
A Distribution Semantics for Probabilistic
Ontologies

Elena Bellodi, Evelina Lamma, Fabrizio Riguzzi, and Simone Albani

ENDIF – University of Ferrara, Via Saragat 1, I-44122, Ferrara, Italy
{elena.bellodi,evelina.lamma,fabrizio.riguzzi}@unife.it

simone.albani@student.unife.it

Abstract. We present DISPONTE, a semantics for probabilistic ontolo-
gies that is based on the distribution semantics for probabilistic logic pro-
grams. In DISPONTE each axiom of a probabilistic ontology is annotated
with a probability. The probabilistic theory defines thus a distribution
over normal theories (called worlds) obtained by including an axiom in
a world with a probability given by the annotation. The probability of a
query is computed from this distribution with marginalization. We also
present the system BUNDLE for reasoning over probabilistic OWL DL
ontologies according to the DISPONTE semantics. BUNDLE is based
on Pellet and uses its capability of returning explanations for a query.
The explanations are encoded in a Binary Decision Diagram from which
the probability of the query is computed.

1 Introduction

Representing probabilistic knowledge and reasoning with it is fundamental in
order to realize the full vision of the Semantic Web, due to the ubiquity of un-
certainty in the real world and on the Web [24]. Various authors have advocated
the use of probabilistic ontologies, see e.g. [17], and many proposals have been
put forward for allowing ontology languages, and OWL in particular, to represent
uncertainty.

Similarly, in the field of logic programming, there has been much work on
introducing uncertainty in the programs. Among the various proposals, the dis-
tribution semantics [22] has emerged as one of the most effective approaches and
it underlies many languages such as PRISM [22], ICL [19], Logic Programs with
Annotated Disjunctions [26] and ProbLog [3]. In this semantics a probabilistic
logic program defines a probability distribution over a set of normal logic pro-
grams (called worlds). The distribution is extended to a joint distribution over
worlds and queries; the probability of a query is obtained from this distribution
by marginalization. In general, the problem of integrating logic and probability
has been much studied lately, with proposals such as Markov Logic [20], Multi
Entity Bayesian Networks [12] and Probabilistic Relational Models [10].

In this paper we propose to apply this approach to ontology languages and,
in particular, to the OWL DL fragment, that is based on the description logic
SHOIN (D). However, the approach is applicable in principle to any description

logic. We called the approach DISPONTE for “DIstribution Semantics for Prob-
abilistic ONTologiEs” (Spanish for “get ready”). The idea is to annotate each
axiom of a theory with a probability and assume that each axiom is indepen-
dent of the others. A probabilistic theory defines thus a distribution over normal
theories (worlds) obtained by including an axiom in a world with a probability
given by the annotation. The probability of a query is again computed from this
distribution with marginalization.

We also present the system BUNDLE for “Binary decision diagrams for Un-
certain reasoNing on Description Logic thEories” that performs inference over
probabilistic OWL DL ontologies. BUNDLE uses the inference techniques de-
veloped for probabilistic logic programs under the distribution semantics [8,21]
and, in particular, the use of Binary Decision Diagrams (BDDs) for encoding
explanations to queries and for computing their probability.

BUNDLE is based on the Pellet reasoner [23] for OWL DL and exploits its
capability of returning explanations for queries in the form of a set of sets of
axioms from which BUNDLE builds a BDD for computing the probability. In
this way we provide an effective reasoning system for DISPONTE.

The paper is organized as follows. Section 2 describes the distribution seman-
tics for logic programs while Section 3 presents DISPONTE. Section 4 illustrates
BUNDLE and Section 5 discusses current limitations of DISPONTE and BUN-
DLE. Section 6 describes related works while Section 7 concludes the paper.

