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Abstract. This position paper proposes an interactive approach for de-
veloping information extractors based on the ontology definition process
with knowledge about possible (in)correctness of annotations. We discuss
the problem of managing and manipulating probabilistic dependencies.

1 Introduction

(Too) much data is still inaccessible for data processing, because it is unstruc-
tured, textually embedded in documents, webpages, or text fields in databases.
Information extraction (IE) is a technology capable of extracting entities, facts,
and relations. IE helps to turn the web into a real ‘web of data’ [BHBL09].

In the Neogeography-project [HvK11b], we focus on named entity extraction
(NEE) from database text fields and short messages. NEE typically consists of
phases like recognition (which phrases are named entities), matching and enrich-
ment (lookups in reference databases and dictionaries possibly adding informa-
tion), and disambiguation (to which real-world object does a phrase refer).

Because natural language is highly ambiguous and computers are still inca-
pable of ‘real’ semantic understanding, NEE (and IE in general) is a highly im-
perfect process. For example, it is ambiguous how to interpret the word “Paris”:
it could be a first name, a city, etc. Even resolving it to a city, a lookup in
GeoNames1 learns that there are numerous other places called “Paris” besides
the capital of France. In [HvK11a], we found that around 46% of toponyms2 have
two or more, 35% three or more, and 29% four or more references in GeoNames.

Although many probabilistic and fuzzy techniques abound, some aspects of-
ten remain absolute: extraction rules absolutely recognize and annotate a phrase
or not, only a top item from a ranking is chosen for a next phase, etc. We envision
an approach that fundamentally treats annotations and extracted information
as uncertain throughout the process. We humans happily deal with doubt and
misinterpretation every day, why shouldn’t computers?

We envision developing information extractors ‘Sherlock Holmes style’ —
“when you have eliminated the impossible, whatever remains, however improba-
ble, must be the truth” — by adopting the principles and requirements below.
– Annotations are uncertain, hence we process both annotations as well as

information about the uncertainty surrounding them.
1 http://www.geonames.org
2 A toponym is any name that refers to a location including, e.g., names of buildings.
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Fig. 1. Example sentence and NEE ontology

– We have an unconventional conceptual starting point, namely not “no an-
notations” but “there is no knowledge hence anything is possible”. Fig.1(a)
shows all possible annotations for an example sentence for one entity type.

– A developer gradually and interactively defines an ontology with positive and
negative knowledge about the correctness of certain (combinations of) anno-
tations. At each iteration, added knowledge is immediately applied improv-
ing the extraction result until the result is good enough (see also [vKdK09]).

– Storage, querying and manipulation of annotations should be scalable. Prob-
abilistic databases are an attractive technology for this.
Basic forms of knowledge are the entity types one is interested in and dec-

larations like τ1 —dnc— τ2 (no subphrase of a τ1-phrase should be interpreted
as τ2, e.g, Person —dnc— City). See Fig.1(b) for a small example. We also en-
vision application of background probability distributions, uncertain rules, etc.
We hope these principles and forms of knowledge also allow for more effective
handling of common problems (e.g., “you” is also the name of a place; should
“Lake Como” or “Como” be annotated as a toponym).

2 Uncertain annotation model

An annotation a = (b, e, τ) declares a phrase ϕb
e from b to e to be interpreted

as entity type τ . For example, a8 in Fig. 1(a) declares ϕ = “Paris Hilton” from
b = 1 to e = 2 to be interpreted as type τ = Person. An interpretation I = (A,U)
of a sentence s consists of an annotation set A and a structure U representing the
uncertainty among the annotations. In the sequel, we discuss what U should be,
but for now view it as a set of random variables (RVs) R with their dependencies.

Rather unconventionally, we don’t start with an empty A, but with a ‘no
knowledge’ point-of-view where any phrase can have any interpretation. So our
initial A is {a | a = (b, e, τ) ∧ τ ∈ T ∧ ϕb

e is a phrase of s} where T is the set of
possible types.

