ n
H ′(D) if rdT (D) < n

undefined otherwise.

fH(H ′)(ρ) =

{
0 if support(H) = ∅
H ′(ρ) otherwise.

Since T is acyclic, the function fH(H ′) defined above is still a Hintikka
function for C, T compatible with all the axioms in T .

Lemma 19. The family of mappings fH for states H of AC,T ,` from Defini-
tion 18 is faithful w.r.t. AC,T ,`.

Proof. Let (H,H1, . . . ,Hk) be a valid transition of AC,T ,`. We need to show
that (H, fH(H1), . . . , fH(Hk)) is also a transition, i.e. that it satisfies the Hin-
tikka condition. We show in detail only the proof for the restriction (i) from
Definition 13, as the others can be treated analogously.

For ∃s.G ∈ sub(C, T ), the value Hϕ(E)(G) is defined for all restrictions E of
the form ∃s.F or ∀s.F in sub(C, T ). If rdT (∃s.G) > rdT (H), then H(∃s.G) = 0,
and all the values fH(Hϕ(E))(G) are 0. Thus, the inequalities are trivially satis-
fied. Otherwise, rdT (G) < rdT (∃s.G) ≤ rdT (H), and thus the values Hϕ(E)(G)
are not changed by applying fH . If the values Hϕ(E)(ρ) are also left unchanged,
all inequalities remain satisfied. Otherwise, H(∃s.G) = 0, and all the values
fH(Hϕ(E))(ρ) are 0. Thus, the inequalities are again trivially satisfied. ut



By Lemma 4, AC,T ,` is empty iff the induced subautomaton ASC,T ,` is empty.

Theorem 20. The construction of ASC,T ,` from an ALCIL concept C, ` ∈ L,
and an acyclic TBox T is a PSpace on-the-fly construction.

Proof. As described before, we only need to show that the automata ASC,T ,` are
m-blocking for some m bounded polynomially in |sub(C, T )|. We show that this
holds for m = max{rdT (D) | D ∈ sub(C, T )}+ 2.

By definition of ASC,T ,`, every transition decreases the maximal role depth
of the support of the state. Hence, after at most max{rdT (D) | D ∈ sub(C, T )}
transitions, we reach a state H, where H(D) = 0 if D is an atom and undefined
otherwise, and hence, support(H) = ∅. From the next transition on, all the
states additionally satisfy that H(ρ) = 0. Hence, after at most m transitions,
we find two states that are equal. Since m ≤ |sub(C, T )|+ 2, ASC,T ,` satisfies the
requirements for a PSpace on-the-fly construction. ut

This shows that emptiness of ASC,T ,` and hence also of AC,T ,` is in PSpace.
This yields the desired PSpace upper bound for satisfiability and similar argu-
ments can be made for subsumption. PSpace-hardness follows from PSpace-
hardness of satisfiability and subsumption w.r.t. the empty TBox in ALC [17].

Theorem 21. Deciding strong satisfiability and subsumption in ALCIL w.r.t.
acyclic TBoxes is PSpace-complete.

Notice that the definitions of Hintikka functions and Hintikka trees are in-
dependent of the operators used. One could have chosen the residual negation
	 ` := ` ⇒ 0 to interpret the constructor ¬, or the Kleene-Dienes implication
`1 ⇒ `2 := ∼ `1 ∨ `2 instead of the residuum. The only restrictions are that the
semantics must be truth functional, i.e. the value of a formula must depend only
on the values of its direct subformulas, and the underlying operators must be
computable. We could also use the traditional semantics for concept definitions
in which ⊗ is replaced by the simple meet t-norm ∧.

We also point out that the algorithm can be modified for reasoning w.r.t.
n-witnessed models for n > 1. One needs only extend the arity of the Hintikka
trees to account for n witnesses for each quantified formula in sub(C, T ); the
arity of AC,T ,` grows polynomially in n. This does not affect the complexity
upper bounds from the automata, and hence Theorems 17 and 21 still hold.

6 Conclusions

We have shown that reasoning in ALCIL is not harder than in the underlying
crisp DL ALCI. More precisely, strong `-satisfiability and `-subsumption can be
decided in ExpTime for general TBoxes and in PSpace for acyclic TBoxes. This
extends the complexity results from [8–10] and demonstrates that automata can
show PSpace results even for fuzzy description logics, as in the crisp case [1].
This paper provides a small step towards reasoning services for fuzzy general-
izations of the current standard ontology languages, like SROIQ(D).



In the future, we want to study the influence of additional DL constructors
and axioms on the complexity of the reasoning tasks. In particular, transitive
roles, which are covered by the results in [1], have not been considered in this
paper. Although in the crisp case they do not increase the complexity of checking
satisfiability, it is not straightforward to generalize the methods used to show
this to residuated De Morgan lattices.

Satisfiability w.r.t. general TBoxes and residuated total orders has been
shown to be undecidable [9], but it remains open to find subclasses of infinite
lattices and t-norms for which the problem is decidable. Over the unit inter-
val, the product and  Lukasiewicz t-norms cause undecidability w.r.t. witnessed
models [3, 11]; for arbitrary models decidability is unknown in these cases.
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