2 The Distribution Semantics in Probabilistic Logic
Programming

The probabilistic logic programming languages based on the distribution se-
mantics differ in the way they define the distribution over logic programs. Each
language allows probabilistic choices among atoms in clauses. Let us consider
ProbLog [3] which is the language with the simplest syntax. A ProbLog pro-
gram T is composed of a normal logic program TC and a set of probabilistic
facts TP . Each probabilistic fact is of the form pi :: Fi. where pi is a probability
(i.e. pi ∈ [0, 1]) and Fi is a atom. This means that every grounding of Fi is a
Boolean random variable that assumes true value with probability pi and false
with probability 1− pi.

Let us call TF the set of atoms obtained by removing the probabilistic an-
notation from the probabilistic facts. Let us consider the case in which TC ∪ TF
does not contain function symbols so that its Herbrand base is finite. Let us call
ground(T) the grounding of a normal program T . Since there are no function
symbols, ground(TC ∪TF) is finite and so is the grounding ground(TF) obtained
by grounding the probabilistic atoms with constants from the Herbrand universe
of TC ∪ TF . So each probabilistic fact Fi has a finite set of groundings.

A substitution is a set of couples V/c where V is a variable and c is a constant.
A substitution θj is applied to a logic atom F , indicated with Fθj , by replacing
the variables in the substitution with constants. A substitution θj is grounding
for logic atom F if Fθj is ground. Suppose that a grounding is obtained with

the substitution θj : Fiθj corresponds to a Boolean random variable Xij that is
independent of the others.

Example 1. The following ProbLog program T encodes a very simple model of
the development of an epidemic or pandemic:

C1 = epidemic : −flu(X), epid(X), cold.
C2 = pandemic : −flu(X), \+ epid(X), pand(X), cold.
C3 = flu(david).
C4 = flu(robert).
F1 = 0.7 :: cold.
F2 = 0.6 :: epid(X).
F3 = 0.3 :: pand(X).
This program models the fact that if somebody has the flu and the climate

is cold there is the possibility that an epidemic or a pandemic arises. We are
uncertain whether the climate is cold but we know for sure that David and
Robert have the flu. epid(X) and pand(X) can be considered as ”probabilistic
activators” of the effects in the head given that the causes (flu(X) and cold)
are present. \+ epid(X) means the negation of epid(X).

Fact F1 has only one grounding so there is a single Boolean variable X11. Fact
F2 has two groundings, epid(david) and epid(robert) so there are two Boolean
random variables X21 and X22. F3 also has two groundings so there are two
Boolean random variables X31 and X32.

In order to present the distribution semantics, let us first give some definitions.
An atomic choice is a selection of a value for a grounding of a probabilistic
fact F and is represented by the triple (Fi, θj , k) where θj is a substitution
grounding Fi and k ∈ {0, 1}. A set of atomic choices κ is consistent if (Fi, θj , k) ∈
κ, (Fi, θj ,m) ∈ κ ⇒ k = m, i.e., only one truth value is selected for a ground
fact. A composite choice κ is a consistent set of atomic choices. The probability
of composite choice κ is P (κ) =

∏
(Fi,θj ,1)∈κ pi

∏
(Fi,θj ,0)∈κ(1 − pi). A selection

σ is a total composite choice (one atomic choice for every grounding of every
probabilistic fact). A selection σ identifies a normal logic program wσ called a
world in this way: wσ = TC ∪ {Fiθj |(Fi, θj , 1) ∈ σ}. The probability of wσ is
P (wσ) = P (σ) =

∏
(Fi,θj ,1)∈κ pi

∏
(Fi,θj ,0)∈κ(1 − pi). Since ground(TF) is finite

the set of worlds is finite: WT = {w1, . . . , wm} and P (w) is a distribution over
worlds:

∑
w∈WT

P (w) = 1. A world wσ is compatible with a composite choice κ
if κ ⊆ σ

We can define the conditional probability of a query Q given a world as
P (Q|w) = 1 if w |= Q and 0 otherwise. This allows to define a joint distribution
of the query and the worlds P (Q,w) by using the product rule of the theory of
probability: P (Q,W) = P (Q|w)P (w). The probability of Q can then be obtained
from the joint distribution by the sum rule (marginalization over Q):

P (Q) =
∑
w∈WT

P (Q,w) =
∑
w∈WT

P (Q|w)P (w) =
∑

w∈WT :w|=Q

P (w) (1)

In Example 1, T has 5 Boolean random variables and thus 32 worlds. The query
epidemic is true in 5 of them and its probability is P (epidemic) = 0.588.

