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Foreword

This volume contains the papers presented at the 7th International Work-
shop on Uncertainty Reasoning for the Semantic Web (URSW 2011), held as
a part of the 10th International Semantic Web Conference (ISWC 2011) at
Bonn, Germany, October 23, 2011. It contains 8 technical papers and 3 posi-
tion papers, which were selected in a rigorous reviewing process, where each
paper was reviewed by at least four program committee members.

The International Semantic Web Conference is a major international fo-
rum for presenting visionary research on all aspects of the Semantic Web. The
International Workshop on Uncertainty Reasoning for the Semantic Web is
an exciting opportunity for collaboration and cross-fertilization between the
uncertainty reasoning community and the Semantic Web community. Effective
methods for reasoning under uncertainty are vital for realizing many aspects
of the Semantic Web vision, but the ability of current-generation web tech-
nology to handle uncertainty is extremely limited. Recently, there has been a
groundswell of demand for uncertainty reasoning technology among Semantic
Web researchers and developers. This surge of interest creates a unique open-
ing to bring together two communities with a clear commonality of interest
but little history of interaction. By capitalizing on this opportunity, URSW
could spark dramatic progress toward realizing the Semantic Web vision.

We wish to thank all authors who submitted papers and all workshop
participants for fruitful discussions. We would like to thank the program com-
mittee members and external referees for their timely expertise in carefully
reviewing the submissions.

October 2011
Fernando Bobillo

Rommel Carvalho
Paulo C. G. da Costa

Claudia d’Amato
Nicola Fanizzi

Kathryn B. Laskey
Kenneth J. Laskey

Thomas Lukasiewicz
Trevor Martin

Matthias Nickles
Michael Pool

III



IV



Workshop Organization

Program Chairs

Fernando Bobillo (University of Zaragoza, Spain)
Rommel Carvalho (George Mason University, USA)
Paulo C. G. da Costa (George Mason University, USA)
Claudia d’Amato (University of Bari, Italy)
Nicola Fanizzi (University of Bari, Italy)
Kathryn B. Laskey (George Mason University, USA)
Kenneth J. Laskey (MITRE Corporation, USA)
Thomas Lukasiewicz (University of Oxford, UK)
Trevor Martin (University of Bristol, UK)
Matthias Nickles (University of Bath, UK)
Michael Pool (Vertical Search Works, Inc., USA)

Program Committee

Fernando Bobillo (University of Zaragoza, Spain)
Silvia Calegari (University of Milano-Bicocca, Italy)
Rommel Carvalho (George Mason University, USA)
Paulo C. G. da Costa (George Mason University, USA)
Fabio Gagliardi Cozman (Universidade de São Paulo, Brazil)
Claudia d’Amato (University of Bari, Italy)
Nicola Fanizzi (University of Bari, Italy)
Marcelo Ladeira (Universidade de Braśılia, Brazil)
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Building A Fuzzy Knowledge Body for
Integrating Domain Ontologies

Konstantin Todorov1, Peter Geibel2, and Céline Hudelot1

1Laboratory MAS, École Centrale Paris
2TU Berlin, Sekr. FR 5-8, Fakultät IV

Abstract. This paper deals with the problem of building a common
knowledge body for a set of domain ontologies in order to enable their
sharing and integration in a collaborative framework. We propose a novel
hierarchical algorithm for concept fuzzy set representation mediated by
a reference ontology. In contrast to the original concept representations
based on instances, this enables the application of methods of fuzzy log-
ical reasoning in order to characterize and measure the degree of the
relationships holding between concepts from different ontologies. We pre-
senta an application of the approach in the multimedia domain.

1 Introduction

In collaborative contexts, multiple independently created ontologies often need
to be brought together in order to enable their interoperability. These ontologies
have an impaired collaborative functionality, due to heterogeneities coming from
the decentralized nature of their acquisition, differences in scopes and application
purposes and mismatches in syntax and terminology.

We present an approach to building a combined knowledge body for a set
of domain ontologies, which captures and exposes various relations holding be-
tween the concepts of the domain ontologies, such as their relative generality
or specificity, their shared commonality or their complementarity. This can be
very useful in a number of real-life scenarioss, especially in collaborative plat-
forms. Let us imagine a project which includes several partners, each of which
has its own vocabulary of semantically structured terms that describes its activ-
ity. The proposed framework would allow every party to keep its ontology and
work with it, but query the combined knowledge body whenever collaboration
is necessary. Examples of such queries can be: “which concept of a partner P1

is closest to my concept A”, or “give me those concepts of all of my partners
which are equally distant to my concept B”, or “find me a concept from partner
P2 which is a strong subsumer of my concept C”, or ”what are the commonality
and specificity between my concept A and my partner’s concept D“.

We situate our approach in a fuzzy framework, where every domain concept
is represented as a fuzzy set of the concepts of a particular reference ontology.
This can be seen as a projection of all domain source concepts onto a common
semantical space, where distances and relations between any two concepts can be
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expressed under fixed criteria. In contrast to the original instance-representation,
we can apply methods of fuzzy logical reasoning in order to characterize the
relationship between concepts from different ontologies. In addition, the fuzzy
representations allow for quantifying the degree to which a certain relation holds.

The paper is structured as follows. Related work is presented in the next
section. Background in the field of fuzzy sets, as well as main definitions and
problems from the ontology matching domain are overviewed in Section 3. We
present the concept fuzzification algorithm in Section 4, before we discuss how
the combined knowledge body can be constructed in Section 5. Experimental
results and conclusions are presented in Sections 6 and 7, respectively.

2 Related Work

Fuzzy set theory generalizes classical set theory [19] allowing to deal with impre-
cise and vague data. A way of handling imprecise information in ontologies is to
incorporate fuzzy reasoning into them. Several papers by Sanchez, Calegari and
colleagues [4], [5], [13] form an important body of work on fuzzy ontologies where
each ontology concept is defined as a fuzzy set on the domain of instances and
relations on the domain of instances and concepts are defined as fuzzy relations.

Work on fuzzy ontology matching can be classified in two families: (1) ap-
proaches extending crisp ontology matching to deal with fuzzy ontologies and (2)
approaches addressing imprecision of the matching of (crisp or fuzzy) concepts.
Based on the work on approximate concept mapping by Stuckenschmidt [16] and
Akahani et al. [1], Xu et al. [18] suggested a framework for the mapping of fuzzy
concepts between fuzzy ontologies. With a similar idea, Bahri et al. [2] propose
a framework to define similarity relations among fuzzy ontology components. As
an example of the second family of approaches, we refer to [8] where a fuzzy ap-
proach to handling matchinging uncertainty is proposed. A matching approach
based on fuzzy conceptual graphs and rules is proposed in [3]. To define new
intra-ontology concept similarity measures, Cross et al. [6] model a concept as
a fuzzy set of its ancestor concepts and itself, using as a membership degree
function the Information Content (IC) of concept with respect to its ontology.

Crisp instance-based ontology matching, relying on the idea that concept sim-
ilarity is accounted for by the similarity of their instances, has been overviewed
broadly in [7]. We refer particularly to the Caiman approach which relies on
estimating concepts similarity by measuring class-means distances [10].

3 Background and Preliminaries

In this section, we introduce basics from fuzzy set theory and discuss aspects of
the ontology matching problem.

3.1 Fuzzy Sets

A fuzzy set A is defined on a given domain of objects X by the function

µA : X 7−→ [0, 1], (1)
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which expresses the degree of membership of every element of X to A by assign-
ing to each x ∈ X a value from the interval [0, 1] [19]. The fuzzy power set of X,
denoted by F(X, [0, 1]), is the set of all membership functions µ : X 7−→ [0, 1].

We recall several fuzzy set operations by giving definitions in terms of Gödel
semantics [15]. The intersection of two fuzzy sets A and B is given by a t-norm
function T (µA(x), µB(x)) = min(µA(x), µB(x)). The union of A and B is given
by S(µA(x), µB(x)) = max(µA(x), µB(x)) where S is a t-conorm. The comple-
ment of a fuzzy set A, denoted by ¬A, is defined by the membership function
µ¬A(x) = 1− µA(x). We consider the Gödel definition of a fuzzy implication

µA→B(x) =

{
1, if µA(x) ≤ µB(x),
µB(x), otherwise.

(2)

3.2 Ontologies, Heterogeneity and Ontology Matching

An ontology consists of a set of semantically related concepts and provides in an
explicit and formal manner knowledge about a given domain of interest [7]. We
are particularly interested in ontologies, whose concepts come equipped with a
set of associated instances, defined as it follows.

Definition 1 (Crisp Ontology). Let C be a set of concepts, is a ⊆ C×C, R a
set of relations on C, I a set of instances, and g : C → 2I a function that assigns
a subset of instances from I to each concept in C. We require that is a and g
are compatible, i.e., that is a(A′, A)↔ g(A′) ⊆ g(A) holds for all A′, A ∈ C. In
particular, this entails that is a has to be a partial order. With these definitions,
the quintuple

O = (C, is a, R, I, g)

forms a crisp ontology.

Above, a concept is modeled intensionally by its relations to other concepts,
and extensionally by a set of instances assigned to it via the function g. By
assumption, every instance can be represented as a real-valued vector, defined
by a fixed number of variables of some kind (the same for all the instances in I).

Ontology heterogeneity occurs when two or more ontologies are created in-
dependently from one another over similar domains. Heterogeneity may be ob-
served on linguistic or terminological, on conceptual or on extensional level [7].
Ontology matching is understood as the process of establishing relations between
the elements of two or more heterogeneous ontologies. Different matching tech-
niques have been introduced over the past years in order to resolve different
types of heterogeneity [9].

Instance-based, or extensional ontology matching gathers a set of approaches
around the central idea that ontology concepts can be represented as sets of
related instances and the similarity measured on these sets reflects the semantic
similarity between the concepts that these instances populate.
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3.3 Crisp Concept Similarities

Consider the ontologies O1 = (C1, is a1, R1, I1, g1) and Oref =
(X, is aref, Rref, Iref, gref). We rely on the straightforward idea that deter-
mining the similarity sim(A, x) of two concepts A ∈ C1 and x ∈ X consists
in comparing their instance sets g1(A) and gref(x). For doing so, we need a
similarity measure for instances iA and ix, where iA ∈ g1(A) and ix ∈ gref(x).
We have used the scalar product and the cosine s(iA, ix) = 〈iA,ix〉

‖iA‖‖ix‖ . Based on
this similarity measure for elements, the similarity measure for the sets can be
defined by computing the similarity of the mean vectors corresponding to class
prototypes [10]:

simproto(A, x) = s
( 1
|g1(A)|

|g1(A)|∑

j=1

iAj ,
1

|gref(x)|

|gref(x)|∑

k=1

ixk
)
. (3)

Note that other approaches of concept similarity can be employed as well, like
the variable selection approach in [17]. In the context of our study, we have used
the method that both works best and is less complex. A hierarchical application
of the similarity measure for the concepts of two ontologies is presented in [17].

4 A Hierarchical Algorithm for Concept Fuzzification

Let Ω = {O1, ..., On} be a set of (crisp) ontologies that will be referred to
as source ontologies defined as in Def. 1. The set of concepts CΩ =

⋃n
i=1 Ci

will be referred to as the set of source concepts. The ontologies from the set
Ω are assumed to share similar functionalities and application focuses and to
be heterogeneous in the sense of some of the heterogeneity types described in
Section 3.2. A certain complementarity of these resources can be assumed: they
could be defined with the same application scope, but on different levels, treating
different and complementary aspects of the same application problem.

Let Oref = (X, is aref, Rref, Iref, gref) be an ontology, called a reference ontol-
ogy whose concepts will be called reference concepts. In contrast to the source
ontologies, the ontology Oref is assumed to be a less application dependent,
generic knowledge source. As a consequence of Def. 1, the ontologies in Ω and
Oref are populated.

The fuzzification procedure that we propose relies on the idea of scoring every
source concept by computing its similarities with the reference concepts, using
the similarity measure (3). A source concept A will be represented by a function
of the kind

µA(x) = scoreA(x),∀x ∈ X, (4)

where scoreA(x) is the similarity between the concept A and a given reference
concept x. Since score takes values between 0 and 1, (4) defines a fuzzy set. We
will refer to such a fuzzy set as the fuzzified concept A denoted by A.
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In order to fuzzify the concepts of a source ontology O1, we propose the
following hierarchical algorithm. First, we assign score-vectors, i.e. fuzzy mem-
bership functions to all leaf-node concepts of O1. Every non-leaf node, if it does
not contain instances (documents) of its own, is scored as the maximum of the
scores of its children for every x ∈ X. If a non-leaf node has directly assigned
instances (not inherited from its children), the node is first scored on the basis of
these instances with respect to the reference ontology, and then as the maximum
of its children and itself. To illustrate, let a concept A have children A′ and A′′

and let the non-empty function g∗(A) represent the instances assigned directly
to the concept A. We compute the following similarity scores for this concept
w.r.t. the set X :

scoreA(x) = max{scoreA′(x), scoreA′′(x), scoreg∗(A)(x)},∀x ∈ X. (5)

Above, scoreg∗(A)(x) conventionally denotes the similarity obtained for the con-
cept A and a reference concept x by only taking into account the documents
assigned directly to A. The algorithm is given in Alg. 1.

It is worth noting that assigning the max of all children to the parent for
every x leads to a convergence to uniformity of the membership functions for
nodes higher up in the hierarchy. Naturally, the functions of the higher level
concepts are expected to be less “specific” than those of the lower level concepts.
A concept in a hierarchical structure can be seen as the union of its descendants,
and a union corresponds to taking the max (an approach underlying the single
link strategy used in clustering).

The hierarchical scoring procedure has the advantage that every x-score will
be larger for a parent node than those for any of its children, and it holds
that µA′(x)→ µA(x) = 1 for all x and all children A′ of A. From computational
viewpoint, the procedure which only scores the populated nodes is less expensive,
compared to scoring all nodes one by one.

5 Building a Combined Knowledge Body

The construction of a combined knowledge body for a set of source ontologies
aims at making explicit the relations that hold among their concepts, across
these ontologies. To these ends, we apply the fuzzy set representations acquired
in the previous section. In what follows, we consider two source ontologies O1

and O2 but note that all definitions can be extended for multiple ontologies.
Let CΩ = {A1, ...,A|C1|,B1, ...,B|C2|} be the union of the concept sets of O1

(the A-concepts) and O2 (the B-concepts). We introduce several relations and
operations that can be computed over CΩ and will be used for constructing a
combined reduced knowledge body that contains the concepts of interest.

5.1 Fuzzy Concept Relations

The implication A′ → A holds for any A′ and A such that is a(A′, A). We provide
a definition for a fuzzy subsumption of two fuzzified concepts A′ and A based
on the fuzzy implication (2).
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Function score(concept A, ontology Oref , sim. measure sim)
begin

for i = 1, ..., |X| do
sim[i] = sim(A, xi) // xi ∈ X

return sim
end
Procedure hierachicalScoring(ontology O, ontology Oref , sim. measure sim)
begin

1. Let C be the list of concepts in O.
2. Let L be a list of nodes, initially empty
3. Do until C is empty:

(a) Let L′ be the list of nodes in C that have only children in L
(b) L = append(L, L′)
(c) C = C − L′

4. Iterate over L (first to last), with A being the current element:
if children(A) = ∅ then
score(A) = score(A, Oref , sim)

else
if g∗(A) 6= ∅ then

score(A) = max{maxB∈children(A)score(B), score(A, Oref , sim)}
else

score(A) = maxB∈children(A)score(B)

return score(A), ∀A ∈ C
end

Algorithm 1: An algorithm for hierarchical scoring of the source concepts.

Definition 2 (Fuzzy Subsumption). The subsumption A′ is a A is defined
and denoted in the following manner:

is a(A′,A) = inf
x∈X

µA′→A(x) (6)

Equation (6) defines the fuzzy subsumption as a degree between 0 and 1 to which
one concept is the subsumer of another. It can be shown that is a, similarly to
its crisp version, is reflexive and transitive (i.e. a quasi-order). In addition, the
hierarchical procedure for concept fuzzification introduced in the previous section
assures that is a(A′, A) = 1 holds for every child-parent concept pair, i.e. the
crisp subsumption relation is preserved by the fuzzification process.

Taking the example of a collaborative platform from the introduction, com-
puting the fuzzy is a between two concepts allows for answering a user query
regarding generality and specificity of their partners concepts with respect to a
given target concept.

We provide a definition of a fuzzy ontology which follows directly from the
fuzzification of the source concepts and their is a relations introduced above.

Definition 3 (Fuzzy Ontology). Let C be a set of (fuzzy) concepts, is a :
C × C → [0, 1] a fuzzy is a-relationship, R a set of fuzzy relations on C, i.e., R
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contains relations r : Cn → [0, 1], where n is the arity of the relation (for the
sake of presentation, we only consider binary relations), X a set of objects, and
φ : C → F(X , [0, 1]) a function that assigns a membership function to every fuzzy
concept in C. We require that is a and φ are compatible, i.e., that is a(A′,A) =
infx µA′→A(x) holds for all A′,A ∈ C. In particular, it can be shown that this
entails that is a is a fuzzy quasi-order. With these definitions, the quintuple

O = (C, is a,R,X , φ)

forms a fuzzy ontology.

Above, the set X is defined as a set of abstract objects. In our setting, these
are the concepts of the reference ontology, i.e. X = X. The set C is any subset
of CΩ . In case C = C1, where C1 is the set of fuzzified concepts of the ontology
O1, O defines a fuzzy version of the crisp source ontology O1. In case C = CΩ , O
defines a common knowledge body for the two source ontologies. Note that the
membership values of the reference concepts entail fuzzy membership values for
the documents populating the reference concepts. However, we will work directly
with the concepts scores in what follows.

Based on the subsumption relation defined above, we will define equivalence
of two concepts in the following manner.

Definition 4 (Fuzzy θ-Equivalence). Fuzzy θ-equivalence between a concept
A and a concept B, denoted by A vθ B holds if and only if is a(A,B) > θ and
is a(B,A) > θ, where θ is a parameter between 0 and 1.

The equivalence relation allows to define classes of equivalence on the set CΩ .
In the collaborative framework described in the introduction, this can be used
for querying concepts equivalent (up to a degree defined by the user) to a given
user concept from the set of their partners concepts.

