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Abstract. In this paper we outline a shared knowledge representation
based on RDF. It can be used in a distributed multi-tenant environment
to store design knowledge. These RDF-graphs incorporate all necessary
information to instantiate Bayesian network representations of certain
problem solving cases, which are used to support the conceptual design
tasks carried out by a salesperson during lead qualification.

1 Introduction

In industries that offer customized goods and services, which meet their cus-
tomer’s individual business needs, vendors are often required to employ a con-
sultative sales strategy called “solution selling” (cf. [7]). It comprises mainly four
interdependent processes carried out on a per project basis: requirements defini-
tion, customization and integration, deployment, and post-deployment support.
The groundwork for these processes is laid by the vendor’s sales force screening
for potential customers (leads) and assessing their willingness and ability to buy
a solution. This task is termed “lead qualification”. Lead qualification in solution
selling industries is highly dependent on a salesperson’s individual knowledge of
a lead’s (problem) situation, of goods and services offered by the vendor and its
partners, and of how certain bundles of goods and services may be used for prob-
lem solving; we term this design knowledge. But especially external salespersons
are not directly involved in product development at the employing vendor, and
thus may have narrow insights on how their work affects downstream processes.
Experiences from other salespersons may not be considered due to limited report-
ing or inconsequent knowledge reuse. And limited possibilities or rigid policies for
inter-organizational communication may exclude design insights from partnering
organizations. To overcome these shortcomings in intra- and inter-organizational
design knowledge reuse, we’ve implemented a shared design knowledge reposi-
tory based on the Function-Behavior-Structure (FBS) framework [4] and use it
for services which support the design activities during lead qualification.

Xue and Xu [8] suggest a web-accessible distributed database to store design
knowledge based on the FBS notation. Like other models that operationalize the
FBS framework [2, 6], they follow an entity-relationship approach. However, it



would require a significant knowledge engineering effort to continuously main-
tain a design model that builds on a highly detailed and formal knowledge rep-
resentation (KR), where innovative yet uncertain design beliefs may be left out.
Probability theory can provide an adequate framework to model uncertainties in
design decisions [5]. Encouraging approaches that represent probabilistic belief
networks by means of semantic models exist in other domains [9, 10]. But to the
author’s knowledge, there exist no Semantic Web representations of the FBS
framework that incorporate uncertainty information, and can be managed in a
multi-tenant environment. In [3] we defined a Bayesian Network (BN) represen-
tation of the FBS model, termed FBS-BN, which encodes design knowledge as
probability tables. In the following we outline its shared storage in a distributed
RDF-Store.

2 Design Knowledge Representation and Storage

A FBS-BN represents a configurational design space for a specific problem-
solving situation in form of a Bayesian Network. Discrete random variables are
used to describe possible design object configurations in light of the customer’s
demands. Every variable is associated with a certain component of the design ob-
ject to serve as characterizing attribute. There are three different variable types:
Function variables (F ) represent the purpose for which a solution is designed
for, i.e. goals and constraints of the customer. Structure variables (S) represent
possible offerings, i.e. product and service bundles that can be provided by the
vendor. Behaviors are mediating concepts between Functions and Structures rep-
resenting the actual solution, i.e. how products and services are meant to achieve
goals and fulfill constraints. There are three subtypes of Behavior variables: Be
variables describe the solution as expected by the customer; their value is de-
rived from Function variables. Bs variables represent the solution as offered by
the vendor; their value is derived from Structure variables. And Bc variables
are used for comparing the match of Be and Bs. The design knowledge about
how Functions, Behaviors and Structures affect each other is encoded in form
of conditional probability distributions (CPDs). These CPDs represent a set of
propositions of the form “if concept X is in state x then another concept Y is
(or should be) in state y”. The associated probabilities express the degree of
belief that a proposition holds. Possible relations are F → Be (Function expects
Behavior), S → Bs (Structure exhibits Behavior), and implications within a
variable group (F → F , Be → Be, Bs → Bs, and S → S).

To support the assessment of information in lead qualification, a support
service should highlight those concepts that are yet uncertain and thus need
further investigation. Therefore we generate a case-specific FBS-BN to charac-
terize the current problem-solving situation. Changes in a node’s prior can be
used to represent explicit design decisions (evidence), i.e. assigning a relatively
high probability to a state would express its preference over other states. Im-
plicit design decisions are then given by Bayesian inference in form of probability



estimates for the hidden nodes. Building on this, we highlight (yet) uncertain
concepts by rating every hidden node with an uncertainty measure (e.g. [3]).
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Fig. 1. Architecture of Proposed Distributed Knowledge Based System

For using FBS-BN representations across different participating organiza-
tions, we employ a RDF-based shared design KR to store the needed variable,
CPD, and design object component definitions. All applications interoperate
via this KR. Principally we consider two types of client-side application roles,
namely knowledge engineering and knowledge reuse applications. While knowl-
edge engineering applications provide an interface to manage the KR, knowledge
reuse applications use it to support designing tasks in problem solving situations
(cf. Fig. 1). The KR is stored in a distributed RDF-store is based on S3DB [1].
S3DB provides a sophisticated framework for graph-based permission manage-
ment. Rather than using coarse all or nothing policies, S3DB allows an organiza-
tion, department or individual to share certain parts of their design knowledge
with designated users. Moreover, S3DB offers a meta-model for cooperatively
defining TBoxes and ABoxes for RDF-graphs.

To facilitate the hierarchical formalization of design knowledge on different
levels of complexity we employ a formalism for iterative reification: We start
from a simple relational model for design object component classes and their
individuals. Component classes can be linked with “canBeRelatedTo” relations
to denote that they are dependent “somehow”. These relations then frame pos-
sibilities for “isRelatedTo” relations on instance layer. The first step in clarifying
these yet anonymous relations is done by providing FBS-concepts as characteriz-
ing attributes for component classes and connect them via expects, exhibits and
implicates relations (FBS-relations). These associations determine how the de-
sign object components are actually interrelated with each other. In the second
step, FBS-concepts are operationalized as discrete variables by specifying a set
of possible variable states (or attribute values), which results in a description of



the attribute network as configurational variable space. Building on these vari-
ables we reificate attribute associations, i.e. we provide a detailed explication of
expects, exhibits and implicates relations in form of conditional probability ta-
bles. Lastly variable and CPD definitions can be used as templates for FBS-BN
instantiation.

3 Conclusion and Future Work

We have outlined a Semantic Web KR of the FBS framework based on RDF,
which can be managed in a distributed multi-tenant environment. It is used
to employ FBS-BN-based uncertainty reasoning for lead qualification support.
Currently we are implementing two prototype applications, and look forward to
test their impact on lead qualification performance empirically.
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