It is often unfeasible to find all the worlds where the query is true so inference
algorithms find instead explanations for the query [8,21] , i.e. composite choices
such that the query is true in all the worlds that are compatible with them . For
example, κ1 = {(F2, {X/david}, 1), (F1, {}, 1)} is an explanation for the query
epidemic and so is κ2 = {(F2, {X/robert}, 1), (F1, {}, 1)}.

Each explanation κ identifies a set of worlds, those that are compatible with
it, and a set of explanations K identifies the set ωK of worlds compatible with
one of its explanations (ωK = {wσ|κ ∈ K,κ ⊆ σ}). A set of explanations K is
covering for a query Q if every world in which Q is true is in ωK . For example,
K = {κ1, κ2} is covering for the query epidemic.

The probability of a query can thus be computed from a covering set of
explanations for the query by computing the probability of the Boolean formula

B(Q) =
∨
κ∈K

∧
(Fi,θj ,1)∈κ

Xij

∧
(Fi,θj ,0)∈κ

¬Xij (2)

For Example 1, the formula is B(epidemic) = X11 ∧X21 ∨X11 ∧X22.
Explanations however, differently from possible worlds, are not necessarily

mutually exclusive with respect to each other, so the probability of the query can
not be computed by a summation as in (1). In fact computing the probability
of a DNF formula of independent Boolean random variables is a #P-complete
problem [25]. The method that was found to be the most efficient up to now
consists in building a Binary Decision Diagram for the formula and using a
dynamic programming algorithm on the BDD [8,21]. A BDD is a rooted graph
that has one level for each variable. Each node n has two children, a 0-child and
a 1-child. The leaves store either 0 or 1. Given values for all the variables, a
BDD can be used to compute the value of the formula by traversing the graph
starting from the root, following the edges corresponding to the variables values
and returning the value associated to the leaf that is reached. The BDD for
Example 1 is shown in Figure 1.

X21 n1

X22 n2

X11 n3

1 0

Fig. 1. BDD for Example 1.

A BDD performs a Shannon expansion of the Boolean formula f(X), so
that if X is the variable associated to the root level of a BDD, the formula
f(X) can be represented as f(X) = X ∧ fX(X) ∨ ¬X ∧ f¬X(X) where fX(X)

(f¬X(X)) is the formula obtained by f(X) by setting X to 1 (0). Now the two
disjuncts are mutually exclusive and the probability of f(X) can be computed as
P (f(X)) = P (X)P (fX(X))+(1−P (X))P (f¬X(X)) Figure 2 shows the function
Prob that implements the dynamic programming algorithm for computing the
probability of a formula encoded as a BDD.

Fig. 2. Function Prob: computation of the probability of a Boolean formula encoded
as a BDD with root node.

1: function Prob(node)
2: if node is a terminal then
3: return value(node) . value(node) is either 0 or 1
4: else
5: let X be v(node) . v(node) is the variable associated to node
6: return Prob(child0(node)) ·(1− P (X))+Prob(child1(node))·P (X)
7: end if
8: end function

Languages with non-binary choices such as Logic Programs with Annotated
Disjunctions can be handled by encoding the choices with binary variables [21].

3 The DISPONTE Semantics for Probabilistic Ontologies

DISPONTE assigns a semantics to probabilistic ontologies following the ap-
proach of the distribution semantics for probabilistic logic programs. It defines
a probability distribution over non-probabilistic ontologies called worlds. This
probability distribution is extended to a joint distribution of the worlds and a
query and the probability of the query is obtained by marginalization.