5.2 Similarity Measures for Fuzzy Concepts

We propose several measures of closeness of two fuzzy concepts A and B. We
begin by introducing a straightforward measure given by

ρbase(µA, µB) = 1−max
x∈X
|µA(x)− µB(x)|. (7)

We consider a similarity measure based on the Euclidean distance:

ρeucl(µA, µB) = 1− ‖µA − µB‖2 , (8)

where ‖x‖2 =
(∑

x∈X |x|2
)1/2 is the `2-norm. Several measures of fuzzy set

compatibility can be applied, as well. Zadeh’s partial matching index between
two fuzzy sets is given by

ρsup-min(µA, µB) = sup
x∈X

T (µA(x), µB(x)). (9)
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Finally, the Jaccard coefficient is defined by

ρjacc(µA, µB) =
∑
x T (µA(x), µB(x))∑
x S(µA(x), µB(x))

. (10)

It is required that at least one of the functions µA or µB takes a non-zero value
for some x. T and S are as defined in Section 3.

The similarity measures listed above provide different information as com-
pared to the relations introduced in the previous subsection. Subsumption and
equivalence characterize the structural relation between concepts, whereas sim-
ilarity measures closeness between set elements. The two types of information
are to be used in a complementary manner within the collaboration framework.

5.3 Quantifying Commonality and Relative Specificity

The union of two fuzzy concepts can be decomposed into three components,
each quantifying, respectively, the commonality of both concepts, the specificity
of the first compared to the second and the specificity of the second compared
to the first expressed in the following manner

S(A,B) = (AB) + (A− B) + (B −A). (11)

Each of these components is defined as follows and, respectively, accounts for:

AB = T (A,B) // what is common to both concepts; (12)
A− B = T (A,¬B) // what is characteristic for A; (13)
B −A = T (B,¬A) // what is characteristic for B. (14)

Several merge options can be provided to the user with respect to the values
of these three components. In case AB is significantly larger than each of A−B
and B−A, the two concepts can be merged into their union. In case one of A−B
or B −A is larger than the other two components, the concepts can be merged
to either A or B.

6 Experiments

We situate our experiments in the multimedia domain, opposing two comple-
mentary heterogeneous ontologies containing annotated pictures. We chose, on
one hand, LSCOM [14] initially built in the framework of TRECVID1 and pop-
ulated with the development set of TRECVID 2005. Since this set contains
images from broadcast news videos, LSCOM is particularly adapted to anno-
tate this kind of content, thus contains abstract and specific concepts (e.g. Sci-
ence Technology, Interview On Location). On the other hand, we used

1 http://www-nlpir.nist.gov/projects/tv2005/
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WordNet [11] populated with the LabelMe dataset [12], referred to as the La-
belMe ontology. Contrarily to LSCOM, this ontology is very general, populated
with photographs from daily life and contains concepts such as car, computer,
person, etc. The parts of the two multimedia ontologies used in the experiments
are shown in Figure 1.

Fig. 1. The LSCOM (left) and the LabelMe (right) ontologies.

Fig. 2. The LSCOM concept Bus: a visual and a textual instance.

A text document has been generated for every image of the two ontologies,
by taking the names of all concepts that an image contains in its annotation,
as well as the (textual) definitions of these concepts (the LSCOM definitions for
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TRECVID images or the WordNet glosses for LabelMe images). An example of a
visual instance of a multimedia concept and the constructed textual description
is given in Figure 2. Several problems related to this representation are worth
noting. The LSCOM keyword descriptions sometimes depend on negation and
exclusion which are difficult to handle in a simple bag-of-words approach. Taking
the WordNet glosses of the terms in LabelMe introduces problems related to
polysemy and synonymy. Additionally, a scene often consists of several objects,
which are frequently not related to the object that determines the class of the
image. In such cases, the other objects in the image act as noise.

Concept A: LSCM:truck vs. LSCM:sports vs. LM:computer vs. LM:animal vs.
Concept B: LSCM:gr.vehicle LSCM:basketball LM:elec. device LM:bird

is a(A,B) 1 0.007 1 0.004
is a(B,A) 0.012 1 0.011 1
is amean(A,B) 1 0.052 1 0.062
is amean(B,A) 0.326 1 0.07 1

Base Sim. 0.848 0.959 0.915 0.390
Eucl. Sim. 0.835 0.908 0.854 0.350
SupMin Sim. 0.435 0.545 0.359 0.309
Jacc. Sim. 0.870 0.814 0.733 0.399
Cosine Sim. 0.974 0.994 0.975 0.551

Concept A: LM:gondola vs. LSCM:group vs. LSCM:truck vs. LSCM:truck vs.
Concept B: LSCM:boat ship LM:audience LM:vehicle LM:conveyance

is a(A,B) 0.016 0.006 0.022 0.022
is a(B,A) 0.009 1 0.012 0.012
is amean(A,B) 0.86 0.022 0.748 0.769
is amean(B,A) 0.167 1 0.301 0.281

Base Sim. 0.72 0.78 0.58 0.58
Eucl. Sim. 0.66 0.71 0.40 0.38
SupMin Sim. 0.069 0.082 0.22 0.22
Jacc. Sim. 0.49 0.42 0.54 0.52
Cosine Sim. 0.69 0.82 0.66 0.67

Table 1. Examples of pairs of matched intra-ontology concepts (above) and cross-
ontology concepts (below), column-wise.

In order to fuzzify our source concepts, we have applied the hierarchical
scoring algorithm from Section 4 independently for each of the source ontologies.
As a reference ontology, we have used an extended version of the Wikipedia’s so-
called main topic classifications (adding approx. 3 additional concepts to every
first level class), containing more than 30 categories. For each topic category, we
included a set of corresponding documents from the Inex 2007 corpus.

The new combined knowledge body has been constructed by first taking the
union of all fuzzified source concepts. For every pair of concepts, we have com-
puted their Gödel subsumptional relations, as well as the degree of their similar-
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ities (applying the measures from Section 5.2 and the standard cosine measure).
Apart from the classical Gödel subsumption defined in (6), we consider a version
of it which takes the average over all x instead of the smallest value, given as
is amean(A′,A) = avgx∈XµA′→A(x). The results for several intra-ontology con-
cepts and several cross-ontology concepts are given in Table 1. Fig. 3 shows a
fragment of the common fuzzy ontology built for LSCOM and LabelMe. The la-
bels of the edges of the graph correspond to the values of the fuzzy subsumptions
between concepts.

We will underline several shortcomings that need to be adressed in future
work. Due to data heterogeneity, it appears that the fuzzy is a-structure is re-
flected better within one single ontology, as compared to cross-ontology relations
which are more interesting. Additionally, some part of relations are expressed as
subsumptional (e.g. torso is a person) which is a natural effect in view of the
instance-representations. Indeed, the textual representation of images needs to
be improved by accounting for the limitations discussed earlier in this section.

Fig. 3. A fragment of the common fuzzy ontology of LSCOM (LS) and LabelMe (LM).

Note that computing the common fuzzy ontology is inexpensive, once we
have in hand the fuzzy representations of the source concepts made available by
the hierarchical scoring algiorithm.

7 Conclusion and Open Ends

Whenever collaboration between knowledge resources is required, it is impor-
tant to provide procedures which make explicit to users the relations that hold
between different terms of these resources. In an attempt to solve this problem,
we have proposed a fuzzy theoretical approach to build a common ontology for
a set of source ontologies which contains these relations, as well as the degrees
to which they hold, and can be queried upon need by different parties within a
collaborative framework.

In future work, we will investigate the impact of the choice of a reference
ontology onto the concept fuzzification and the quality of the constructed fuzzy
common ontology. Additionally, the approach will be extended with elements of
OWL 2, including relations and axioms between instances which is not covered
by the ontology definition used in this work.
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Abstract. Web data often manifest high levels of uncertainty. We focus
on categorical Web data and we represent these uncertainty levels as
first or second order uncertainty. By means of concrete examples, we
show how to quantify and handle these uncertainties using the Beta-
Binomial and the Dirichlet-Multinomial models, as well as how take into
account possibly unseen categories in our samples by using the Dirichlet
Process.

Keywords: Uncertainty, Bayesian statistics, Non-parametric statistics,
Beta-Binomial, Dirichlet-Multinomial, Dirichlet Process

1 Introduction

The World Wide Web and the Semantic Web offer access to an enormous amount
of data and this is one of their major strengths. However, the uncertainty about
these data is quite high, due to the multi-authoring nature of the Web itself and
to its time variability: some data are accurate, some others are incomplete or
inaccurate, and generally, such a reliability level is not explicitly provided.

We focus on the real distribution of these Web data, in particular of cate-
gorical Web data, regardless of whether they are provided by documents, RDF
(see [27]) statements or other means. Categorical data are the among the most
important types of Web data, because they include also URIs. We do not look for
correlations among data, but we stick to estimating how category proportions
distribute over populations of Web data.

We assume that any kind of reasoning that might produce new statements
(e.g. subsumption) has already taken place. Hence, unlike for instance Fukuoe
et al. (see [10]), that apply probabilistic reasoning in parallel to OWL (see [26])
reasoning, we will propose some models to address uncertainty issues on top
of that kind of reasoning layers. These models, namely the parametric Beta-
Binomial and Dirichlet-Multinomial, and the non-parametric Dirichlet Process,
will use first and second order probabilities and the generation of new classes of
observations, to derive safe conclusions on the overall populations of our data,
given that we are deriving those from possibly biased samples.

First we will describe the scope of these models (section 2), second we will
introduce the concept of conjugate prior (section 3), and then two classes of
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models: parametric (section 4) and non-parametric (section 5). Finally we will
discuss the results and provide conclusions (section 6).

2 Scope of this work

2.1 Empirical evidence from the Web
Uncertainty is often an issue in case of empirical data. This is especially the case
with empirical Web data, because the nature of the Web increases the relevance
of this problem but also offers means to address it, as we will see in this section.
The relevance of the problem is related to the utilization of the mass of data that
any user can find over the network: can one safely make use of these data? Lots
of data are provided on the Web by entities the reputation of which is not surely
known. In addition to that, the fact that we access the Web by crawling, means
that we should reduce our uncertainty progressively, as long as we increment our
knowledge. Moreover, when handling our samples it is often hard to determine
how representative such a sample is of the entire population, since often we do
not own enough sure information about it.

On the other hand, the huge amount of Web data gives also a solution for
managing this reliability issue, since it can hopefully provide the evidence nec-
essary to limit the risk when using a certain data set.

Of course, even within the Web it can be hard to find multiple sources as-
serting about a given fact of interest. However, the growing dimension of the
Web makes it reasonable to believe in the possibility to find more than one data
set about the given focus, at least by means of implicit and indirect evidence.

This work aims showing how it is possible to address the described issues by
handling such empirical data, categorical empirical data in particular, by means
of the Beta-Binomial, Dirichlet-Multinomial and Dirichlet Process models.

2.2 Requirements
Our approach will need to be quite elastic in order to cover several issues, as
described below. The non-triviality of the problem comes in a large part from
the impossibility to directly handle the sampling process from which we derive
our conclusions. The requirements that we will need to meet are:
Ability to handle incremental data acquisition The model should be in-

cremental, in order to reflect the process of data acquisition: as long as we
collect more data (even by crawling), our knowledge will reflect that increase.

Prudence It should derive prudent conclusions given all the available informa-
tion. In case not enough information is available, the wide range of possible
conclusions derivable will clearly make it harder to set up a decision strategy.

Cope with biased sampling The model should deal with the fact that we are
not managing a supervised experiment, that is, we are not randomly sam-
pling from the population. We are using an available data set to derive safe
consequences, but these data could, in principle, be incomplete, inaccurate
or biased, and we must take this into account.
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Ability to handle samples from mixtures of probability distributions
The data we have at our disposal may have been drawn from diverse distri-
butions, so we can’t use the central limit theorem, because it relies on the
fact that the sequence of variables is identically distributed. This implies the
impossibility to make use of estimators that approximate by means of the
Normal distribution.

Ability to handle temporal variability of parameters Data distributions
can change over time, and this variability has to be properly accounted.

Complementarity with higher order layers The aim of the approach is to
quantify the intrinsic uncertainty in the data provided by the reasoning layer,
and, in turn, to provide to higher order layers (time series analysis, decision
strategy, trust, etc.) reliable data and/or metadata.

2.3 Related work

The models adopted here are applied in a variety of fields. For the parametric
models, examples of applications are: topic identification and document cluster-
ing (see [18, 6]), quantum physics (see [15]), and combat modeling in the naval
domain (see [17]). What these heterogeneous fields have in common is the pres-
ence of multiple levels of uncertainty (for more details about this, see sect. 4).

Also non-parametric models are applied in a wide variety of fields. Examples
of these applications include document classification [3] and haplotype inference
[30]. These heterogeneous fields have in common with the previous application
the presence of several layers of uncertainty, but they also show lack of prior
information about the number of parameters. These concepts will be treated in
section 5 where even the Wilcoxon sign-ranked test (see [29]), used for validation
purposes, falls into the non-parametric models class.

As to our knowledge, the chosen models have not been applied to categorical
Web data yet. We propose to adopt them, because, as the following sections will
show, they fit the requirements previously listed.

3 Prelude: Conjugate priors

To tackle the requirements described in the previous section, we adopt some
bayesian parametric and non-parametric models in order to be able to answer
questions about Web data.

Conjugate priors (see [12]) are the “leit motiv”, common to all the models
adopted here. The basic idea starts from the Bayes theorem (1): given a prior
knowledge and our data, we update the knowledge into a posterior probability.

P (A|B) = P (B|A) ∗ P (A)
P (B) (1)

This theorem describes how it is possible to compute the posterior probability,
P (A|B), given the prior probability of our data, P (A), the likelihood of the
model, given the data, P (B|A), and the probability of the model itself, P (B).
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When dealing with continuous probability distributions, the computation of
the posterior distribution by means of Bayes theorem can be problematic, due to
the need to possibly compute complicated integrals. Conjugate priors allow us
to overcome this issue: when prior and posterior probability distributions belong
to the same exponential family, the posterior probability can be obtained by
updating the prior parameters with values depending on the observed sample
(see also [9]). Exponential families are classes of probability distributions having
their density functions sharing the form f(x) = ea(q)b(x)+c(q)+d(x), with q a
known parameter and a, b, c, d known functions. Exponential families include
many important probability distributions, like the Normal, Binomial, Beta, etc.,
see [5]. So, if X is a random variable that distributes as defined by the function
P (p) (for some parameter or vector of parameters p) and, in turn, p distributes as
Q(α) for some parameter (or vector of parameters) α called “hyperparameter”),
and P belongs to the same exponential family as Q,

p ∼ Q(α), X ∼ P (p)
then, after having observed obs,

p ∼ Q(α′)
where α′ = f(α, obs), for some function f . For example, the Beta distribution
is the conjugate of the Binomial distribution. This means that the Beta, shaped
by the prior information and by the observations, defines the range within which
the parameter p of the Binomial will probably be situated, instead of directly
assigning to it the most likely value. Other examples of conjugate priors are:
Dirichlet, which is conjugate to the Multinomial, and Gaussian, which is conju-
gate to itself.

Conjugacy guarantees ease of computation, which is a desirable characteristic
when dealing with very big data sets as Web data sets often are. Moreover, the
model is incremental, and this makes it fit the crawling process with which
Web data are obtained, because crawling, in turn, is an incremental process.
Both the heterogeneity of the Web and the crawling process itself increase the
uncertainty of Web data. The probabilistic determination of the parameters of
the distributions adds a smoothing factor that helps to handle this uncertainty.

4 Parametric bayesian models for categorical Web data
In this section we will handle situations where the number of categories is known
a priori, by using the Dirichlet-Multinomial model and its special case with two
categories, i.e. the Beta-Binomial model [9]. As generalized versions of the Bino-
mial and Multinomial distribution, they describe the realization of sequences of
mutually exclusive events. Categorical data can be seen as examples of such se-
quences. These models are parametric, since the number and type of parameters
is given a priori, and they can also be classified as “empirical bayesian models”.
This further classification means that they can be seen as an approximation of
a full hierarchical bayesian model, where the prior hyperparameters are set to
their maximum likelihood values according to the analyzed sample.
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4.1 Case study 1: Deciding between alternatives - ratio estimation

Suppose that a museum has to annotate a particular item I of its collection.
Suppose further, that the museum does not have expertise in the house about
that particular subject and, for this reason, in order to correctly classify the
item, it seeks judgments from outside people, in particular from Web users that
provide evidence of owning the desired expertise.

After having collected judgements, the museum faces two possible classifica-
tions for the item, C1 and C2. C1 is supported by four experts, while C2 by only
one expert. We can use these numbers to estimate a probability distribution that
resembles the correct distribution of C1 and C2 among all possible annotations.

A basic decision strategy that could make use of this probability distribu-
tion, could accept a certain classification only if its probability is greater or
equal to a given threshold (e.g. 0.75). If so, the Binomial distribution repre-
senting the sample would be treated as representative of the population, and
the sample proportions would be used as parameters of a Bernoulli distribution
about the possible classifications for the analyzed item: P (class(I) = C1) =
4/5 = 0.8, P (class(I) = C2) = 1/5 = 0.2. (A Bernoulli distribution describes
the possibility that one of two alternative events happens. One of these events
happens with probability p, the other one with probability 1 − p. A Binomial
distribution with parameters n, p represents the outcome of a sequence of n
Bernoulli trials having all the same parameter p.)

However, this solution shows a manifest leak. It provides to the decision
strategy layer the probabilities for each of the possible outcomes, but these
probabilities are based on the current available sample, with the assumption
that it correctly represents the complete population of all existing annotations.
This assumption is too ambitious. (Flipping a coin twice, obtaining a heads and
a tails, does not guarantee that the coin is fair, yet.)