With T finite, A is also finite. More importantly, |A| = O(klt) where k = |s|
is the length of s, l is the maximum length phrases considered, and t = |T |.
Hence, A grows linearly in size with each. In the example of Fig.1(a), T =
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Fig. 3. Defining a and b to be mutually exclusive means conditioning the probabilities.

{Person, Toponym, City} and we have 28 · |T | = 84 annotations. Even though we
envision a more ingenious implementation, no probabilistic database would be
severely challenged by a complete annotation set for a typical text field.

3 Knowledge application is conditioning

We explain how to ‘apply knowledge’ in our approach by means of the example
of Fig.1, i.e., with our A with 84 (possible) annotations and an ontology only
containing Person, Toponym, and City. Suppose we like to add the knowledge
Person —dnc— City. The effect should be the removal of some annotations and
adjustment of the probabilities of the remaining ones.
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Fig. 2. Initial annotation set stored in a
probabilistic database (MayBMS-style)

An initial promising idea is to store
the annotations in an uncertain rela-
tion in a probabilistic database, such
as MayBMS [HAKO09]. In MayBMS,
the existence of each tuple is deter-
mined by an associated world set de-
scriptor (wsd) containing a set of RV
assignments from a world set table (see
Fig.2). RVs are assumed independent.
For example, the 3rd annotation tuple
only exists when x1

8 = 1 which is the case with a probability of 0.8. Each an-
notation can be seen as a probabilistic event, which are all independent in our
starting point. Hence, we can store A by associating each annotation tuple aj

i

with one boolean RV xj
i . Consequently, the database size is linear with |A|.

Adding knowledge such as Person—dnc—City means that certain RVs become
dependent and that certain combinations of RV assignments become impossible.
Let us focus on two individual annotations a2

1 (’“Paris” is a City) and a1
8 (“Paris

Hilton” is a Person). These two annotations become mutually exclusive. The
process of adjusting the probabilities is called conditioning [KO08]. It boils down
to redistributing the remaining probability mass. Fig.3 illustrates this for a = a2

1

and b = a1
8. The remaining probability mass is 1 − 0.48 = 0.52. Hence, the



distribution of this mass over the remaining possibilities is P (a ∧ ¬b) = 0.12
0.52 ≈

0.23, P (b ∧ ¬a) = 0.32
0.52 ≈ 0.62, and P (∅) = P (¬a ∧ ¬b) = 0.08

0.52 ≈ 0.15.

A first attempt is to replace x2
1 and x1

8 with one fresh three-valued RV x′ with
the probabilities just calculated, i.e., wsd(a2

1) = {x′ = 1} and wsd(a1
8) = {x′ = 2}

with P (x′ = 0) = 0.15, P (x′ = 1) = 0.23, and P (x′ = 2) = 0.62. Unfortunately,
since annotations massively overlap, we face a combinatorial explosion. For this
rule, we end up with one RV with up to 22·28 = 256 ≈ 7 · 1016 cases.

Solution directions What we are looking for in this paper is a structure that is
expressive enough to capture all dependencies between RVs and at the same time
allowing for scalable processing of conditioning operations. The work of [KO08]
represents dependencies resulting from queries with a tree of RV assignments.
We are also investigating the shared correlations work of [SDG08].

4 Conclusions

We envision an approach where information extractors are developed based on
an ontology definition process for knowledge about possible (in)correctness of
annotations. Main properties are treating annotations as fundamentally uncer-
tain and interactive addition of knowledge starting from a ‘no knowledge hence
everything is possible’ situation. The feasibility of the approach hinges on effi-
cient storage and conditioning of probabilistic dependencies. We discuss this very
problem, argue that a trivial approach doesn’t work, and propose two solution
directions: the conditioning approach of MayBMS and the shared correlations
work of Getoor et al.
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