The probabilistic ontologies we consider associate to each axiom of the on-
tology a Boolean random variable that indicates whether the axiom is present
in a world. A probabilistic ontology is thus a set of annotated axioms of the form

pi :: Ai (3)

or of unannotated axioms of the form Ai, for i = 1, . . . , n, where pi is the
probability with which axiom Ai is included in a world. Let us call OA the set
{A1, . . . , An} and Xi the Boolean random variable associated to axiom Ai. Each
Xi is independent of every Xj with i 6= j. The probability of each Xi of being
true is pi. If the pi :: annotation is omitted for an axiom, we assume that the
axiom is certain, i.e., that it has probability 1.

A world w is obtained by sampling a value for Xi for every axiom Ai of OA
and by including Ai in w if Xi = 1. Since the random variables for the different
axioms are independent, the probability P (w) of w is obtained as:

P (w) =
∏
Ai∈w

pi
∏

Aj∈OA\w

(1− pj)

Given a query Q to O, we can define its conditional probability of being true
given a world P (Q|w) in the following intuitive way: P (Q|w) = 1 if w |= Q and
P (Q|w) = 0 if w 6|= Q.

The probability P (Q) can be obtained from the joint distribution of the query
and the worlds by the sum rule:

P (Q) =
∑
w

P (Q,w) =
∑
w

P (Q|w)P (w) =
∑

w:w|=Q

P (w)

Similarly to the case of probabilistic logic programming, the probability of a
query Q given a probabilistic ontology O can be computed by first finding the
explanations for Q in O. An explanation in this context is a subset of axioms of
O that is sufficient for entailing Q. Typically minimal explanations are sought
for efficiency reasons. All the explanations for Q must be found, corresponding
to all ways of proving Q. Let EQ be set of explanations and e be an explanation
from EQ. The probability of Q can be obtained by computing the probability of
the DNF formula

F (Q) =
∨
e∈EQ

∧
Ai∈e

pi

Example 2. This example is inspired by Examples 3.1, 4.1, 4.2 and 4.3 of [15] that
describe a probabilistic ontology about cars. We know for sure that a SportCar
is a Car to which a max speed greater than 245Km/h is associated:

SportsCar v Car u ∃max speed. ≥245Km/h (4)

We also know that a Car is a subset of the class of vehicles HasFourWheels
with probability 0.9:

0.9 :: Car v HasFourWheels (5)

Please note that this does not mean that a member of the class Car is a member
of HasFourWheels with probability 0.9, see Section 5. johns car is an instance
of SportsCar with probability 0.8:

0.8 :: johns car : SportsCar (6)

We want to know what is the probability P (Q1) of axiom Q1 = johnsCar :
HasFourWheels being true. Q1 has a single explanation containing the axioms
(4), (5) and (6). Since (4) is certain, P (Q1) is 0.8× 0.9 = 0.72.

Example 3. Let us consider another example, inspired by the people+pets on-
tology proposed in [18]. We know that kevin is a DogOwner with probability
0.6 and a CatOwner with probability 0.6:

0.6 :: kevin : DogOwner; (7)

0.6 :: kevin : CatOwner. (8)

Moreover we know for sure that DogOwner and CatOwner are subclasses of
PetOwner

DogOwner v PetOwner (9)

CatOwner v PetOwner (10)

Then the query axiom Q2 = kevin : PetOwner has two explanations, one com-
posed of the axioms (7) and (9) and the other composed of the axioms (8) and
(10). Since (9) is certain, the probability of the first explanation is 0.6. Simi-
larly, the probability of the second explanation is again 0.6. If we associate the
Boolean random variable X1 to (7) and X2 to (8), the query axiom is true if
the formula X1 ∨ X2 is true. Thus, P (Q2) = P (X1 ∨ X2). Since X1 and X2

are independent, we get P (Q2) = 0.6 + 0.6 − 0.6 × 0.6 = 0.84. As you can see,
the fact that kevin is an instance of both DogOwner and CatOwner increases
the probability that he is an instance of PetOwner: if he were an instance of
DogOwner only, its probability of being a PetOwner would be 0.6 and similarly
if he were an instance of CatOwner only.