In order to overcome such a limitation, we should try to quantify how much
we can rely on the computed probability. In other words, if the previously com-
puted probability can be referred as a “first order” probability, what we need to
compute now is a “second order” probability (see [15]). Given that the conjugate
prior for the Binomial distribution representing our data is the Beta distribution,
the model becomes:

p ∼ Beta(α, β), X ∼ Bin(p, n) (2)

where α = #evidenceC1 + 1 and β = #evidenceC2 + 1.
By analyzing the shape of the conjugate prior Beta(5,2), we can be certain

enough about the probability of C1 being safely above our acceptance threshold.
In principle, our sample could be drawn by a population distributed with a
40%−60% proportion. If so, given the threshold of acceptance of 0.75, we would
not be able to take a decision based on the evidence. However, the quantification
of that proportion would only be possible if we know the population. Given that
we do not have such information, we need to estimate it, by computing (3), where
we can see how the probability of the parameter p being above the threshold is
less than 0.5. This manifests the need for more evidence: our sample suggests to
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accept the most popular value, but the sample itself does not guarantee to be
representative enough of the population.

P (p ≥ 0.75) = 0.4660645, p ∼ Beta(5, 2) (3)

Table 1 shows how the confidence in the value p being above the threshold grows
as long as we increase the size of the sample, when the proportion is kept. By ap-
plying the previous strategy (0.75 threshold) also to the second order probability,
we will still choose C1, but only if supported by a sample of size at least equal to
15.

Table 1: The proportion within
the sample is kept, so the most
likely value for p is always exactly
that ratio. However, given our 0.75
threshold, we are sure enough only
if the sample size is 15 or higher.

#C1 #C2 P (p ≥ 0.75)
p ∼ Beta(#C1 + 1,#C2 + 1)

4 1 0.4660645
8 2 0.5447991
12 3 0.8822048
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Fig. 1: Comparison between Binomial
and Beta-Binomial with increasing sam-
ple size. As the sample size grows, Beta-
Binomial approaches Binomial.

Finally, these considerations could
also be done on the basis of the
Beta-Binomial distribution, which is
a probability distribution represent-
ing a Binomial which parameter p is
randomly drawn from a Beta distribu-
tion. The Beta-Binomial summarizes
model (2) in one single function (4).
We can see from Table 2 that the ex-
pected proportion of the probability
distribution approaches the ratio of
the sample (0.8), as the sample size
grows. If so, the sample is regarded as
a better representative of the entire
population and the Beta-Binomial, as
sample size grows, will converge to the
Binomial representing the sample (see
Fig. 1).

X ∼ BetaBin(n, α, β) = p ∼ Beta(α, β), X ∼ Bin(n, p) (4)

4.2 Case study 2: deciding proportions - confidence intervals
estimation

The Linked Open Piracy1 is a repository of piracy attacks that happened around
the world in the period 2005 - 2011, derived from reports retrieved from the ICC-
1 http://semanticweb.cs.vu.nl/lop
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X E(X) p = E(X)/n
BetaBin(5,5,2) 3.57 0.71
BetaBin(5,9,3) 3.75 0.75
BetaBin(5,13,4) 3.86 0.77

Table 2: The sample proportion is
kept, but the “expected propor-
tion” p of Beta-Binomial passes the
threshold only with a large enough
sample. E(X) is the expected value.

CCS website.2 Attack descriptions are provided, in particular covering their type
(boarding, hijacking, etc.), place, time, as well as ship type.

Data about attacks is provided in RDF format, and a SPARQL (see [28])
endpoint permits to query the repository. Such a database is very useful, for
instance, for insurance companies to properly insure ships. The premium should
be related to both ship conditions and their usual route. The Linked Open Piracy
repository allows an insurance company to estimate the probability to be victim
of a particular type of attacks, given the programmed route. Different attack
types will imply different risk levels.
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Fig. 2: Attack type proportion and
confidence intervals

However, directly estimating the
probability of a new attack given the
dataset, would not be correct, because,
although derived from data published
from an official entity like the Chamber
of Commerce, the reports are known to
be incomplete. This fact clearly affects
the computed proportions, especially
because it is likely that this incom-
pleteness is not fully random. There are
particular reasons why particular at-
tack types or attacks happening in par-
ticular zones are not reported. There-
fore, beyond the uncertainty about the
type of next attack happening (first or-
der uncertainty), there will be an addi-
tional uncertainty order due to the un-
certainty in the proportions themselves. This can be handled by a parametric
model that will allow to estimate the parameters of a Multinomial distribution.
The model that we are going to adopt is the multivariate version of the model
described in section 4, that is, the Dirichlet-Multinomial model (see [6, 17, 18]):

Attacks ∼ Multinom(params), params ∼ Dirichlet(α) (5)

where α is the vector of observations per attack type (incremented by one unit
each, as the α and β parameters of Beta probability distribution). By adopting
this model, we are able to properly handle the uncertainty carried by our sample,
due to either time variability (over the years, attack type proportions could
have changed) or biased samples. Drawing the parameters of our Multinomial
2 http://www.icc-ccs.org/

21



distribution from a Dirichlet distribution instead of directly estimating them,
allows us to compensate for this fact, by smoothing our attacks distribution. As
a result of the application of this model, we can obtain an estimate of confidence
intervals for the proportions of the attack types (with 95% of significance level,
see (6)). These confidence intervals depend both on the sample distribution and
on its dimension (Fig. 2).

∀p ∈ param,CIp = (p− θ1, p+ θ2), P (p− θ1 ≤ p ≤ p+ θ2) = 0.95 (6)

5 Non-parametric bayesian models

In some situations, the previously described parametric models do not fit our
needs, because they set a priori the number of categories, but this is not al-
ways possible. In the previous example, we considered and handled uncertainty
due to the possible bias of our sample. The proportions showed by our sample
could be barely representative of the entire population because of a non-random
bias, and therefore we were prudent in estimating densities, even not discard-
ing entirely those proportions. However, such an approach lacks in considering
another type of uncertainty: we could not have seen all the possible categories
and we are not allowed to know all of them a priori. Our approach was to look
for the prior probability to our data in the n-dimensional simplex, where n is
the number of categories, that is, possible attack types. Now such an approach
is no more sufficient to address our problem. What we should do is to add yet
another hierarchical level and look for the right prior Dirichlet distribution in
the space of the probability distributions over probability distributions (or space
of simplexes). Non-parametric models differ from parametric models in that the
model structure is not specified a priori but is instead determined from data.
The term non-parametric is not meant to imply that such models completely
lack parameters, but that the number and nature of the parameters are flexible
and not set in advance. Hence, these models are also called “distribution free”.

5.1 Dirichlet Process

Dirichlet Processes [8] are a generalization of Dirichlet distributions, since they
correspond to probability distributions of Dirichlet probability distributions.
They are stochastic processes, that is, sequences of random variables (distributed
as Dirichlet distributions) which value depends on the previously seen ones. Us-
ing the so-called “Chinese Restaurant Process” representation (see [22]), it can
be described as follows:

Xn =
{
X∗k with probability numn−1(X∗k)

n−1+α
new draw from H with probability α

n−1+α
(7)

where H is the continuous probability measure (“base distribution”) from which
new values are drawn, representing our prior best guess. Each draw from H will
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return a different value with probability 1. α is an aggregation parameter, inverse
of the variance: the higher α, the smaller the variance, which can be interpreted
as the confidence value in the base distribution H: the higher the α value is,
the more the Dirichlet Process resembles H. The lower the α is, the more the
value of the Dirichlet Process will tend to the value of the empirical distribution
observed. Each realization of the process is discrete and is equivalent to a draw
from a Dirichlet distribution, because, if

G ∼ DP (H,α) (8)

is a Dirichlet Process, and {B}ni=1 are partitions of S, we have that

(G(B1)...G(Bn)) ∼ Dirichlet(αH(B1)...αH(Bn)) (9)

If our prior Dirichlet Process is (8), given (9) and the conjugacy between
Dirichlet and Multinomial distribution, our posterior Dirichlet Process (after
having observed n values θi) can be represented as one of the following two
representations:

(G(B1)...G(Bn))|θ1...θn ∼ Dirichlet(αH(B1) + nθ1 ...αH(Bn) + nθn) (10)

G | θ1...θn ∼ DP
(
α+ n,

α

α+ n
H + n

α+ n

Σn
i=1δθi
n

)
(11)

where δθi is the Dirac delta function (see [4]), that is, the function having density
only in θi. The new base function will therefore be a merge of the prior H and
the empirical distribution, represented by means of a sum of Dirac delta’s. The
initial status of a Dirichlet Process posterior to n observations, is equivalent to
the nth status of the initial Dirichlet Process that produced those observations
(see De Finetti theorem, [13]).

The Dirichlet process, starting from a (possibly non-informative) “best guess”,
as long as we collect more data, will approximate the real probability distribu-
tion. Hence, it will correctly represent the population in a prudent (smoothed)
way, exploiting conjugacy like the Dirichlet-Multinomial model, that approxi-
mates well the real Multinomial distribution only with a large enough data set
(see section 4). The improvement of the posterior base distribution is testified
by the increase of the α parameter, proportional to the number of observations.

5.2 Case study 3: Classification of piracy attacks - unseen types
generation

We aim at predicting the type distributions of incoming attack events. In order
to build an “infinite category” model, we need to allow for event types to be
randomly drawn from an infinite domain. Therefore, we map already observed
attack types with random numbers in [0..1] and, since all events are a priori
equally likely, then new events will be drawn from the Uniform distribution,
U(0, 1), that is our base distribution (and is a measure over [0..1]). The model
then is:
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– type1 ∼ DP (U(0, 1), α): the prior over the first attack type in region R;
– attack1 ∼ Categorical(type1): type of the first attack in R during yeary.

After having observed attack1...n during yeary, our posterior process becomes:

typen+1 | attack1...n ∼ DP
(
α+ n,

α

α+ n
U(0, 1) + n

α+ n

Σn
i=1δattacki

n

)

where α is a low value, given the low confidence in U(0, 1), and typen+1 is the
prior of attackn+1, that happens during yeary+1. A Categorical distribution is
a Bernoulli distribution with more than two possible outcomes (see Section 4).

Results Focusing on each region at time, we simulate all the attacks that hap-
pened there in yeary+1. Names of new types generated by simulation are matched
to the actual yeary+1 names, that do not occur in yeary, in order of decreasing
probability. The simulation is compared with a projection of the proportions of
yearn over the actual categories of yearn+1. The comparison is made by measur-
ing the distance of our simulation and of the projection from the real attack types
proportions of yeary+1 using the the Manhattan distance (see [16]). This metric
simply sums, for each attack type, the difference between the real yeary+1 prob-
ability and the one we forecast. Hence, it can be regarded as an error measure.
Table 3 summarizes the results over the entire dataset.3 Our simulation reduces
the distance (i.e. the error) with respect to the projection, as confirmed by a
Wilcoxon signed-rank test [29] at 95% significance level. (This non-parametric
statistical hypothesis test is used to determine whether one of the means of the
population of two samples is smaller/greater than the other.) The simulation
improves when large amount of data is available and the category cardinality
varies, as in case of Region India, which results are reported in Fig. 3 and 4a.

Table 3: Averages and variances of
the error of the two forecasts. The
simulation gets a better performance.

Simulation Projection
Average distance 0.29 4 0.35
Variance 0.09 4 0.21
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Fig. 3: Comparison between the projection forecast and the simulation forecast
with the real-life year 2006 data of region India.

3 The code can be retrieved at http://www.few.vu.nl/~dceolin/DP/Dir.R
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Fig. 4: Error distance from real distribution of the region India (fig. 4a) and
differences of the error of forecast based on simulation and on projection (fig. 4b).
Positive difference means that the projection predicts better than our simulation.

6 Conclusions and future work

The fact that our proposed models fit well with the expressed requirements is
apparently a good hypothesis to continue to explore, because we have seen how it
is possible to handle such uncertainty and to transform it in a smoothing factor
of the probability distribution that we estimate given our evidence, by allowing
the parameters of our distributions to be probabilistically determined. Moreover,
we have built models able to produce reliable forecasts also when not every class
is know a priori. We also provided case study validation of the suggested models.

The set of models will be extended to deal with concrete domain data (e.g.
time intervals, measurements), for instance, by adopting the Normal or the Pois-
son Process (see [9]). Moreover, automatic model selection will be investigated,
in order to choose the best model also when the limited information about our
problems could make more models suitable. From a pure Web perspective, our
models will be extended to properly handle contributions coming from differ-
ent sources together with their reputation. This means, on one side, considering
also provenance (like in [1]) and, on the other side, using Mixture Models ([23]),
Nested ([24]) and Hierarchical Dirichlet Processes ([25]), eventually employing
Markov Chain Monte Carlo algorithms (see [7, 21]) to handle lack of conjugacy.
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Abstract. Standard semantic technologies propose powerful means for 
knowledge representation as well as enhanced reasoning capabilities to modern 
applications. However, the question of dealing with uncertainty, which is 
ubiquitous and inherent to real world domain, is still considered as a major 
deficiency. We need to adapt those technologies to the context of uncertain 
representation of the world. Here, this issue is examined through the evidential 
theory, in order to model and reason about uncertainty in the assertional 
knowledge of the ontology. The evidential theory, also known as the Dempster-
Shafer theory, is an extension of probabilities and proposes to assign masses on 
specific sets of hypotheses. Further on, thanks to the semantics (hierarchical 
structure, constraint axioms and properties defined in the ontology) associated 
to hypotheses, a consistent frame of this theory is automatically created to apply 
the classical combinations of information and decision process offered by this 
mathematical theory.  

Keywords: Ontologies, OWL, Uncertainty, Dempster-Shafer Theory, Belief 
Functions, Semantic Similarity. 

1   Introduction 

Uncertainty is an important characteristic of data and information handled by real-
world applications. The term "uncertainty" refers to a variety of forms of imperfect 
knowledge, such as incompleteness, vagueness, randomness, inconsistency and 
ambiguity. In this approach, we consider only the epistemic uncertainty, due to lack 
of knowledge (incompleteness) and the inconsistency, due to conflicting testimonies 
or reports. This paper presents a proposal on a possible way to tackle the issue of 
representing and reasoning on this type of uncertainty in semantic applications, by 
using the Dempster–Shafer theory [1], also known as “evidential theory” or “belief 
function theory”. The general objective of our applications is to form the most 
informative and consistent view of the situation, observed by multiple sources. These 
observations populate our domain ontology. Thus, we consider that the uncertainty 
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has to be embodied in the instantiation rather than in the structural knowledge of 
ontology. One of our requirements is that a source can assign a belief on any instance 
without worrying of any level of granularity or disjointness of these instances. For 
example, one source could assign a belief on an instance of class Vehicle and, at the 
same time, another belief on an instance of type Car, which inherits from the class 
Vehicle. 

The following section of this paper introduces the basic definitions and notations of 
the Dempster–Shafer theory. Section 3 presents our ontology modeling of the 
representation of uncertainty, using evidential theory. In the fourth section, we 
address how to reason with the evidential theory while benefiting from the semantics 
included in the domain ontology. Section 5 proposes to position our approach by 
comparing it with already existing works in the domain of uncertainty and the 
Semantic Web. 

2   Basis of Dempster-Shafer Theory 

The Dempster–Shafer theory [1] allows the combination of distinct evidence from 
different sources in order to calculate a global amount of belief for a given 
hypothesis. It is often presented as a generalization of the probability theory. It 
permits to manage uncertainties as well as inaccuracies and ignorance. 

2.1   Frame of Discernment  

Let Ω be the universal set, also called the discernment frame. It is the set of all the N 
states (hypothesis) under consideration: { }NHHH ,.., 21=Ω . 

The universal set is supposed to be exhaustive and all hypotheses are exclusives. 
Exhaustivity refers to the closed-world principle. From this universal set, we can 
define a set, noted 2Ω. It is called the power set and is the set of all possible sub-sets 
of Ω, including the empty set. It is defined as follows: 

{ } { } { } { }{ }Ω=Ω⊆=Ω ,...,,,,...,Ø,2 211 HHHHAA N . 

2.2   Basic Mass Assignment and Belief Measures 

A source, who believes that one or more states in the power set of Ω might be true, 
can assign belief mass to these states. Formally, a mass function is defined by: 

[ ]1,02: →Ωm  . (1) 

It is also called a basic belief assignment and it has two properties:  

0)Ø( =m  and    1)(
2

=∑
Ω∈A

Am  . (2) 

This quantity differs from a probability since the total mass can be given either to 
singleton hypothesis Hn or to composite ones. 
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The main other belief measures are belief and plausibility. Belief bel(A) for a set A is 
defined as the sum of all the masses of the subsets of the set of interest: 

∑
⊆

=
ABB

BmAbel )()(     Ω⊆∀A . (3) 

 

It is the degree of evidence that directly supports the given hypothesis A at least in 
part, forming a lower bound. The plausibility pl(A) is the sum of all the masses of the 
sets B that intersect the set of interest A: 

∑
≠∩

=
Ø

)()(
ABB

BmApl   Ω⊆∀A . (4) 

 

pl(A) can be interpreted as the part of belief which could be potentially allocated to A, 
taking into account the elements that do not contradict this hypothesis. It is seen as an 
upper bound. 

2.4   Information Fusion 

Modeling by masses through the evidential theory would be useless without an 
adequate combination enabling the fusion of a set of information sources. This is 
especially the role of the Dempster’s rule of combination. Namely, it combines two 
independent sets of mass assignments (i.e. from difference sources). The combination 
(called the joint mass) is calculated from the two sets of masses m1 and m2 in the 
following manner: 
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where       )()( 2
Ø

112 CmBmK
CB
∑

=∩

=  . (6) 

K is a measure of the amount of conflict between the two mass sets. K is ranging from 
0 to 1. Dempster’s rule corresponds to the normalized conjunctive operator. Other 
combination rules exist, such as the disjunctive combination and other operators that 
reassign the amount of conflict differently [2]. 

3   DS-Ontology Modeling 

The first step of our approach is to model and represent the uncertainty through 
ontologies. Modeling is proposed through a specific ontology that needs to be 
imported in the initial domain ontology.  This initial domain ontology is the ontology 
we want to instantiate in an uncertain way. The imported ontology is called DS-
Ontology. It is described in the following.  
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3.1   Structural Knowledge of the DS-Ontology  

This ontology is a formal representation of the theory of Dempster-Shafer, as it 
proposes a shared understanding of the main concepts: mass, belief, plausibility, 
source, etc. It is non-domain specific, since one can use it in every area of knowledge. 
It has been coded in OWL2 language [3]. Hereafter is an informal schema of the 
terminology of DS-Ontology.  

 

Fig. 1. Informal ontology structure schema. Yellow boxes represent OWL classes. Grey ones 
refer to datatypes (XML ones and user defined datatype). Arrows symbolize properties. 
Resources appearing without namespace prefix come from the DS-Ontology whose namespace 
is http://DS-Ontology.owl. 

The main classes are Uncertain_concept and DS_concept. The DS_concept class 
links the hypothesis, with the source and the numerical amount of belief related to the 
hypothesis. The hypothesis consists either of a singleton or a union of hypotheses. 
Hypotheses are in fact instances of the domain ontology. Instances are either 
individuals of classes or instances of properties. The Uncertain_concept class links 
together all the DS_concept that are related to the same context. Indeed, the 
uncertainty is embodied by several candidate instances (with an assigned belief) and 
the uncertainty is concretely instantiated through one instance of Uncertain_concept. 
Uncertain_concept enables to retrieve the set of hypotheses under consideration, i.e. 
the power set 2Ω.  

In order to represent uncertainty both on individuals and on asserted properties, 
DS_concept and Uncertain_concept have been specialized. They are specified in 
subclasses XX_class and XX_property (XX prefix representing both DS and 
Uncertain). Uncertain_concept is now an equivalent class to the union of 
Uncertain_property and Uncertain_class, while the latter two are disjoint. 
Respectively, this holds for DS-concept and its subclasses.  

The hasDS_hypothesis object property relates an instance of DS_class to a set of 
candidate individuals. Concerning candidate properties, things have been done 
differently. Indeed, OWL properties are not first-class citizens, contrary to OWL 
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classes; as such OWL properties cannot be related to each others: a property cannot 
be the subject or object of another property. To get around this, an object property 
hasUncertain_property has been introduced. The original subject of the candidate 
property is the subject of hasUncertain_property. The domain of 
hasUncertain_property is intuitively the class Uncertain_Property. Then, 
DS_Property instances are directly the subject of the candidate properties while their 
object remains unchanged. 

An illustration of the use of the DS-Ontology is given in the next section. 
As with the Dempster-Shafer theory, the modeling of ignorance is made possible. It 

is realized through an instance of DS_concept linked to all hypothetical instances. 
Ontologies evolve within the open world assumption. However, the original 
evidential theory assumes a closed world and that is why the measure of the amount 
of conflict exists. Therefore, we should for instance opt for an Open Extended World 
extension of the Dempster-Shafer theory [4]. Applied to ontologies, it consists in 
modeling another concept, with prefix: “Other_Hypothesis”. This element is included 
in the DS-Ontology (both as a class and a property) and is asserted if needed to 
embody hypothesis, which does not correspond to any already defined concept in the 
domain ontology. 

We represent numerical evidential belief through a specificUncertaintyDatatype 
which is a user-defined datatype defined in our DS-Ontology to restrict its value to an 
xsd:double ranging from 0 to 1. 

In our model, Uncertain_concept and DS_concept are classes that let grouping 
together collected pieces of information about an uncertain instance we want to 
model and reason about. It can be viewed as a reification process, where an 
addressable object is created as a proxy for non-addressable objects. Informally, 
reification is often referred to as “making something a first-class citizen” within the 
scope of a particular system. Reification is one of the most frequently used techniques 
of conceptual analysis and knowledge representation. Even if RDF language enables 
reification process [5], we choose to model explicitly in an ontology our full 
representation, instead of using annotations not defined in the ontology. As a 
consequence, the uncertainty extension of OWL through the DS-Ontology is 
completely compliant with the basic principle of OWL ontologies to structure 
knowledge in two levels: structural and assertional. 

3.2   Instantiation Example 

Our applications aim mainly at observing real world situations through different 
perspectives (sources) and give an understandable and fused analysis of what is going 
on in this situation to the final decision maker. This simplified scenario involves here 
two distinct sources. One is a human while the other is an automatic sensor, such as 
radar. They both want to express that something is going into a specific direction; the 
“something” entity is the same object for both sources; however, they are not sure 
about how to identify this object. Indeed, the radar source can only distinguish a land 
vehicle from an aircraft; it assigns here a more important belief on the fact that it is an 
instance of a land vehicle. The second source is a human, who has a slight and far 
away view of the situation is assigning different beliefs to an instance of car which 
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looks like red, or a fire truck or a more imprecisely one to a land vehicle. In most 
cases, we do not have to assess the belief assigned to hypotheses by ourselves, it is 
directly given by the sources according to their condition of use (e.g. meteorology, 
proximity, etc.) and we apply possibly a weakening coefficient according to the 
source reliability. The structural knowledge of this domain is modeled through an 
ontology (http://ontology-uri.owl), whose hierarchical structure is captured in figure 
2.  

 

Fig. 2. Protégé snapshot of the structural knowledge of the ontology. 

In addition to the hierarchical structure of the knowledge, domain and range of 
properties are also defined, as well as additional information concerning a priori 
information about the world. For instance, in this domain ontology, it is mentioned 
that a fire truck individual is always associated to the property hasMainColor with the 
value red.  According to the sources and to the domain ontology, the assertional 
knowledge of this ontology involves: 
- http://ontology-uri.owl#direction: an individual of class http://ontology-

uri.owl#Direction 
- respectively #landVehicle for class #LandVehicle 
- respectively #aircraft for class #Aircraft 
- respectively #fireTruck for class #FireTruck 
- respectively #red for class #Color 
- respectively #car for class #Car which is linked to the individual #red through the 

#hasMainColor property. 
The set of candidate instances are: {#landVehicle, #aircraft, #fireTruck, #car}. We 
refer here to IRI instances only with their local name, omitting the namespace. 
Regarding the Dempster-Shafer theory, the masses are assigned by the sources as: 

• mradar({#landVehicle}) = 0.6 ; mradar({#aircraft}) = 0.1 ; mradar({#landVehicle, 
#aircraft}) = 0.3 

• mhuman({#car}) = 0.2 ; mhuman({#fireTruck}) = 0.4 ; mhuman({#landVehicle}) = 0.4 
This domain ontology imports the DS-Ontology, in order to represent all these pieces 
of knowledge within the domain ontology. Two more individuals are created to 
represent the sources: 
- #human for class http://DS-Ontology.owl#Reporting_Source 
- #radar  for class http://DS-Ontology.owl#Reporting_Source 
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The following figure illustrates through a non-formal ontological schema, how the 
instances are linked together.  

 

Fig. 3. Uncertain individuals scenario 

4   Evidential Reasoning on DS-Ontology 

Once the uncertainty contained in the information has been represented, reasoning 
processes have to be conducted to fuse the different observation and eventually decide 
of the instance with the most likelihood. This section has to be viewed as the 
chronological steps that are realized by the system in order to reason on the uncertain 
pieces of information represented through the DS-Ontology. 

4.1   Generate automatically the Discernment Frame  

One Uncertain_concept instance of the DS-Ontology groups a set of candidate 
instances together (either individuals or properties). From this set of instances, we 
want to determine automatically a consistent frame of discernment, according to the 
Dempster-Shafer theory. The underlying assumptions of the theory are: an exhaustive 
frame of discernment and the exclusivity of elements of Ω  (see section 2.1). In this 
paper, we have already managed the first constraint within the Open World 
assumption of ontologies in the modelling of the DS-Ontology. The second constraint 
of the frame of discernment is the exclusivity of its elements. This implies that each 
singleton hypothesis (i.e. the elements of Ω) are disjoint. In other words, if H1 and H2 

are two singletons, we cannot have H1 ⊂ H2 or even H1 ∩ H2 ≠ ∅. In the instantiation 
example, #fireTruck and #car individuals are semantically “included” in 
#landVehicle. As there is an inclusion, #fireTruck and #car individuals have also a 
non-null intersection with the #landVehicle individual.  Moreover, #fireTruck has a 
non-null intersection with #car. Indeed, these two individuals are sharing many 

33



characteristics in common: they are both land vehicles and their main colors are in 
both cases red. 

To deal with this second constraint, we take into account the explicit and inferred 
semantics of the domain ontology to generate the discernment frame. The granularity 
of the set of candidate instances affects the generation of the discernment frame. The 
semantic will help us determining the inclusion of hypotheses as well as the semantic 
similarity between instances. The whole set of candidate instances will help us fixing 
a threshold for semantic distances.  

4.1.1   Semantic Inclusion/Intersection  
The semantic inclusion is quite straightforward to determine. Indeed, in case the 
instances are property assertions, for example if a property P1 has for ancestor P2, 
then we say that P1 is included in P2. Otherwise, in case the instances are individuals 
and they have zero or the same properties (or some included property), then there is 
an inclusion. In all other cases, the inclusion does not hold. 

Concerning semantic intersection, things go a little further. First of all, logically, if 
two instances have already a semantic inclusion, then they also have a non-null 
semantic intersection. In all other cases, we will consider that two instances have a 
non-null intersection when their semantic similarity is exceeding a certain threshold. 
More specifically, our similarity measure is a global function, which combines 
existing similarity measure defined in literature. As for individuals, it is a mixture of 
similarity measure of their respective types and similarity measures concerning their 
relations. Wu & Palmer similarity measure [6] is used to qualify the similarity 
between two instances based on their respective type. It takes into account the 
distance that separates two types in the hierarchy and their position with the root. 
Equation (7) depicts their formula. C1 and C2 are two classes. Class C is the 
immediate mother-class of C1 and C2 that subsumes both classes. depth(C) function 
is the number of edges separating C from the root. depthC(Ci) is the number of edges 
which separate Ci from the root while passing by C. 

2)( + 1)(

)(*2
)2,1(

CC CdepthCdepth

Cdepth
CCconSim = . (7) 

 The other combined similarity measures count the number of identical properties 
versus the number of different properties related to the two individuals. This is 
calculated both for object properties and datatype properties.  On equation (8), I1 and 
I2 are the two individuals for which the global semantic similarity measure is 
calculated. For object properties (respectively for datatype properties), nbProp(I) is 
the number of object properties (resp. of datatype properties) of individual I. 
nbPropComm(I1,I2) is the number of common properties - identical predicate and 
related individual or value - for the two individuals I1 and I2. These three similarity 
measures focusing on the similarity of the types of individuals and their 
characteristics (through the datatype and object properties) are combined through a 
weighted mean. 

)2( + )1(

)2,1(*2
)2,1(

InbPropInbProp

IInbPropComm
IIpropSim = . (8) 
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Once the cross-similarity measure of the set of all candidate instances is calculated, 
the threshold is fixed through a clustering method. The threshold is thus varying 
according to all the computed semantic similarities. This process permits to adapt the 
granularity of the set of candidate instances. It translates our general impression that 
the concept of a compact car is closer to the concept of minivan than of a plane’s; 
however the concept of a compact car is closer to the concept of plane than of a 
book’s. In the first case, the intersection should be brought by the pair (compact car, 
minivan), whereas in the latter, it should be brought by the pair of (compact car, 
plane). It should be noted that, in both cases, the concepts of compact car and plane 
have the same semantic similarity. As a consequence, the semantic intersection is 
seen as a Boolean condition on the similarity measure exceeding the threshold.  
Finally, we consider the evidential set inclusion (respectively intersection) as 
equivalent to the semantic inclusion (respectively intersection). In case of our 
scenario, the intersection and inclusion are graphically represented on the figure 
below. 

 

Fig. 4. Inclusion and intersection of candidate instances 

 4.1.2   From the Set of Candidates Instances to the Discernment Frame  
Once the intersection and inclusion of candidate instances identified, we are able to 
set up a consistent frame of discernment. For this, we reframe the set of candidate 
instances into single or composite disjoint hypotheses.  
In case of a discovered intersection between two candidate instances #inst1 and 
#inst2, #inst1 is reformulated as the union of two singletons {H1, Hinters} and #inst2 as 
{H 2, Hinters}. In case of discovered inclusions between two candidate instances #inst1 
and #inst2, where #inst1 is included in #inst2, #inst1 is represented by a single 
hypothesis {H1} and #inst2 by the union of hypotheses {H2, H1}.  Single hypotheses, 
grouped together, constitute the frame of discernment. In fact, each initial candidate 
instance belongs to the power-set of the frame of discernment. Taking our scenario, 
each candidate instance can now be decomposed as such: 
- #aircraft = {H1} 
- #car = {H2, H3} 
- #fireTruck = { H3, H4} 
- #landVehicle = {H2, H3, H4, H5} 
Indeed, relying on Figure 4, #aircraft instance has no intersection nor inclusion; thus, 
it constitutes a single hypothesis within the frame of discernment. The non-null 
intersection, between #fireTruck and #car instances, has been modeled through a 
common and shared single hypothesis: H3. Finally, the inclusion brought by 
#landVehicle results in the union of the set of single hypotheses of #fireTruck and 
#car, in addition to its own singleton H5. 
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4.2   Use Dempster-Shafer Calculations on DS-Ontology 

Once the discernment frame has been obtained, we can reformulate in the Dempster-
Shafer formalism, the basic mass assignment of the scenario: 
• mradar({H 2, H3, H4, H5}) = 0.6 ; mradar({H 1}) = 0.1 ; mradar({H 1, H2, H3, H4, H5}) = 0.3 
• mhuman({H 2, H3}) = 0.2 ; mhuman({H 3, H4}) = 0.4 ; mhuman({H 2, H3, H4, H5}) = 0.4 
We are now able to apply directly the classical combination rules found in the 
Dempster-Shafer theory, and then go through the decision process.   

5    Related Work 

During the last decade, approaches considering both uncertainty and the Semantic 
Web have been proposed. In this section, we mention some of them in order to 
position and compare our work. We consider their goal, underlying mathematical 
theory and processes. 

Fuzzy and rough set theories aim to model vagueness and uncertainty. Regarding 
fuzzy sets, classes are considered to have unsharp definitions. fuzzyDL approach [7] 
aims to represent and reason about a membership function specifying the degree to 
which an instance belongs to a class. Even if it could be interesting to take into 
account fuzzy aspect of hypotheses especially those formulated by human sources, it 
is not the purpose of our approach to model more precisely our knowledge, but to 
decide among multi hypotheses and have a more coherent and reliable view of the 
situation. Approaches in [8, 9] are relying on rough set theory – which considers the 
indiscernability between objects. In that case, classes are not restricted to a crisp 
representation; they may be coarsely described with approximations. In [9], the 
author is using rough classes to generate new subclasses or relations by mining an 
important set of instances already existing. This can be part of the ontology 
engineering process. The goal is here also different to ours; however, some notions 
and process are similar. First, the design of a rough OWL ontology can be seen as the 
matching piece to our DS-Ontology for the Dempster-Shafer theory. Moreover, the 
use of p-indistinguishable properties notion for two individuals can be linked to our 
so-called common properties in Equation (8) when processing the similarity measure 
between two instances. Finally, descriptions for lower and upper approximation – 
through intersection and inclusion considerations - remind us the definition of the 
exclusivity of our frame of discernment; however, they consider here intersection and 
inclusion between two classes whereas we calculate it between two individuals. 

Probabilistic adaptations or extensions (Pr-OWL [10], BayesOWL [11], Fire [12]) 
are more relevant to our objective of assessing the most likelihood instances that 
holds. However, probabilities suffer from the lack of ignorance and imprecision 
management in comparison to evidential theory.  

Approaches in [13, 14 and 15] are more related to our chosen mathematical theory 
as they directly deal with evidential theory. [13] and [14] transform uncertain 
statements in belief networks. However, these network representations are themselves 
extensions of evidential theory. Moreover, they do not take into account the semantic 
attached to the hypotheses, in order to consider the most conflicting hypotheses or on 
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the inverse the implied hypotheses. Looking this way, they can be considered 
complementary to ours. A recent published approach [15] is concentrating on 
uncertain reasoning on instances of an ontology using the evidential theory and some 
similarity measures. While we handle the same mentioned tools, our process and 
aspiration are quite different. Indeed, their main objective is to propose an alternative 
ABox inductive reasoning - by classifying individuals (determining their class- or 
role- memberships or value for datatype properties) through a prediction based on an 
evidential nearest neighbor procedure. Their reasoning addresses here another way to 
tackle automatic inference from a classical ontology. This automatic inference aims 
to derive new or implicit knowledge about the current representation of the world, on 
the basis of the asserted knowledge. Whereas, our current reasoning goal is to rely on 
the semantic description of candidate instances (hypothesis) describing a same and 
unique entity or phenomenon in order to decide which candidate instances should be 
chosen. 

Other reports enlarging the state-of-the-art to all ontology languages can be found 
in [17, 18]. 

6    Conclusion and Future Work 

This paper proposes a solution in order to handle uncertainty within ontologies. Our 
approach is relying on current W3C standards. Modeling of uncertainty is realized 
through an imported pre-defined ontology: the DS-Ontology. Uncertain instantiation 
of the domain ontology is performed through the use of this imported DS-Ontology. 
The DS-Ontology relies on the theory of Dempster-Shafer, which manages 
uncertainty, as well as imprecision and ignorance. This paper has underlined some 
key issues that have to be dealt when implementing such parallelism between a formal 
mathematical theory to manage uncertainty and semantic world. The assumption of 
Open World in ontologies is one of these issues. Reasoning on uncertainty is made 
possible through an automatic generation of the frame of discernment. For that 
purpose, Boolean semantic operators, such as the intersection and inclusion, have 
been developed based on the semantic expressivity of the domain ontology. As a 
consequence, this paper provides a double and mutual contribution in the domains of 
the Semantic Web and of uncertain theories, which benefits clearly from the 
semantics of the hypotheses.  

Further researches are also in discussion to extend the reasoning over the Boolean 
inclusion and intersection of candidate instances. Indeed, it could be interesting to 
keep the semantic similarity degree (which is a real ranging from 0 to 1) and use it 
instead of Boolean notions within the theory of Dempster-Shafer. This could be made 
by rearranging the basic measures of belief and plausibility and of the rules of 
combination. 
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Abstract. We present a design for a (fragment of) Breast Cancer on-
tology encoded in the probabilistic description logic P-SROIQ which
supports determining the consistency of distinct statistical experimental
results which may be described in diverse ways. The key contribution is
a method for approximating sampling distributions such that the incon-
sistency of the approximation implies the statistical inconsistency of the
continuous distributions.