Now suppose that we known that PetOwner is a subclass of Ecologist with
probability 0.7:

0.7 :: PetOwner v Ecologist (11)

The query axiom Q3 = kevin : Ecologist has again two explanations, one
composed of axioms (7), (9) and (11) and the other composed of the axioms
(8), (10) and (11). Since (9) is certain, the probability of the first explana-
tion is 0.4 × 0.6 = 0.24. Similarly, the probability of the second explanation is
0.5 × 0.6 = 0.3. If we associate the Boolean random variable X3 to (11), Q3 is
a consequence of the theory if X1 ∧X3 ∨X2 ∧X3 is true. A BDD that can be
built for this formula is the one shown in Figure 1 after replacing variable X21

with X1, variable X22 with X2 and variable X11 with X3.
The probability of node n3 computed by Prob is 0.7×1+0.3×0 = 0.7. The

probability of node n2 is 0.6× 0.7 + 0.4× 0 = 0.42 and the probability of node
n1 (and of Q3) is 0.6× 0.7 + 0.4× 0.42 = 0.588.

4 The BUNDLE System

BUNDLE computes the probability of a query Q given a probabilistic ontology
O that follows the DISPONTE semantics. BUNDLE exploits an underlying on-
tology reasoner that is able to return all explanations for a query. One of these
system is Pellet [23] that is a complete OWL-DL reasoner. Pellet takes as input
an OWL ontology in various formats, including the RDFXML language.

In order to assign probabilities to axioms, we exploit the possibility given by
OWL1.1 of declaring an annotation property for axioms. We thus annotate the
axioms with the XML tag bundle:probability whose value should be a real
number in [0,1].

BUNDLE takes as input two RDFXML files, one containing the ontology
and one containing the annotations. For Example 3, the ontology file contains
the following definition of PetOwner:

<owl:Class rdf:about="#PetOwner">

<rdfs:subClassOf>

<owl:Class rdf:about="#Ecologist" />

</rdfs:subClassOf>

</owl:Class>

The annotation file contains the annotation for the above axiom in the following
form:

<owl11:Axiom>

<rdf:subject rdf:resource="#PetOwner"/>

<rdf:predicate rdf:resource="&rdfs;subClassOf"/>

<rdf:object rdf:resource="#Ecologist"/>

<bundle:probability>0.6</bundle:probability>

</owl11:Axiom>

BUNDLE first uses the annotation file for building a data structure PMap
that associates axioms with their probability. In order to do so, axioms are
first converted to strings. We use the Manchester syntax to obtain a string
representation of an axiom.

Then BUNDLE uses the Explain function of Pellet to compute explanations
for a query axiom. BUNDLE thus accepts all the forms of query axioms that
are accepted by Pellet’s Explain function, namely subclass, instance, property
value, theory inconsistency and class unsatisfiability.

Pellet returns the explanations for the query in the form of a set of sets of
axioms. Then BUNDLE performs a double loop over the set of explanations and
over the set of axioms in each explanation in which it builds a BDD representing
the set of explanations. To manipulate BDDs we used the JavaBDD library1

that provides a Java interface to the major BDD libraries such as CUDD2.
Outside the outer loop, two data structures are initialized: V arAxAnn is an

array that maintains the association between Boolean random variables (whose
index is the array index) and axioms together with their probability, and BDD
represents the set of explanations. BDD is initialized to the BDD representing
the zero Boolean function. Then the outer loop is entered in which BDDE is
initialized to the BDD representing the one Boolean function. In the inner loop
the axioms of an explanation are considered one by one. Each axiom is first
looked up in PMap to get its probability. If NULL is returned this means that
this is a certain axiom and it does not need to be considered anymore. Then
the axiom is searched for in V arAxAnn to see if it has already been assigned
a random variable. If not, a cell is added to V arAxAnn to store the axiom
with its probability. At this point we know the axiom’s position i in V arAxAnn