1 Introduction

The current amount of knowledge about breast cancer is overwhelming. For
example, a meta-study conducted in 2006 by Key et al. [4] covered 98 unique
studies focused only on the impact of a single risk factor, alcohol consumption. At
the same time there are no common knowledge bases which would combine and
formally represent findings produced by the multitude of studies.3 This makes
it difficult to have a global view of breast cancer risk factors and, consequently,
develop tools like risk assessment calculators.

The probabilistic description logic P-SROIQ can be used to represent gen-
eral knowledge about breast cancer in the form of a probabilistic ontology (the
BRC ontology) [5]. However, a general knowledge ontology need not support risk
entailments for various combinations of risk factors — that is, compete (poorly)
with narrowly specific risk calculators4 which have a direct implementation of
simple equations derived from statistical risk models (such as the Gail model
[2]). Instead, its main goal is to formally and unambiguously describe the back-
ground theory of breast cancer embracing as many reliable findings as possible
and serving as a common knowledge base for more specific tools, such as risk
assessment calculators or decision support systems. This sort of task seems to
be a better fit for a probabilistic logic.

The set of use cases for the general knowledge ontology is wider than for the
BRC ontology. In addition to maintaining a birds-eye view of breast cancer, it
may be used for finding and analyzing inconsistencies in outcomes of different
3 There are some lower level databases, such as ROCK (http://rock.icr.ac.uk/)—a

cancer specific functional genomic database. However, they do not explicitly repre-
sent case study findings and do not support such services as risk assessment.

4 Such as http://www.cancer.gov/bcrisktool
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studies. It can support studying mechanisms of interactions between risk factors,
for example, how alcohol consumption affects estrogen level. Finally, it may play
a useful role in planning and coordination of future medical studies by helping to
identify the most controversial or insufficiently studied risk factors or exposures.

In this paper, we present a design of general P-SROIQ ontology about
breast cancer (i.e., the BRC ontology) which incorporates a substantial amount
of statistical knowledge. While we do not present a fully fleshed out instance
of this design, we do tackle a major representational challenge, namely, the
representation of the statistical results of experiments. We present a method for
approximate representations of different sampling distributions and their use in
determining consistency between experimental data.

2 Preliminaries of P-SROIQ
P-SROIQ [8] is a probabilistic extension of the DL SROIQ [3]. It provides
means for expressing probabilistic relationships between arbitrary SROIQ con-
cepts and a certain class of probabilistic relationships between classes and indi-
viduals. Any SROIQ, and thus OWL 2 DL (as it can be seen as a notational
variant of SROIQ), ontology can be used as a basis for a P-SROIQ ontology,
which facilitates transition from classical to probabilistic ontologies. We presume
the reader is reasonbly familiar with class/object oriented description logics such
as SROIQ, though very little in this paper turns on specific details.

The only syntactic construct in P-SROIQ (in addition to all of the SROIQ
syntax) is the conditional constraint.

Definition 1 (Conditional Constraint). A conditional constraint is an ex-
pression of the form (D|C)[l, u], where C and D are concept expressions in
SRIQ (i.e., SROIQ without nominals) called evidence and conclusion, re-
spectively, and [l, u] ⊆ [0, 1] is a closed real-valued interval. In the case where C
is > the constraint is called unconditional.

Ontologies in P-SROIQ are separated into a classical and a probabilistic
part. It is assumed that the set of individual names NI is partitioned onto two
sets: classical individuals NCI and probabilistic individuals NPI .

Definition 2 (PTBox, PABox, and Probabilistic Knowledge Base). A
probabilistic TBox (PTBox) is a pair PT = (T ,P) where T is a classical
(finite) SROIQ TBox and P is a finite set of conditional constraints. A proba-
bilistic ABox (PABox) is a finite set of conditional constraints associated with
a probabilistic individual op ∈ NPI . A probabilistic knowledge base (or a
probabilistic ontology) is a triple PO = (T ,P, {Pop}op∈NPI ), where the first two
components define a PTBox and the last is a a set of PABoxes.

Informally, a PTBox constraint (D|C)[l, u] expresses a conditional statement
of the form “if a randomly chosen individual is an instance of C, the probability
of it being an instance of D is in [l, u]”. A PABox constraint, which we write
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as (D|C)o[l, u] where o is a probabilistic individual, states that “if a specific
individual (that is, o) is an instance of C, the probability of it being an instance
of D is in [l, u]”. For more details we refer the reader to [8].

3 The Classical Part

The classical part of a P-SROIQ ontology (or OWL part) provides a medical
vocabulary which can be used on its own in a variety of applications or used in the
representation of probabilistic knowledge. In this paper we focus on providing
an OWL terminology for probabilistic statements. The ontology contains the
following main class hierarchies (taxonomies):

Taxonomy of breast cancers Breast cancer is a heterogeneous disease. Some
risk factors can be associated with increase in risk of developing one partic-
ular type of breast cancer and not the other. Thus it is important to classify
types of breast cancer. In particular, our ontology distinguishes breast can-
cers by hormone receptor status. Estrogen and progesterone positive breast
cancers are modeled using concepts ERPositiveBRC and PRPositiveBRC
while their complements are modeled using ERNegativeBRC and
PRNegativeBRC (we use shorthands ER+/- and PR+/- with obvious mean-
ing.). Another important classification is based on histology. The ontology
distinguishes between invasive and non-invasive (e.g. in situ) cancers.

Taxonomy of risk factors Dozens of risk factors are known so far. Some are
established and strongly associate with increased risks, such as BRCA1(2)
gene mutations, while others are controversial. The ontology should provide
vocabulary for both to support current and future findings. It includes a
taxonomy of concepts rooted at RiskFactor. We distinguish between known
risk factors (those which can be reported via a questionnaire, such as alcohol
intake) and inferred risk factors which require medical examination.

Taxonomy of risks The ontology differentiates absolute and relative risks of
developing breast cancer. Absolute risks are further divided into the life-
time risk and the short-term risk. Relative risks are divided into increased
and reduced risks. Level of increases is a continuous variable which requires
discretization (see below).

The last two taxonomies induce the corresponding classifications of women,
i.e., classes of women w.r.t. risk factors and w.r.t. risk. For example, any risk
factors RF gives rise to a class of women Woman u ∃hasRiskFactor.RF. Women
having various combinations of risk factors are modeled as conjunctive concept
expressions. Analogously, given a certain kind of risk R the expression Woman u
∃hasRisk.R models those women who are in the risk group R, for example, have
moderately increased risk of developing ER+ breast cancer. These taxonomies
of women may or may not be explicitly present in the ontology. In other words,
it is possible, but not essential, to generate a concept name for each interesting
class of women since P-SROIQ (and our reasoner Pronto) allows for complex
concept expressions in conditional constraints.
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A future, more complete version of the ontology would certainly make use of
existing bio-medical ontologies which cover substantial portions of the domain
either by direct reuse or by ontology alignment techniques.

4 The Method for Approximating Distributions in the
Probabilistic Part

The probabilistic part of the ontology captures statistical background knowl-
edge about breast cancer. We distinguish between knowledge which explicitly
associates quantifies specific risk factors and more general statistical relation-
ships which are not necessarily risk related. The distinction could be useful for
importing knowledge from other medical ontologies. We begin with the latter.

General statistical knowledge mostly includes relationships between vari-
ous risk factors. For example, Ashkenazi Jew women are more likely to de-
velop BRCA gene mutations, while early menarche, late first child (or no live
births), lack of breastfeeding and alcohol consumption all increase levels of es-
trogen in blood.5 Such relationships are important because they can help to
infer the presence of some risk factors given the set of known factors. They
are typically easy to represent by using conditional constraints of the form
(Womanu∃hasRiskFactor.RFY|Womanu∃hasRiskFactor.RFX)[l,u] which says
that the chances of having risk factor RFY given RFX are between l and u.
One possible source of complications is continuous variables, e.g. the level of
estrogen, which are discussed below.

Most of statistical findings available in medical literature quantitatively de-
scribe risk increase for categories of women with specific risk factors. Such find-
ings are presented by giving estimated parameters of a probability distribution
where the random variable represents the relative risk of a random woman in
the population. Such parameters include the estimated mean value and the esti-
mated variance. Table 1 presents an example of the reported association between
alcohol intake and the risk increase among postmenopausal women taken from
[10]. There are two main difficulties with representing this kind of data in P-
SROIQ. First, the risk increase is a continuous random variable so it needs
to be discretized. Second, the available language supports only conditional con-
straints so a straightforward encoding of probability distributions is not possible.

Table 1. Example of a reported association between alcohol intake and the risk of
hormone receptor-specific breast cancer (excerpt from [10])

Alcohol (g) ER+ ER- PR+ PR-
RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI)

0 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

≤4 1.06 (0.91 - 1.22) 1.40 (1.00 - 1.96) 1.04 (0.89 - 1.23) 1.24 (0.95 - 1.62)

≥4 1.07 (0.90 - 1.26) 1.64 (1.14 - 2.35) 1.12 (0.93 - 1.34) 1.28 (0.96 - 1.71)

5 See http://tinyurl.com/4jpsdvk

42



Discretization of a continuous variable is technically straightforward. We in-
troduce a set of disjoint concept names each of which models women in the
corresponding group of risk. Specifically, we define concepts WomenAtWeakRisk,
WomenAtModerateRisk and WomenAtHighRisk with the obvious meanings de-
scribed using OWL 2 datatype support to describe the exact boundaries. We
have chosen ranges (1, 1.5], (1.5, 3.0] and (3.0, + inf) respectively.6

The inability to represent distributions is a more severe limitation. It leaves
the modeler with the only option of approximating the continuous distribution
using a finite set of points. In other words, each distribution, for example, risk in-
crease for women consuming a certain amount of alcohol, can be approximated by
specifying the probability that a randomly taken woman with the given exposure
belongs to a specific group of risk, i.e. WomenAtWeakRisk, WomenAtModerateRisk
or WomenAtHighRisk. This is the semantics of P-SROIQ conditional constraints.

Assuming that the random variable is real-valued, a standard way of ap-
proximating a continuous distribution is to take each interval and compute the
probability that the variable takes on a value in that interval. Then the ap-
proximation of a distribution Pr(x) w.r.t. a finite set of intervals U is simply a
function P̂ r such that P̂ r(Ui) =

∫
Ui

Pr(x)dx.

Unfortunately, this approximation of results of statistical experiments is un-
satisfactory because it maps every interval to a single point. The problem is that
any arbitrarily small difference between two or more sampling distributions will
results in conflicting probabilistic statements for every interval (because the
point-valued probabilities will be different) even though the results can confirm
each other from a purely statistical point of view. Consequently this approach
does not support working with results reported by multiple studies.

Our goal is to approximate sampling distributions in P-SROIQ in a sta-
tistically coherent way. Informally it means that satisfiability of probabilistic
formulas representing two or more sampling distributions must agree with their
mutual statistical consistency, i.e., whether they support a common statistical
hypothesis. The hypothesis, in this case, is that there exists a distribution (not
necessarily a unique one) over G with parameters µ, σ such that it is supported
by all sampling distributions with the required level of confidence.

We assume a (finite) population G of size NG and a random variable X
which is normally distributed across G. We also make the realistic assumption
that G is large enough so that evaluating X for all members of G is not feasible.
A common approach is to take one or more random samples from G, evaluate
X for them and estimate the actual distribution over G based on the sampling
distributions. We use µ, σ to denote the mean and the variance of the actual
distribution and X(i), S(i) for the mean and the variance of the sample X(i). For
simplicity we finally assume that the population distribution is normal.

The mainstream approach for comparing two or more sampling distributions
is based on statistical hypothesis tests. For example, given two normal distribu-

6 The choice of intervals is obviously ambiguous but this issue is orthogonal to the
approximation method presented in this paper.
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tions X(1), S(1), X(2), S(1) it is common to take X(1)−X(2), which is a normally
distributed random variable, and perform a z-test (or a Student’s t-test depend-
ing on the sample sizes) to see if the difference can be taken as 0 with the required
level of confidence. It amounts to calculating standard errors of the mean (SE)
for both distributions and then computing the difference in units of SE. If the
probability of observing such difference given the null hypothesis,7 which can be
found in standard tables, is low enough, e.g., ≤ 0.05, a statistician would accept
the hypothesis that both distributions are consistent.

Our approach is slightly different from the outlined above. It is not based on
tests but on confidence regions for sampling distributions. The approach, which
generalizes confidence intervals and dates back to Mood [9], is to estimate a
region Rγ in the parameter space for (µ, σ2) such that it will contain the µ, σ2

pair of the actual distribution 100(1 − γ)% times as the number of estimations
goes to infinity. More formally, a 100(1− γ)% confidence region Rγ is a random
set for parameters (µ, σ2) based on a group of independent normally distributed
variables X (i.e., a sample) such that [1]:8

P ((µ, σ2) ∈ Rγ) = 1− γ, for all (µ, σ2) (1)

Informally, the confidence region specifies how far sampling distributions can
deviate from the population distribution while supporting it with 100(1 − γ)%
confidence. Following Mood [9] we will show that for the normal distribution the
region is a convex set and, therefore can be represented by boundary values of
(µ, σ2) such that any sampling distribution inside the boundary will be consistent
with the current distribution.

Consider the sample X1, . . . , Xn where all Xi are independent random vari-
ables with the normal distribution (N(µ, σ2)). Then X = 1

n

∑n
i=1Xi and S2 =

1
n−1

∑n
i=1 (Xi −X)2, i.e., the sample mean and the sample variance, are ran-

dom variables. It is well known that X has the normal distribution N(µ, σ
2

n ) (or,

equivalently, X−µ
σ/
√
n
∼ N(0, 1)) while (n−1)S2/σ2 has the chi-square distribution

with n− 1 degrees of freedom [9].
The standard tables for N(0, 1) and χ2

n−1 provide numbers a, b, c such that
for fixed p1, p2 the following equalities hold [1]:

P (−a < X − µ
σ/
√
n
< a) = p1,

P (b < (n− 1)S2/σ2 < c) = p2

7 The null hypothesis is a default position which, in this case, could be that the
population mean is different from at least one of X(1), X(2).

8 We deliberately leave out a precise definition of random set. For the purposes of this
paper it is sufficient to think of a random set as of a random variable which takes
on subsets of some space.
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The crucial fact is that the two random variables are independent (see [9] for
a proof) which implies that:

p1p2 =

P (−a < X − µ
σ/
√
n
< a, b <

(n− 1)S2

σ2
< c) =

P (X − a σ√
n
< µ < X + a

σ√
n
,

(n− 1)S2

c
< σ2 <

(n− 1)S2

b
)

Thus, the 100(p1)(p2)% confidence region for (µ, σ2) takes the following form:

Rp1,p2(X,S) =
{

(µ, σ2) : X − α σ√
n
< µ < X + α

σ√
n
, (2)

(n− 1)S2

γ
< σ2 <

(n− 1)S2

β

}

Figure 1 shows the joint confidence region R in the parameter space (µ, σ2).
Note that it is possible, although technically messy, to generalize the definition
(2) to the case of several independent sampling distributions. The simultane-
ous confidence region for k samples X(1), . . . , X(k) will be a region in the 2k-
dimensional parameter space which projections on each plane (µ(i), (σ(i))2) will
look as (2). Then the notion of consistency of sampling distributions can be
defined as follows (we limit the attention to two samples for clarity):

Fig. 1. Joint confidence region for (µ, σ2)
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Definition 3. Let Pr(X(1)), P r(X(2)) be distributions on two samples X(1), X(2)

drawn independently from a population G. They are said to be consistent with
confidence 100p% if there exists a point (µ, σ2) which belongs to both Rp(X(1), S(1))
and Rp(X(2), S(2)).

Now we can return to the issue of approximating a continuous sampling
distribution by a discrete set of points. Assume that the domain E of a continuous
real-valued random variable X is a disjoint union of a finite number of intervals
U = {(−∞, r1], (r1, r2], . . . , (rl−1, rl], (rl,+∞)}. Then the approximation of the
sampling distribution Pr(X) with mean and variance (X,S2) is the function P̂ r
which maps each interval Ui to the following real-valued set:

P̂ r(Ui;X,S) = {g(µ, σ2)|(µ, σ2) ∈ Rp1,p2(X,S)} (3)

g(µ, σ2) =
1√

2πσ2

∫

Ui

e−
(x−µ)2

2σ2 dx

Now we are ready to define the notion of approximate consistency of sampling
distribution with respect to a set of intervals U :

Definition 4. Two sampling distributions Pr(X(1)), P r(X(2)) are approximately
consistent given a finite set of intervals U if P̂ r(Ui;X(1), S(1)) ∩ P̂ r(Ui;X(2), S(2))
is non-empty for all Ui ∈ U .

As with any approximation, the utility of approximations of sampling distri-
butions depends on what conclusions they help to draw about the distributions
themselves. Given that we are interested in the matter of consistency, it is im-
portant to understand the relationships between the notions of consistency and
approximate consistency of sampling distributions. Fortunately, consistency im-
plies approximate consistency regardless of partitioning of the real line:

Theorem 1. If two sampling distributions Pr(X(1)), P r(X(2)) are consistent,
then they are approximately consistent for any choice of real-valued intervals.

Proof. For the distribution Pr(X(1)) a confidence region Rp1,p2(X(1), S(1)) is
connected (see Definition 2). The function g(µ, σ2) (Definition 3) is continuous on
it which implies that for any Ui, the set P̂ r(Ui;X(1), S(1)) is a real-valued interval
(l1, u1). Now consider a point µ0, σ

2
0 ∈ Rp1,p2(X(1), S(1)) ∩ Rp1,p2(X(2), S(2))

which exists since the distributions are consistent. It follows that l1 < g(µ0, σ
2
0) <

u1 (and analogously l2 < g(µ0, σ
2
0) < u2 for P̂ r(Ui;X(2), S(2))), so g(µ0, σ

2
0) is

a common point for both approximations on Ui. As such the distributions are
approximately consistent.