1 http://javabdd.sourceforge.net/
2 http://vlsi.colorado.edu/~fabio/CUDD/

http://javabdd.sourceforge.net/
http://vlsi.colorado.edu/~fabio/CUDD/

and so the index of its Boolean variable Xi. We obtain a BDD representing
Xi = 1 and we conjoin it with BDDE. At the end of the inner loop the BDD for
the current explanation, BDDE, is disjoined with BDD. After the two cycles,
function Prob of Figure 2 is called over BDD and its result is returned to the
user.

BUNDLE has been implemented in Java and will be available for download
from http://sites.unife.it/bundle. It has been successfully tested on vari-
ous examples, including those of Section 3.

5 Discussion

The probabilistic knowledge that can be expressed with the DISPONTE seman-
tics is epistemic by nature, namely it represents degrees of belief in the axioms
rather that statistical information. While this is reasonable for many axioms, for
subclass and subproperty axioms one may want to express statistical informa-
tion, for example with a probabilistic subclass axiom p :: A v B one may want
to express the fact that a random individual of A has probability p of belonging
to B. The DISPONTE semantics, instead, interpret the axioms as stating that
A v B is true with probability p. The difference is that, if two individuals i and j
belong to class A, the probability that they both belong to B in the DISPONTE
semantics is p while with a statistical interpretation is p × p. Thus statistical
information can be used to define a degree of partial overlap between classes.
Extending DISPONTE to take account of this case is possible, it requires to
define a probability distribution over models rather than over theories.

However, to reason with such knowledge, the inference engine must be modi-
fied in its inference procedure and cannot be used as a black box as in BUNDLE.
In fact, BUNDLE assigns a single Boolean random variable to the axiom A v B,
while with a statistical interpretation a different Boolean random variable must
be assigned to each assertion that an individual of class A belongs to class B.
We leave this extension for future work.

Another limitation of BUNDLE is the use of the OWL 1.1 Axiom construct
to specify probabilities. This seems to restrict the kind of axioms on which
probabilities can be placed, since the object of the RDF triple does not allow
complex class expressions. However this limitation can be overcome by defining a
new class which is equivalent to the complex class expression and using the new
class name in the RDF triple. In the future we plan to investigate the possibility
of annotating the axioms directly in the ontology file.

As regards the complexity of reasoning on DISPONTE, it is equal to the com-
plexity of the underlying description logic plus the #P complexity of computing
the probability of a DNF formula of independent Boolean random variables, as-
suming the cost of keeping track of explanations during inference is negligible.
Thus, the problem of inference in DISPONTE remains decidable if it was so in
the underlying description logic.

http://sites.unife.it/bundle

6 Related Work

Our work differs from previous work in many respects. [6] proposed an exten-
sion of the description logic ALC that is able to express statistical information
on the terminological knowledge such as partial concept overlapping. Similarly,
[11] presents a probabilistic description logic based on Bayesian networks that
deals with statistical terminological knowledge. As illustrated in Section 5, cur-
rently we are not able to express statistical terminological knowledge but it is
possible to extend the semantics to do so. Differently from us, [6,11] do not
allow probabilistic assertional knowledge about concept and role instances. [7]
allows assertional knowledge about concept and role instances together with sta-
tistical terminological knowledge and combines the resulting probability distri-
butions using cross-entropy minimization. In the future we plan to compare the
DISPONTE semantics extended with statistical information with this approach.

[4] proposed a probabilistic extension of OWL that admits a translation into
Bayesian networks. The semantics that is proposed assigns a probability distri-
bution P (i) over individuals, i.e.