The following corollary from the above theorem is at heart of our method.
As we demonstrate below, the inconsistency of approximations can be proved
by logical reasoning in P-SROIQ (i.e., by solving the probabilistic satisfiabil-
ity problem), which means that the result enables approximate reasoning about
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sampling distributions in a purely logical way. Even though the power of such rea-
soning is currently limited to consistency checking, its integration with OWL/DL
reasoning and the ability to use common, formally defined terminology for rep-
resentation of statistical experiments is promising.

Corollary 1. If sampling distributions Pr(X(1)), P r(X(2)) are approximately
inconsistent for some choice of real-valued intervals, then they are inconsistent.

5 Example of Approximate Modelling

Now we present an example of approximate representation of sampling distri-
butions in P-SROIQ. The task is to take two results of statistical experiments
aimed at investigating associations between alcohol consumption and the in-
creased risk of breast cancer among postmenopausal women. Unfortunately it is
common for medical papers to not explicitly present all parameters that char-
acterize results of their statistical analyses. Typically, only the estimated mean
and the confidence interval are presented while, for example, the kind of distri-
bution is left to the reader to infer from other information. Due to that fact and
because the approach above has only been developed for normal distributions,
we illustrate it on an artificial example. The information given in the example
is analogous to that given in medical literature, e.g. [10, 11], but is complete in
the sense that all parameters and the type of sampling distributions are known.

Example 1. Consider two hypothetical papers which report results of indepen-
dent studies of associations between alcohol consumption among postmenopausal
women and their relative risk of developing breast cancer. According to study
A the mean relative risk (RR) of ER+ breast cancer for women drinking ≥ 4g
of ethanol a day is 1.8 and has variance of 0.5. Study B has reported that the
mean RR of ER+ breast cancer for the same level of drinking is 2.2 (variance
0.7). The number of cases in the studies was 230 and 150 respectively.

We propose the following four step procedure for an approximate representa-
tion of statistical results, similar to those in the example above, in P-SROIQ:

1. Preparing concepts The first step is to define the concepts/roles used
to describe the distribution. In our case evidence concepts should describe cat-
egories of women with respect to specific risk factors, e.g. alcohol intake, while
conclusion concepts describe groups of women stratified by risk increase. For in-
stance, the concept expression C ≡ Womanu ∃hasRiskFactor.(Postmenopauseu
ModerateConsumption) is used to model postmenopausal women with moderate
level of alcohol intake.9 On the other hand the expression:

D ≡ Woman u ∃hasRisk.(ModeratelyIncreasedRisk u ∃riskOf.ERPositiveBRC)

9 The level of intake is a continuous variable which we also split onto categories
LimitedConsumption, ModerateConsumption and HeavyConsumption which corre-
spond to ≤ 4, 4− 9.9 and ≥ 10g of ethanol per day.
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models women who are at moderately increased risk of developing ER-positive
breast cancer. Using these expressions the modeler can specify the probability
than a random women the class C also belong the risk group D as (D|C)[l,u].

2. Determining parameters of sampling distributions (if required)
Sometimes parameters of sampling distributions can be determined from other
information. For example, knowing the kind of distribution, sample mean, sample
size, confidence interval and the methodology of its estimation, one can calculate
the sample variance.10 In our case it is not needed as the distributions are normal
and the parameters are known.

3. Choosing intervals Choice of intervals for an approximation of a con-
tinuous random variable is driven by balancing the quality of the approxima-
tion (i.e., how closely it models the continuous distribution) and the number of
statements required. The latter has a direct impact on performance. For Ex-
ample 1 we use three concepts WomenAtWeakRisk, WomenAtModerateRisk and
WomenAtHighRisk which correspond to relative risk intervals of (1,1.5], (1.5,
3.0] and (3.0,+∞) respectively.

4. Computing the approximation The final (and the central) step is to
compute probability intervals for the statements that approximate the contin-
uous distribution. Each statement specifies the lower and upper probabilities
that the continuous random variable X will fall into an interval Ui given that
parameters of the distribution can vary within the confidence region (2). More
formally, given the interval Ui, e.g. (1,1.5] for WomenAtWeakRisk, and the sam-
pling distribution (X,S2) the interval [li, ui] can be computed by solving the
following non-linear optimization problem ():

li (resp. ui) = min (resp. max) g(µ, σ2) s.t. (4)

(µ, σ2) ∈ Rp1,p2(X,S)

g(µ, σ2) =
1√

2πσ2

∫

Ui

e−
(x−µ)2

2σ2 dx

In other words, [li, ui]=[inf P̂ r(Ui;X,S), sup P̂ r(Ui;X,S)].
The last preparatory step is to calculate confidence regions according to (2).

The 95% confidence regions for distributions (X(1), S(1)), (X(2), S(2)) in Example
1 (abbreviated as R(1)

0.95 and R
(2)
0.95) are defined by the following inequalities:

R
(1)
0.95 =

{
(µ, σ2) : 1.8− 2.241σ√

230
< µ < 1.8 +

2.241σ√
230

, 0.409 < σ2 < 0.623
}

R
(2)
0.95 =

{
(µ, σ2) : 2.2− 2.241σ√

150
< µ < 2.2 +

2.241σ√
150

, 0.548 < σ2 < 0.923
}

10 The variable T = (X − µ)/(S/
√
n) has the t-dustribution with n − 1 degrees

of freedom. Confidence interval is standardly computed as [X − a,X + a] where
a = t 1−α

2 ,n−1
S√
n

(t 1−α
2 ,n−1

is the α−percentile of the Student distribution). If the

confidence interval and α are known, then S can be calculated.
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Now the optimization problem (4) can be solved numerically11 to obtain the
following approximations for both sampling distributions:

inf P̂ r((1, 1.5];X(1), S(1)) = 0.219 sup P̂ r((1, 1.5];X(1), S(1)) = 0.298

inf P̂ r((1.5, 3.0];X(1), S(1)) = 0.655 sup P̂ r((1.5, 3.0];X(1), S(1)) = 0.878

inf P̂ r((3.0,+∞);X(1), S(1)) = 0.239 sup P̂ r((3.0,+∞);X(1), S(1)) = 0.586

inf P̂ r((1, 1.5];X(2), S(2)) = 0.116 sup P̂ r((1, 1.5];X(2), S(2)) = 0.224

inf P̂ r((1.5, 3.0];X(2), S(2)) = 0.562 sup P̂ r((1.5, 3.0];X(2), S(2)) = 0.769

inf P̂ r((3.0,+∞);X(2), S(2)) = 0.189 sup P̂ r((3.0,+∞);X(2), S(2)) = 0.568

So, for this example, the sampling distributions are approximately represented
in P-SROIQ using the following conditional constraints.

{(W u ∃hR.(WeaklyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.219, 0.298],

(W u ∃hR.(ModeratelyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.655, 0.878],

(W u ∃hR.(StronglyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.239, 0.586]}
and

{(W u ∃hR.(WeaklyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.116, 0.224],

(W u ∃hR.(ModeratelyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.562, 0.769],

(W u ∃hR.(StronglyIncreasedRisk u ∃riskOf.ERPositiveBRC)|C)[0.189, 0.568]}
where W and hR abbreviate Woman and hasRisk, respectively and

C ≡ W u ∃hasRiskFactor.(Postmenopause u ModerateConsumption)

Probabilistic consistency of the above set of statements can be proved by
solving the probabilistic satisfiability problem (PSAT). Modern algorithms can
decide PSAT for over a thousand of P-SROIQ statements (in addition to thou-
sands of OWL axioms), so the method could be computationally practical [6].

6 Conclusion

Checking consistency of sampling distributions in P-SROIQ may well appear
cumbersome and pointless given that the same task can be done in a much
simpler way and without any logical reasoning, e.g. via testing or by analyzing
confidence regions. However, our aim is not to reduce statistical testing to log-
ical reasoning (that aim is indeed pointless). Our aim is to represent results of
statistical experiments using common, unambiguously defined logical vocabulary
and be able to reason about them. Even though probabilistic reasoning about
statistical results is currently limited to approximate consistency checking, the
11 We use Wolfram Mathematica for this purpose.
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potential benefits are in combining it with reasoning about the classical knowl-
edge. For example, the BCRA ontology contains a little taxonomy of breast
cancers by hormone receptor status. This enables us to combine results of the
studies which are of different levels of granularity. For instance, Sellers et al. [10]
report associations between alcohol intake and ER(+/-) breast cancer risk, while
Suzuki et al. [11] divide it further to ER(+/-)PR(+/-) risks. In that simple case
non-logical reasoning about the reported results becomes much less straightfor-
ward, while studies can also distinguish histologic types of breast cancer (see [7]).
In such complex situations reasoning about findings does involve reasoning about
background knowledge, e.g. the taxonomy of breast cancers, so a combination of
OWL and probabilistic reasoning is potentially beneficial.
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Abstract. We consider the fuzzy logic ALCI with semantics based on a
finite residuated lattice. We show that the problems of satisfiability and
subsumption of concepts in this logic are ExpTime-complete w.r.t. gen-
eral TBoxes and PSpace-complete w.r.t. acyclic TBoxes. This matches
the known complexity bounds for reasoning in crisp ALCI.

1 Introduction

OWL 2, the current standard ontology language for the semantic web, is based
on the crisp description logic (DL) SROIQ(D). As a crisp logic, it is not well
suited to express vague or imprecise concepts, such as HighTemperature, that can
be found in numerous domains; prominently, in the biomedical area.

Fuzzy extensions of DLs have been studied for over a decade, and the litera-
ture on the topic is very extensive (see [15] for a survey). However, most of those
approaches are based on the very simple Zadeh semantics where conjunction is
interpreted as the minimum, with truth values ranging over the interval [0, 1]
of rational numbers. The last lustrum has seen a shift towards more general se-
mantics for treating vagueness. On the one hand, the use of continuous t-norms
as the underlying interpretation function for conjunction was proposed in [14].
On the other hand, [18] allows lattice-based truth values, but still restricts to
Zadeh-like semantics.

Most of the work since then has focused on t-norm-based semantics over the
unit interval; yet, ontologies are usually restricted to be unfoldable or acyclic [4–
6]. Indeed, very recently it has been shown that general concept inclusion axioms
(GCIs) can cause undecidability even in fuzzy DLs based on ALC [2, 3, 9, 11].
These results motivate restricting the logics, e.g. to finitely-valued semantics.

If one considers the  Lukasiewicz t-norm over finitely many values, then rea-
soning is decidable even for very expressive DLs, as shown in [7] through a
reduction to crisp reasoning. When restricted to ALC without terminological
axioms, concept satisfiability is PSpace-complete as in the crisp case [10].1 In
the presence of general TBoxes, this problem becomes ExpTime-complete [8, 9],
again matching the complexity of the crisp case, even if arbitrary (finite) lattices
and t-norms are allowed. However, the complexity of subsumption of concepts

1 The paper [10] considers a syntactic variant of fuzzy ALC with only one role.
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was left as an open problem, as the standard reduction used in crisp DLs does
not work with general t-norm semantics.

In this paper, we improve these complexity results to the fuzzy logic ALCIL
over finite lattices with general and acyclic TBoxes. More precisely, we show that
in this logic, concept satisfiability is ExpTime-complete w.r.t. general TBoxes,
and PSpace-complete w.r.t. acyclic TBoxes. Moreover, the same complexity
bounds also hold for deciding subsumption between concepts.

2 Preliminaries

We will first give a short introduction to residuated lattices, which will be used
for defining the semantics of our logic.2 Afterwards, we recall some results from
automata theory that will allow us to obtain tight upper bounds for the com-
plexity of deciding satisfiability and subsumption of concepts.

2.1 Residuated Lattices

A lattice is an algebraic structure (L,∨,∧) over a carrier set L with two binary
operations join ∨ and meet ∧ that are idempotent, associative, and commutative
and satisfy the absorption laws `1 ∨ (`1 ∧ `2) = `1 = `1 ∧ (`1 ∨ `2) for all
`1, `2 ∈ L. L induces the ordering `1 ≤ `2 iff `1 ∧ `2 = `1 for all `1, `2 ∈ L. L
is called distributive if ∨ and ∧ distribute over each other, finite if L is finite,
and bounded if it has a minimum and a maximum element, denoted as 0 and 1,
respectively. It is complete if joins and meets of arbitrary subsets T ⊆ L, denoted
by

∨
t∈T t and

∧
t∈T t respectively, exist. Every finite lattice is also bounded and

complete. Whenever it is clear from the context, we will simply use the carrier
set L to represent the lattice (L,∨,∧).

A De Morgan lattice is a bounded distributive lattice extended with an in-
volutive and anti-monotonic unary operation ∼, called (De Morgan) negation,
satisfying the De Morgan laws ∼(`1∨`2) = ∼ `1∧∼ `2 and ∼(`1∧`2) = ∼ `1∨∼ `2
for all `1, `2 ∈ L.

A residuated lattice is a lattice L extended with two binary operators ⊗
(called t-norm) and ⇒ (called residuum) such that ⊗ is associative, commuta-
tive, and has 1 as its unit and for every `1, `2, `3 ∈ L, `1⊗`2 ≤ `3 iff `2 ≤ `1 ⇒ `3
holds. In a complete residuated lattice L, `1 ⇒ `2 =

∨{x | `1 ⊗ x ≤ `2}.3 A
simple consequence of this is that for every `1, `2 ∈ L, (i) 1 ⇒ `1 = `1, and (ii)
`2 ≤ `2 iff `1 ⇒ `2 = 1. Additionally, the t-norm ⊗ is always monotonic.

In a residuated De Morgan lattice L, one can define the t-conorm ⊕ as
`1 ⊕ `2 := ∼(∼ `1 ⊗ ∼ `2). For example, the meet operator `1 ∧ `2 defines a
t-norm; its t-conorm is `1 ∨ `2.

2 For a more comprehensive view on residuated lattices, we refer the reader to [13, 12].
3 We could also define the operator ⇒ using this supremum, even if the complete

lattice L is not residuated without affecting the results from Section 4.
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In the following section, we will describe the fuzzy description logic ALCIL,
whose semantics uses the residuum ⇒ and the negation ∼. We emphasize, how-
ever, that the reasoning algorithm presented in Section 4 can be used with any
choice of operators, as long as these are computable. In particular this means
that our algorithm could also deal with other variants of fuzzy semantics, e.g.
so-called Zadeh semantics [8, 18].

2.2 PSpace Automata

To obtain upper bounds for the complexity of reasoning in ALCIL, we will
make a reduction to the emptiness problem of looping automata on infinite
trees. These automata receive as input the (unlabeled) infinite k-ary tree K∗ for
K := {1, . . . , k} with k ∈ N. The nodes of this tree are represented as words
in K∗: the empty word ε represents the root node, and ui represents the i-th
successor of the node u. A path is a sequence v1, . . . , vm of nodes such that v1 = ε
and each vi+1 is a direct successor of vi.

Definition 1 (looping automaton). A looping automaton (LA) is a tuple
A = (Q, I,∆) where Q is a finite set of states, I ⊆ Q a set of initial states,
and ∆ ⊆ Q×Qk the transition relation. A run of A is a mapping r : K∗ → Q
assigning states to each node of K∗ such that r(ε) ∈ I and for every u ∈ K∗ we
have (r(u), r(u1), . . . , r(uk)) ∈ ∆. The emptiness problem for LA is to decide
whether a given LA has a run.

The emptiness of LA can be decided in polynomial time using a bottom-up
approach [19]. Alternatively, one can use a top-down approach, which relies on
the fact that if there is a run, then there is also a periodic run. To speed up the
top-down search, one wants to find the period of a run as early as possible. This
motivates the notion of blocking automata.

Definition 2 (m-blocking). Let A = (Q,∆, I) be a looping automaton. We
say that A is m-blocking for m ∈ N if every path v1, . . . , vm of length m in a
run r of A contains two nodes vi and vj (i < j) such that r(vj) = r(vi).

Clearly, every looping automaton is m-blocking for every m > |Q|. However,
the main interest in blocking automata arises when one can find a smaller bound
on m. One way to reduce this limit is through a so-called faithful family of
functions.

Definition 3 (faithful). Let A = (Q,∆, I) be a looping automaton on k-ary
trees. The family of functions fq : Q → Q for q ∈ Q is faithful w.r.t. A if for
all q, q0, q1, . . . , qk ∈ Q,

– if (q, q1, . . . , qk) ∈ ∆, then (q, fq(q1), . . . , fq(qk)) ∈ ∆, and
– if (q0, q1, . . . , qk) ∈ ∆, then (fq(q0), fq(q1), . . . , fq(qk)) ∈ ∆.

The subautomaton AS = (Q,∆S , I) of A induced by this family has the transi-
tion relation ∆S = {(q, fq(q1), . . . , fq(qk)) | (q, q1, . . . , qk) ∈ ∆}.
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Lemma 4 ([1]). Let A be a looping automaton and AS its subautomaton in-
duced by a faithful family of functions. A has a run iff AS has a run.

The construction that we will present in Section 4 produces automata that
are exponential on the size of the input. For such cases, it has been shown that
if the automata are m-blocking for some m bounded polynomially on the size
of the input (that is, logarithmically on the size of the automaton), then the
emptiness test requires only polynomial space.

Definition 5 (PSpace on-the-fly construction). Assume that we have a
set I of inputs and a construction that yields, for every i ∈ I, an mi-blocking
automaton Ai = (Qi, ∆i, Ii) working on ki-ary trees. This construction is called
a PSpace on-the-fly construction if there is a polynomial P such that, for every
input i of size n

– mi ≤ P (n) and ki ≤ P (n),
– every element of Qi is of a size bounded by P (n), and
– one can non-deterministically guess in time bounded by P (n) an element of
Ii, and, for a state q ∈ Qi, a transition from ∆i with first component q.

Theorem 6 ([1]). If the looping automata Ai are obtained from the inputs i ∈ I
by a PSpace on-the-fly construction, then the emptiness problem for Ai can be
decided in PSpace.

In Section 5 we will use this theorem to give PSpace upper bounds on the
complexity of reasoning in the logic ALCIL, which we introduce next.

3 The Fuzzy Logic ALCIL

For the rest of this paper, L denotes a fixed residuated, complete De Morgan
lattice with the t-norm ⊗. The fuzzy description logic ALCIL is a generalization
of the crisp DL ALCI that uses the elements of L as truth values, instead of
just the Boolean true and false. The syntax of ALCIL is the same as in ALCI:
given the sets NC and NR of concept and role names, the set of complex roles is
NR ∪ {r− | r ∈ NR}, and ALCIL concepts are built using the syntactic rule

C ::= A | C1 u C2 | C1 t C2 | ¬C | ∃s.C | ∀s.C | > | ⊥,

where A ∈ NC and s is a complex role. For a complex role s, the inverse of s
(denoted by s) is s− if s ∈ NR and r if s = r−.

The semantics of this logic is based on interpretation functions that map
every concept C to a function specifying the membership degree of every domain
element to C.

Definition 7 (semantics of ALCIL). An interpretation is a pair I = (∆I , ·I)
where ∆I is a non-empty (crisp) domain and ·I is a function that assigns to
every concept name A and every role name r functions AI : ∆I → L and
rI : ∆I ×∆I → L, respectively. The function ·I is extended to ALCIL concepts
as follows for every x ∈ ∆I :
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– >I(x) = 1, ⊥I(x) = 0,
– (C uD)I(x) = CI(x)⊗DI(x), (C tD)I(x) = CI(x)⊕DI(x),
– (¬C)I(x) = ∼CI(x),
– (∃s.C)I(x) =

∨
y∈∆I sI(x, y)⊗ CI(y),

– (∀s.C)I(x) =
∧
y∈∆I sI(x, y)⇒ CI(y),

where (r−)I(x, y) = rI(y, x) for all x, y ∈ ∆I and r ∈ NR.

Notice that, unlike in crisp ALCI, existential and universal quantifiers are
not dual to each other, i.e. in general, (¬∃s.C)I(x) = (∀s.¬C)I(x) does not hold.

The axioms of this logic also have an associated lattice value, which expresses
the degree to which the restriction must be satisfied.

Definition 8 (axioms). Terminological axioms are (labeled) concept defini-
tions of the form 〈A .= C, `〉 or (labeled) general concept inclusions (GCIs)
〈C v D, `〉, where A ∈ NC, C,D are ALCIL concepts, and ` ∈ L.

A general TBox is a finite set of GCIs. An acyclic TBox is a finite set of
concept definitions such that every concept name occurs at most once in the left-
hand side of an axiom, and there is no cyclic dependency between definitions. A
TBox is either a general TBox or an acyclic TBox.4

An interpretation I satisfies the concept definition 〈A .= C, `〉 if for every
x ∈ ∆I , (AI(x) ⇒ CI(x)) ⊗ (CI(x) ⇒ AI(x)) ≥ ` holds. It satisfies the GCI
〈C v D, `〉 if for every x ∈ ∆I , CI(x)⇒ DI(x) ≥ `. I is a model of the TBox
T if it satisfies all axioms in T .

If T is an acyclic TBox, then all concept names occuring on the left-hand
side of some axiom of T are called defined, all others are called primitive. If T is
a general TBox, then all concept names appearing in it are primitive. A concept
is an atom if it is either a primitive concept name, or it is a quantified concept,
i.e. a concept of the form ∃s.C or ∀s.C for some complex role s and concept C.

We emphasize here that ALCI is a special case of ALCIL, where the un-
derlying lattice contains only the elements 0 and 1, which may be interpreted
as false and true, respectively, and the t-norm and t-conorm are just conjunc-
tion and disjunction, respectively. Accordingly, one can generalize the reasoning
problems for ALCI to the use of other lattices. We will focus on deciding strong
`-satisfiability and `-subsumption [8].

Definition 9 (satisfiability, subsumption). Let C,D be ALCIL concepts, T
a TBox, and ` ∈ L. C is strongly `-satisfiable w.r.t. T if there is a model I of
T and an x ∈ ∆I such that CI(x) ≥ `. C is `-subsumed by D w.r.t. T if every
model I of T is also a model of 〈C v D, `〉.

In previous work we have shown that satisfiability is undecidable in ALCL [9],
and hence also in ALCIL, in general. For this reason, we assume that L is
4 Notice that we do not consider mixed TBoxes. We could allow axioms of the form
〈A v C, `〉 in acyclic TBoxes, as long as they do not introduce cyclic dependencies.
To avoid overloading the notation, we exclude this case.
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finite for the rest of this paper. As we will show in the next sections, under this
restriction we obtain the same complexity upper bounds for deciding satisfiability
and subsumption as in the crisp case; that is, the lattice based semantics do not
increase the complexity of the logic.

4 Deciding Strong Satisfiability and Subsumption

Recall that the semantics of the quantifiers require the computation of a supre-
mum or infimum of the membership degrees of a possibly infinite set of elements
of the domain. To obtain an effective decision procedure, one usually restricts
reasoning to witnessed models [14].

Definition 10 (witnessed model). Let n ∈ N. A model I of a TBox T is
called n-witnessed if for every x ∈ ∆I and every concept of the form ∃r.C there
are n elements x1, . . . , xn ∈ ∆I such that

(∃r.C)I(x) =
n∨

i=1

rI(x, xi)⊗ CI(xi),

and analogously for the universal restrictions ∀r.C. In particular, if n = 1, then
the suprema and infima from the semantics of ∃r.C and ∀r.C become maxima
and minima, respectively. In this case, we simply say that I is witnessed.

We can restrict reasoning to n-witnessed models w.l.o.g.: since L is finite, we
always have the n-witnessed model property for some n ∈ N.

Lemma 11. If the cardinality of the largest antichain of L is n, then ALCIL
has the n-witnessed model property.

To simplify the description of the algorithm, in the following we consider
n = 1. The algorithm and the proofs of correctness can easily be adapted for
any other n ∈ N.

Our algorithm for deciding satisfiability and subsumption of concepts exploits
the fact that a TBox T has a model iff it has a well-structured tree model, called
a Hintikka tree. Intuitively, Hintikka trees are abstract representations of models
that explicitly express the membership value of all “relevant” concepts. We will
construct automata that have exactly these Hintikka trees as their runs, and use
the initial states to verify that an element in the model verifies the satisfiability
or violates the subsumption condition, respectively. Reasoning is hence reduced
to the emptiness test of these automata.

We denote by sub(C, T ) the set of all subconcepts of C and of the concepts
A, E, and F for all axioms 〈E v F, `〉 or 〈A .= F, `〉 in T . The nodes of the
Hintikka trees are labeled with so-called Hintikka functions over the domain
sub(C, T ) ∪ {ρ}, where ρ is an arbitrary new element, which will be used to
express the degree with which the role relation to the parent node holds.

Definition 12 (Hintikka function). A Hintikka function for C, T is a partial
function H : sub(C, T ) ∪ {ρ} → L such that:
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(i) H is defined for ρ and for all atoms,
(ii) if H(D uE) is defined, then H(D) and H(E) are also defined and it holds

that H(D u E) = H(D)⊗H(E),
(iii) if H(D tE) is defined, then H(D) and H(E) are also defined and it holds

that H(D t E) = H(D)⊕H(E),
(iv) if H(¬D) is defined, then H(D) is defined and H(¬D) = ∼H(D).

It is compatible with the concept definition 〈A .= E, `〉 if, whenever H(A) is
defined, then H(E) is defined and (H(A) ⇒ H(E))⊗ (H(E) ⇒ H(A)) ≥ `.5 It
is compatible with the GCI 〈E v F, `〉 if H(E) and H(F ) are always defined
and H(E)⇒ H(F ) ≥ ` holds.

The Hintikka trees have a fixed arity k determined by the number of existen-
tial and universal restrictions, i.e. concepts of the form ∃s.F or ∀s.F , contained
in sub(C, T ). Intuitively, each successor will act as the witness for one of these
restrictions. Since we need to know which successor in the tree corresponds to
which restriction, we fix an arbitrary bijection

ϕ : {E | E ∈ sub(C, T ) is of the form ∃s.F or ∀s.F} → K.

Definition 13 (Hintikka condition). The tuple (H0, H1, . . . ,Hk) of Hintikka
functions for C, T satisfies the Hintikka condition if:

(i) For every existential restriction ∃s.G ∈ sub(C, T )
– Hϕ(∃s.G)(G) is defined and H0(∃s.G) = Hϕ(∃s.G)(ρ)⊗Hϕ(∃s.G)(G), and
– Hϕ(E)(G) is defined and H0(∃s.G) ≥ Hϕ(E)(ρ) ⊗ Hϕ(E)(G) for every

restriction E ∈ sub(C, T ) of the form ∃s.F or ∀s.F .
(ii) For every universal restriction ∀s.G ∈ sub(C, T )

– Hϕ(∀s.G)(G) is defined and H0(∀s.G) = Hϕ(∀s.G)(ρ)⇒ Hϕ(∀s.G)(G),
– Hϕ(E)(G) is defined and H0(∀s.G) ≤ Hϕ(E)(ρ) ⇒ Hϕ(E)(G) for every

restriction E ∈ sub(C, T ) of the form ∃s.F or ∀s.F .
(iii) For every existential restriction ∃s.G ∈ sub(C, T ) and every restriction E ∈

sub(C, T ) of the form ∃s.F or ∀s.F , H0(G) is defined and Hϕ(E)(∃s.G) ≥
Hϕ(E)(ρ)⊗H0(G).

(iv) For every universal restriction ∀s.G ∈ sub(C, T ) and every restriction E ∈
sub(C, T ) of the form ∃s.F or ∀s.F , H0(G) is defined and Hϕ(E)(∀s.G) ≤
Hϕ(E)(ρ)⇒ H0(G).

The tuple is compatible with the axiom t if the Hintikka functions H0, . . . ,Hk

are compatible with t.

Condition (i) makes sure that an existential restriction ∃s.G is witnessed by
its designated successor ϕ(∃s.G) and all other s-successors do not contradict the
witness. Condition (iii) deals with inverse roles, ensuring that the s-restrictions
are propagated backwards through the s-relation. Conditions (ii) and (iv) treat
the universal restrictions analogously.
5 This method, called lazy unfolding, is only correct for acyclic TBoxes.
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A Hintikka tree for C, T is an infinite k-ary tree T labeled with compat-
ible Hintikka functions for C, T such that T(ε)(C) is defined and the tuple
(T(u),T(u1), . . . ,T(uk)) satisfies the Hintikka condition for every node u ∈ K∗.
The definition of compatibility ensures that all axioms are satisfied at any node
of the Hintikka tree, while the Hintikka condition makes sure that the tree is in
fact a witnessed model.

The proof of the following theorem uses arguments similar to those in [1]. The
main difference is the presence of successors witnessing the universal restrictions.

Theorem 14. Let C be an ALCIL concept, T a TBox, and ` ∈ L. Then C is
strongly `-satisfiable w.r.t. T (in a witnessed model) iff there is a Hintikka tree
T for C, T such that T(ε)(C) ≥ `.

Proof (Sketch). Every witnessed model I of T with a domain element x ∈ ∆I
for which CI(x) ≥ ` holds can be unraveled into a Hintikka tree T for C, T as
follows. We start by labeling the root node by the (total) Hintikka function that
records the membership values of x for each concept from sub(C, T ). We then
create successors of the root by considering every E ∈ sub(C, T ) of the form
∃s.F or ∀s.F and finding the witness y ∈ ∆I for this restriction. We create a
new node for y which is the ϕ(E)-th successor of the root node and is labeled by
a Hintikka set H with H(ρ) = sI(x, y). The fact that I is a model of T ensures
that these successors satisfy the Hintikka condition. By continuing this process,
we construct a Hintikka tree T for C, T for which T(ε)(C) ≥ ` holds.

Conversely, we show that a Hintikka tree can be seen as a witnessed model
with domain K∗ and interpretation function given by the Hintikka functions.
Notice that from the partial function labeling each node we can obtain a valua-
tion for each concept name that satisfies all the axioms in T . Indeed, if T is a
general TBox, then every concept name is primitive, and hence the valuation is
already defined. The fact that the Hintikka function is compatible with all the
axioms in T implies that every node satisfies the TBox. On the other hand, if T
is an acyclic TBox, and H is undefined for some concept names, then consider
an axiom 〈A .= C, `〉 for which H(A) is undefined, but H(B) is defined for every
atom appearing in C. The acyclicity of T ensures that such an axiom always
exists. Thus, we can compute a value for H(C) that still satisfies the conditions
of Definition 12. If we set H(A) := H(C), then H is still compatible with T . By
an induction argument, we can define a compatible total Hintikka function, and
thus a valuation for every concept name that satisfies T .

For this valuation to be an interpretation, it only remains to be shown that
the semantics of the existential and universal restrictions are satisfied. This is
ensured by the Hintikka condition. The choice of the successors also ensures that
the interpretation is witnessed. As explained above, it is compatible, and hence
also a model of T . Thus, if there is a Hintikka tree T for C, T with T(ε)(C) ≥ `,
then C is strongly `-satisfiable w.r.t. T . ut

Hintikka trees can also be used for deciding (non-)subsumption between
ALCIL concepts. The proof of the following theorem is analogous to the one
of Theorem 14.
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Theorem 15. Let C,D be ALCIL concepts, T a TBox, and ` ∈ L. Then C is
not `-subsumed by D (in a witnessed model) iff there is a Hintikka tree T for
C uD, T such that T(ε)(C)⇒ T(ε)(D) � `.6

Notice that this does not yield a reduction from subsumption to satisfiability,
since the residuum ⇒ cannot in general be expressed using only the t-norm, t-
conorm and negation, and in Theorem 14 the value of C at the root is restricted
to a value greater or equal to `, while Theorem 15 negates this restriction.

From the last two theorems it follows that satisfiability and subsumption of
ALCIL concepts can be reduced to deciding the existence of a Hintikka tree
with additional restrictions in the root. By building looping automata whose
runs correspond exactly to those Hintikka trees, we reduce ALCIL reasoning to
the emptiness problem of these automata. For the following, we focus only on
deciding satisfiability and explain the minor modifications required for deciding
subsumption.

Definition 16 (Hintikka automaton). Let C be an ALCIL concept, T a
TBox, and ` ∈ L. The Hintikka automaton for C, T , ` is AC,T ,` = (Q, I,∆),
where Q is the set of all compatible Hintikka functions for C, T , I contains all
Hintikka functions H with H(C) ≥ `, and ∆ is the set of all (k + 1)-tuples of
Hintikka functions that satisfy the Hintikka condition.

The runs of AC,T ,` are exactly the Hintikka trees T having T(ε)(C) ≥ `.
Thus, C is strongly `-satisfiable w.r.t. T iff AC,T ,` is not empty. To obtain an
automaton deciding `-subsumption between C and D, one needs only modify the
set of initial states I to contain all Hintikka functions H with H(C)⇒ H(D) 6≥ `.
In that case, we have that C is `-subsumed by D iff the automaton is empty.

The size of the automaton AC,T ,` is exponential in the input C, T . Hence,
we have an ExpTime algorithm for this logic. For general TBoxes, this gives
a tight upper bound for the complexity of satisfiability and subsumption, since
these problems are already ExpTime-hard for crisp ALC [16].

Theorem 17. Deciding strong satisfiability and subsumption in ALCIL w.r.t.
general TBoxes is ExpTime-complete.

5 PSpace Results for Acyclic TBoxes

If one restricts to acyclic TBoxes, then the upper bound obtained by the empti-
ness test of the automaton from Definition 16 does not match the PSpace lower
bound given by crisp ALCI with acyclic TBoxes. We will now improve this upper
bound and show that satisfiability and subsumption of ALCIL concepts w.r.t.
acyclic TBoxes are also PSpace-complete problems.

The idea is to modify the construction of the Hintikka automata into a
PSpace on-the-fly construction. Notice that AC,T ,` satisfies all but one of the

6 Using C u D only ensures that T(ε)(C) and T(ε)(D) are defined, but imposes no
further restriction on their values.
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conditions from Definition 5: (i) the arity of the automata is given by the number
of existential and universal concepts in sub(C, T ); (ii) every Hintikka function
has size bounded by |sub(C, T )|; (iii) building a state or a transition of the
automaton requires only guessing values for all concepts in sub(C, T ) and then
verifying that this is indeed a valid state or transition, which can be done in time
polynomial in |sub(C, T )|. However, it is easy to build runs of the automata con-
structed by this reduction where blocking occurs only after exponentially many
transitions, violating the first condition of PSpace on-the-fly constructions.

We will use a faithful family of functions to obtain a reduced automaton that
guarantees blocking after at most polynomially many transitions, thus obtaining
the PSpace upper bound. The idea is that it suffices to consider only transitions
that reduce the maximal role depth (w.r.t. T ) in the support of the states.

The role depth w.r.t. T (rdT ) of ALCIL concepts is recursively defined as
follows: rdT (A) = rdT (>) = rdT (⊥) = 0 for every primitive concept name
A; rdT (C u D) = rdT (C t D) = max{rdT (C), rdT (D)}; rdT (¬C) = rdT (C);
rdT (∃r.C) = rdT (∀r.C) = rdT (C) + 1; and rdT (A) = rdT (C) for every definition
〈A .= C, `〉 ∈ T . For a Hintikka function H for C, T , we denote as support(H)
the set of all concepts in sub(C, T ) such that H(C) is defined and H(C) > 0.
We define rdT (H) as the maximum rdT (D) such that D ∈ support(H).

Definition 18 (functions fH). Let H and H ′ be two states of AC,T ,` with
rdT (H) = n. The function fH(H ′) is given by:

fH(H ′)(D) =





0 if D is an atom and rdT (D) ≥ n
H ′(D) if rdT (D) < n

undefined otherwise.

fH(H ′)(ρ) =

{
0 if support(H) = ∅
H ′(ρ) otherwise.

Since T is acyclic, the function fH(H ′) defined above is still a Hintikka
function for C, T compatible with all the axioms in T .

Lemma 19. The family of mappings fH for states H of AC,T ,` from Defini-
tion 18 is faithful w.r.t. AC,T ,`.

Proof. Let (H,H1, . . . ,Hk) be a valid transition of AC,T ,`. We need to show
that (H, fH(H1), . . . , fH(Hk)) is also a transition, i.e. that it satisfies the Hin-
tikka condition. We show in detail only the proof for the restriction (i) from
Definition 13, as the others can be treated analogously.