∑
i P (i) = 1, and assigns a probability to a class

C as P (C) =
∑
i∈C P (i), while we assign a probability distribution over theo-

ries. PR-OWL [2,1] is an upper ontology that provides a framework for building
probabilistic ontologies. It allows to use the first-order probabilistic logic MEBN
[12] for representing uncertainty in ontologies. The use of a full fledged first-order
probabilistic logic distringuishes this work from ours, where we tried to provide
a minimal extension to description logics.

A different approach to the combination of description logic with probability
is taken by [5,13,14] where the authors use probabilistic lexicographic entailment
from probabilistic default reasoning. The logics proposed in these papers allow
both terminological probabilistic knowledge as well as assertional probabilistic
knowledge about instances of concepts and roles. PRONTO [9] is one of the
systems that allows to perform inference in this semantics.

Similary to [7], the terminological knowledge is interpreted statistically while
the assertional knowledge is interpreted epistemically by assigning degrees of
beliefs to assertions, thus differing from our current treatment of terminological
knowledge. Moreover it also allows to express default knowledge about con-
cepts that can be overridden in subconcepts and whose semantics is given by
Lehmann’s lexicographic default entailment.

These works are based on Nilsson’s probabilistic logic [16] where a proba-
bilistic interpretation Pr defines a probability distribution over the set of in-
terpretations I. The probability of a logic formula φ according to Pr, denoted
Pr(φ), is the sum of all Pr(I) such that I ∈ I and I |= φ.

A probabilistic knowledge base K is a set of probabilistic formulas of the
form φ ≥ p. A probabilistic interpretation Pr satisfies φ ≥ p iff Pr(φ) ≥ p. Pr
satisfies K, or Pr is a model of K, iff Pr satisfies all F ∈ K. We say φ ≥ p is a
tight logical consequence of K iff p is the infimum of Pr(φ) subject to all models
Pr of K. Computing tight logical consequences from probabilistic knowledge
bases can be done by solving a linear optimization problem.

Nilsson’s probabilistic logic differs from the distribution semantics: while a
probabilistic knowledge base in Nilsson’s logic may have multiple models that
are probabilistic interpretations, a probabilistic program under the distribution
semantics has a single model that defines a single distribution over interpreta-
tions. Also, while in Nilsson’s logic we want to compute the lowest p such that
Pr(φ) ≥ p holds for all Pr, in the distribution semantics we want to compute p
such that P (φ) = p. Nilsson’s logic complexity is lower than the #P complexity
of the distribution semantics.

In fact Nilsson’s logic allows weaker conclusions than the distribution se-
mantics. For example, consider a probabilistic program composed of 0.4 :: a. and
0.5 :: b. and a probabilistic knowledge base composed of a ≥ 0.4 and b ≥ 0.5. The
distribution semantics allows to say that P (a∨b) = 0.7, while with Nilsson’s logic
the lowest p such that Pr(a ∨ b) ≥ p holds is 0.5. This is due to the fact that in
the distribution semantics the probabilistic atoms are considered independent,
which allows to make stronger conclusions. However, note that this does not
restrict expressiveness as you can specify with the distribution semantics any
joint probability distribution over the atoms of the Herbrand base interpreted
as Boolean random variables, possibly introducing new random facts if needed.

Alternative approaches to modeling imperfect and incomplete knowledge in
ontologies are based on fuzzy logic. A good survey of these approaches is pre-
sented in [15].

7 Conclusions

We have presented the semantics DISPONTE for probabilistic ontologies that
is inspired by the distribution semantics of probabilistic logic programming. We
have also presented the system BUNDLE that is able to compute the probability
of queries from an uncertain OWL DL ontology.

In the future, we plan to extend DISPONTE to take into account statistical
terminological knowledge and improve the way in which the input to BUNDLE
is specified.

References

1. Carvalho, R.N., Laskey, K.B., Costa, P.C.: PR-OWL 2.0 - bridging the gap to
OWL semantics. In: International Workshops on Uncertainty Reasoning for the
Semantic Web (2010)

2. Costa, P.C.G., Laskey, K.B., Laskey, K.J.: Pr-owl: A bayesian ontology language
for the semantic web. In: International Workshops on Uncertainty Reasoning for
the Semantic Web. vol. 5327, pp. 88–107. Springer (2008)

3. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and
its application in link discovery. In: International Joint Conference on Artificial
Intelligence. pp. 2462–2467 (2007)

4. Ding, Z., Peng, Y.: A probabilistic extension to ontology language OWL. In: Hawaii
International Conference On System Sciences. IEEE (2004)

5. Giugno, R., Lukasiewicz, T.: P-SHOQ(D): A probabilistic extension of SHOQ(D)
for probabilistic ontologies in the semantic web. In: European Conference on Logics
in Artificial Intelligence. LNCS, vol. 2424, pp. 86–97. Springer (2002)

6. Heinsohn, J.: Probabilistic description logics. In: Conference on Uncertainty in
Artificial Intelligence. pp. 311–318. Morgan Kaufmann (1994)

7. Jaeger, M.: Probabilistic reasoning in terminological logics. In: International Con-
ference on Principles of Knowledge Representation and Reasoning. pp. 305–316
(1994)

8. Kimmig, A., Demoen, B., Raedt, L.D., Costa, V.S., Rocha, R.: On the implemen-
tation of the probabilistic logic programming language problog. Theory Pract. Log.
Program. 11(2-3), 235–262 (2011)

9. Klinov, P.: Pronto: A non-monotonic probabilistic description logic reasoner. In:
European Semantic Web Conference. LNCS, vol. 5021, pp. 822–826. Springer
(2008)

10. Koller, D.: Probabilistic relational models. In: International Workshop on Inductive
Logic Programming. LNCS, vol. 1634, pp. 3–13. Springer (1999)

11. Koller, D., Levy, A.Y., Pfeffer, A.: P-classic: A tractable probablistic description
logic. In: National Conference on Artificial Intelligence. pp. 390–397 (1997)

12. Laskey, K.B., da Costa, P.C.G.: Of starships and klingons: Bayesian logic for the
23rd century. In: Conference in Uncertainty in Artificial Intelligence. pp. 346–353.
AUAI Press (2005)

13. Lukasiewicz, T.: Probabilistic default reasoning with conditional constraints. Ann.
Math. Artif. Intell. 34(1-3), 35–88 (2002)

14. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6-7),
852–883 (2008)

15. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. J. Web Sem. 6(4), 291–308 (2008)

16. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)
17. Obrst, L., McCandless, D., Stoutenburg, S., Fox, K., Nichols, D., Prausa, M.,

Sward, R.: Evolving use of distributed semantics to achieve net-centricity. In: AAAI
Fall Symposium (2007)

18. Patel-Schneider, P.F., Horrocks, I., Bechhofer, S.: Tutorial on OWL (2003), http:
//www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/

19. Poole, D.: Abducing through negation as failure: stable models within the inde-
pendent choice logic. J. of Log. Program. 44(1-3), 5–35 (2000)

20. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),
107–136 (2006)

21. Riguzzi, F.: Extended semantics and inference for the Independent Choice Logic.
Log. J. IGPL 17(6), 589–629 (2009)

22. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: International Conference on Logic Programming. pp. 715–729. MIT Press
(1995)

23. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. Web Sem. 5(2), 51–53 (2007)

24. URW3-XG: Uncertainty reasoning for the World Wide Web, final report, http:
//www.w3.org/2005/Incubator/urw3/XGR-urw3/

25. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comp. 8(3), 410–421 (1979)

26. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: International Conference on Logic Programming. LNCS, vol. 3131,
pp. 195–209. Springer (2004)

http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/
http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/
http://www.w3.org/2005/Incubator/urw3/XGR-urw3/
http://www.w3.org/2005/Incubator/urw3/XGR-urw3/

	A Distribution Semantics for Probabilistic Ontologies