For ∃s.G ∈ sub(C, T ), the value Hϕ(E)(G) is defined for all restrictions E of
the form ∃s.F or ∀s.F in sub(C, T ). If rdT (∃s.G) > rdT (H), then H(∃s.G) = 0,
and all the values fH(Hϕ(E))(G) are 0. Thus, the inequalities are trivially satis-
fied. Otherwise, rdT (G) < rdT (∃s.G) ≤ rdT (H), and thus the values Hϕ(E)(G)
are not changed by applying fH . If the values Hϕ(E)(ρ) are also left unchanged,
all inequalities remain satisfied. Otherwise, H(∃s.G) = 0, and all the values
fH(Hϕ(E))(ρ) are 0. Thus, the inequalities are again trivially satisfied. ut
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By Lemma 4, AC,T ,` is empty iff the induced subautomaton ASC,T ,` is empty.

Theorem 20. The construction of ASC,T ,` from an ALCIL concept C, ` ∈ L,
and an acyclic TBox T is a PSpace on-the-fly construction.

Proof. As described before, we only need to show that the automata ASC,T ,` are
m-blocking for some m bounded polynomially in |sub(C, T )|. We show that this
holds for m = max{rdT (D) | D ∈ sub(C, T )}+ 2.

By definition of ASC,T ,`, every transition decreases the maximal role depth
of the support of the state. Hence, after at most max{rdT (D) | D ∈ sub(C, T )}
transitions, we reach a state H, where H(D) = 0 if D is an atom and undefined
otherwise, and hence, support(H) = ∅. From the next transition on, all the
states additionally satisfy that H(ρ) = 0. Hence, after at most m transitions,
we find two states that are equal. Since m ≤ |sub(C, T )|+ 2, ASC,T ,` satisfies the
requirements for a PSpace on-the-fly construction. ut

This shows that emptiness of ASC,T ,` and hence also of AC,T ,` is in PSpace.
This yields the desired PSpace upper bound for satisfiability and similar argu-
ments can be made for subsumption. PSpace-hardness follows from PSpace-
hardness of satisfiability and subsumption w.r.t. the empty TBox in ALC [17].

Theorem 21. Deciding strong satisfiability and subsumption in ALCIL w.r.t.
acyclic TBoxes is PSpace-complete.

Notice that the definitions of Hintikka functions and Hintikka trees are in-
dependent of the operators used. One could have chosen the residual negation
	 ` := ` ⇒ 0 to interpret the constructor ¬, or the Kleene-Dienes implication
`1 ⇒ `2 := ∼ `1 ∨ `2 instead of the residuum. The only restrictions are that the
semantics must be truth functional, i.e. the value of a formula must depend only
on the values of its direct subformulas, and the underlying operators must be
computable. We could also use the traditional semantics for concept definitions
in which ⊗ is replaced by the simple meet t-norm ∧.

We also point out that the algorithm can be modified for reasoning w.r.t.
n-witnessed models for n > 1. One needs only extend the arity of the Hintikka
trees to account for n witnesses for each quantified formula in sub(C, T ); the
arity of AC,T ,` grows polynomially in n. This does not affect the complexity
upper bounds from the automata, and hence Theorems 17 and 21 still hold.

6 Conclusions

We have shown that reasoning in ALCIL is not harder than in the underlying
crisp DL ALCI. More precisely, strong `-satisfiability and `-subsumption can be
decided in ExpTime for general TBoxes and in PSpace for acyclic TBoxes. This
extends the complexity results from [8–10] and demonstrates that automata can
show PSpace results even for fuzzy description logics, as in the crisp case [1].
This paper provides a small step towards reasoning services for fuzzy general-
izations of the current standard ontology languages, like SROIQ(D).
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In the future, we want to study the influence of additional DL constructors
and axioms on the complexity of the reasoning tasks. In particular, transitive
roles, which are covered by the results in [1], have not been considered in this
paper. Although in the crisp case they do not increase the complexity of checking
satisfiability, it is not straightforward to generalize the methods used to show
this to residuated De Morgan lattices.

Satisfiability w.r.t. general TBoxes and residuated total orders has been
shown to be undecidable [9], but it remains open to find subclasses of infinite
lattices and t-norms for which the problem is decidable. Over the unit inter-
val, the product and  Lukasiewicz t-norms cause undecidability w.r.t. witnessed
models [3, 11]; for arbitrary models decidability is unknown in these cases.
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8. S. Borgwardt and R. Peñaloza. Description logics over lattices with multi-valued
ontologies. In Proc. IJCAI’11, pages 768–773. AAAI Press, 2011.
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Abstract. Knowledge available through Semantic Web standards can easily be
missing, generally because of the adoption of the Open World Assumption (i.e.
the truth value of an assertion is not necessarily known). However, the rich rela-
tional structure that characterizes ontologies can be exploited for handling such
missing knowledge in an explicit way. We present a Statistical Relational Learn-
ing system designed for learning terminological naı̈ve Bayesian classifiers, which
estimate the probability that a generic individual belongs to the target concept
given its membership to a set of Description Logic concepts. During the learning
process, we consistently handle the lack of knowledge that may be introduced by
the adoption of the Open World Assumption, depending on the varying nature of
the missing knowledge itself.

1 Introduction

On the Semantic Web (SW) [2] difficulties arise when trying to model real-world do-
mains using purely logical formalisms, since real-world knowledge generally involves
some degree of uncertainty or imprecision. In recognition of the need to soundly rep-
resent uncertain knowledge, the World Wide Web Consortium (W3C) created, in 2007,
the Uncertainty Reasoning for the World Wide Web Incubator Group 1 (URW3-XG),
with the aim of identifying the requirements for reasoning with and representing the
uncertain knowledge in Web-based information.

Several approaches to representation and inference with knowledge enriched with
probabilistic information have been proposed: some extend knowledge representation
formalisms actually used in the SW; others rely on probabilistic enrichment of Descrip-
tion Logics or logic programming formalisms.

Motivation

The main problem of applying these approaches in real settings is given by the fact
that they almost always assume the availability of probabilistic information. However,
except of seldom cases, this information would be hardly known in advance. Having a
method that, exploiting available information on the data, i.e. an already designed and

1 http://www.w3.org/2005/Incubator/urw3/
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populated ontology, is able to capture the necessary probabilistic information would be
of great help.

Also, when relying on SW knowledge bases for reasoning with the Open World
Assumption (OWA) (e.g. when OWL is considered as a syntactic variant of some De-
scription Logic [1]), it is not always possible to know the truth value of an assertion:
under OWA, a statement is true or false only if its truth value can be formally derived.
As a consequence, there can be some cases (e.g. determining if an individual is a mem-
ber of a given concept) for which the truth value cannot be determined (it cannot be
derived neither that the individual is instance of the considered concept nor that the
individual is instance of the negated concept). This is opposed by the Closed World
Assumption (CWA), employed by a multitude of first order logic fragments and in the
Data Base setting where every statement that cannot be proved to be true, is assumed to
be false.

Related Work

Within the SW, Machine Learning (ML) is going to cover a relevant role in the anal-
ysis of distributed data sources described using SW standards [24], with the aim of
discovering new and refining existing knowledge. A collection of ML approaches ori-
ented to SW have already been proposed in literature, ranging from propositional and
single-relational (e.g. SPARQL-ML [14], or based on low-rank matrix approximation
techniques such as in [24, 25]) to multi-relational (e.g. distance-based [6, 9] or kernel-
based [10, 3]).

In the class of multi-relational learning methods, Statistical Relational Learning [13]
(SRL) one seem particularly appealing, being designed to learn in domains with both a
complex relational and a rich probabilistic structure; the URW3-XG provided in [16] a
large group of situations in which knowledge on the SW needs to represent uncertainty,
ranging from recommendation and extraction/annotation to belief fusion/opinion pool-
ing and healthcare/life sciences. There have already been some proposals regarding
the adaptation and application of SRL systems to the SW, e.g. [7] proposes to employ
Markov Logic Networks [21] for first-order probabilistic inference and learning within
the SW, and [18] proposes to learn first-order probabilistic theories in a probabilistic
extension of the ALC Description Logic named CRALC.

However, such ML techniques make strong assumptions about the nature of the
missing knowledge (e.g. both matrix completion methods and the technique proposed in
[18] inherently assume data is Missing at Random [23], while Markov Logic Networks
resort to Closed World Assumption during learning). Learning from incomplete knowl-
edge bases by adopting methods not coherent with the nature of the missing knowledge
itself (e.g. expecting it to be Missing at Random while it is Informatively Missing) can
lead to misleading results with respect to the real model followed by the data [22].

We realised a SRL system for incrementally inducing a terminological naı̈ve Bayesian
classifier, i.e. a naı̈ve Bayesian network modelling the conditional dependencies be-
tween a learned set of Description Logic (complex) concepts and a target atomic con-
cept the system aims to learn. Our system is focused to the SW, being able to learn
classifiers with a structure which is both logically and statistically rich, and to deal with
the missing knowledge resulting from the adoption of the OWA with methods that are
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consistent with the assumed nature of the missing knowledge (i.e. Missing Completely
at Random, Missing at Random or Informatively Missing). In the rest of this paper, we
will first describe Bayesian Networks (and some extensions we will employ to deal
with some potentially problematic cases); then we will describe our probabilistic-logic
model, terminological Bayesian classifiers, and the problem of learning it from a set of
training individuals and a Description Logic knowledge base. In the last part, we will
describe our learning algorithm, and the adaptations to learn under different assump-
tions on the ignorance model.

2 Bayesian Networks and Robust Bayesian Estimation

Graphical models [19] (GMs) are a popular framework to compactly describe the joint
probability distribution for a set of random variables, by representing the underlying
structure through a series of modular factors. Depending on the underlying semantics,
GMs can be grouped into two main classes: directed graphical models, which found on
directed graphs, and undirected graphical models, founding on undirected graphs.

A Bayesian network (BN) is a directed GM which represents the conditional de-
pendencies in a set of random variables by using a directed acyclic graph (DAG) G
augmented with a set of conditional probability distributions θG associated with G’s
vertices. In such graph, each vertex corresponds to a random variable Xi (e.g. an ob-
servable quantity, a set of unknown parameters etc.) and each edge indicates a direct
influence relation between the two random variables; this allows to define conditional
independence relationships between the variables, which are independent from any of
their non-descendants, given the value of their parent variables.

A BN stipulates a set of conditional independence assumptions, also called local
Markov assumptions, over its set of random variables: each vertex Xi in the DAG is
conditionally independent of any subset S ⊆ Nd(Xi) of vertices that are not descen-
dants of Xi given a joint state of its parents:

∀Xi : Pr(Xi | S, parents(Xi)) = Pr(Xi | parents(Xi));

where the function parents(Xi) returns the parent vertices of Xi in the DAG repre-
senting the BN. The conditional independence assumption allows to represent the joint
probability distribution Pr(X1, . . . , Xn) defined by a BN over a set of random variables
{X1, . . . , Xn} as a production of the individual probability distributions, conditional on
their parent variables:

Pr(X1, . . . , Xn) =
n∏

i=1

Pr(Xi | parents(Xi));

As a result, it is possible to define Pr(X1, . . . , Xn) by only specifying, for each
vertex Xi in the graph, the conditional probability distribution Pr(Xi | parents(Xi)).

Given a BN specifying a joint probability distribution over a set of variables, it is
possible to evaluate inference queries by marginalization, like calculating the posterior
probability distribution for a set of query variables given some observed event (i.e.
assignment of values to the set of evidence variables).
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Exact inference for general BNs is an NP-hard problem, but algorithms exist to
efficiently infer in restricted classes of networks, such as variable elimination, which
has linear complexity in the number of vertices if the BN is a singly connected net-
work [15]. Approximate inference methods also exist in literature, such as Monte Carlo
algorithms, that provide approximate answers whose accuracy depends on the num-
ber of samples generated. Other methods in this family, such as belief propagation or
variational methods, approximate sums of random variables through their means [15].

However, finding an optimal structure for a BN may not be trivial: the number of
possible structures for a DAG is super-exponential (O(2f(n)), with f(n) = n1+ε, ε >
0) in the size of its vertices (r4 = 543, r8 ≈ 7, 8 × 1011, r12 ≈ 5, 2 × 1026), making
it impractical, in many cases, to perform an exhaustive search through the space of
possible structures. Therefore, in our approach, we tried to find an acceptable trade-off
between efficiency and expressiveness, so to make our method suitable for a context
like SW: we decided to focus on a particular subclass of Bayesian networks, i.e. naı̈ve
Bayesian networks, modelling the dependencies between a set of random variablesF =
{F1, . . . , Fn}, also called features, and a random variable C, also called class, so that
each pair of features are independent of each other given the class, i.e. ∀Fi, Fj ∈ F :
i 6= j ⇒ (Fi ⊥⊥ Fj |C).

This kind of models is especially interesting since they proved to be effective also
in contexts in which the underlying independence assumptions are violated [8], even
outperforming more current approaches [4].

However, defining a BN requires a number of precise probability assessments which,
as we will see, will not be always possible to obtain. A generalisation of naı̈ve Bayesian
networks to probability intervals is the robust Bayesian estimator [20] (RBE): each con-
ditional probability in the network is a probability interval characterised by its lower
and upper bounds, defined respectively as Pr(A) = min

Pr∈P
Pr(A) and Pr(A) = max

Pr∈P
Pr(A).

The main problem with this approach is assigning class labels, after having calcu-
lated the posterior probability intervals: if the two resulting intervals do not overlap, it is
possible to apply the so called stochastic dominance criterion, which assigns a generic
individual a to a target concept C iff Pr(C(a)) > Pr(¬C(a)). If the intervals overlap,
to avoid undecidability, it is still possible to use a weaker criterion, called weak domi-
nance criterion [20] by representing each probability interval into a single probability
value represented by its middle point, which indeed underlies some assumptions on the
distribution of the missing values.

A similar approach, founded on imprecise probability theory, is presented in [5] and
proposes using a Credal network (structurally similar to a BN, but where the conditional
probability densities belong to convex sets of mass functions) to represent uncertainty
about network parameters.

3 Terminological Naı̈ve Bayesian Classifiers

The learning problem we intend to focus on consists in learning a terminological naı̈ve
Bayesian classifier NK; this is defined as a naı̈ve BN modelling the dependency re-
lations between a set of Description Logic (DL) concepts (also referred to as feature
concepts) and a target atomic concept C, given a set of training individuals. Feature
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concepts may eventually be complex, and the training individuals are distinguished in
positive, negative and neutral, belonging respectively to the target concept C, ¬C and
or whose membership of C is unknown. A DL Knowledge Base (KB) K is typically
constituted by (at least) two main components, a TBox T and an ABox A:

– TBox – which introduces the terminology of an application domain, in terms of
axioms describing concept hierarchies;

– ABox – which contains assertions (ground axioms) about named individuals in
terms of this terminology.

A terminological Bayesian classifier can be defined as follows:

Definition 1 (Terminological Bayesian Classifier). A terminological Bayesian classi-
fier NK, with respect to a DL KB K, is defined as a pair 〈G, ΘG〉, where:

– G = 〈V, E〉 is a directed acyclic graph, in which:
• V = {F1, . . . , Fn, C} is a set of vertices, eachFi representing a DL (eventually

complex) concepts defined overK and C representing a target atomic concept;
• E ⊆ V ×V is a set of edges, modelling the independence relations between the

elements of V;
– ΘG is a set of conditional probability distributions (CPD), one for each V ∈ V ,

representing the conditional probability of the feature concept given the state of its
parents in the graph.

in which the membership probability of a generic individual a to the target concept C
(or ¬C) is estimated using BN inference techniques given the membership of a to the
concepts in V .

In particular, a terminological naı̈ve Bayesian Classifier is characterised by the fol-
lowing structure: E = {〈C,Fi〉 | i ∈ {1, . . . , n}} (i.e. each feature concept is indepen-
dent from the other feature concept, given the value of the target atomic concept).

Example 1 (Example of Terminological Naı̈ve Bayesian Classifier). Given a set of DL
feature concepts F = {Female,HasChild := ∃hasChild.Person} 2 and a target
concept Father, a terminological naı̈ve Bayesian classifier expressing the target con-
cept in terms of the feature concepts is the following:

Pr(Female|Father)
Pr(Female|¬Father)

Pr(HasChild|Father)
Pr(HasChild|¬Father)

Father

Female

HasChild := ∃hasChild.Person

Let K be a DL KB and a a generic individual so that K |= HasChild(a) and the
membership of a to the concept Female is not known, i.e. K 6 |=Female(a) ∧ K 6
|=¬Female(a). It is possible to infer, through the given network, the probability that
the individual a is a member of the target atomic concept Father:

2 In examples, variable names are used instead of complex feature concepts for brevity
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Pr(Father(a)) =
Pr(Father) Pr(HasChild | Father)∑

Father′∈{Father,¬Father}
Pr(Father′) Pr(HasChild | Father′)

;

In the following we define the problem of learning a terminological Bayesian clas-
sifier NK given a DL KB K and the training individuals IndC(A):

Definition 2 (Terminological Bayesian Classifier Learning Problem). Our termino-
logical naı̈ve Bayesian classifier learning problem consists in finding a network N ∗K
that maximizes the quality of the network with respect to the training instances and a
specific scoring function; formally:

Given

– a target concept C we aim to learn;
– a DL KB K = 〈T ,A〉, where the ABox A contains membership assertions

about individuals and C, while the TBox T does not contain assertions involv-
ing C;

– the disjoint sets of of positive, negative and neutral examples for C, denoted
with Ind+

C(A), Ind−C(A) and Ind0
C(A), so that:

• ∀a ∈ Ind+
C(A) : C(a) ∈ A,

• ∀a ∈ Ind−C(A) : ¬C(a) ∈ A,
• ∀a ∈ Ind0

C(A) : C(a) 6∈ A ∧ ¬C(a) 6∈ A;
– a scoring function specifying the quality of an induced terminological Bayesian

classifier NK with respect to the samples in
IndC(A) =

⋃
v∈{+,−,0} Ind

v
C(A) and a scoring criterion;

Find a network N ∗K maximizing the score function with respect to the samples:

N ∗K ← arg max
NK

score(NK, IndC(A))).

Our search space, to find the optimal network N ∗K, may be too large to explore
exhaustively; therefore our learning algorithm, outlined in Alg. 1, works by greedily
searching the space of features (i.e. DL complex concepts) for the ones that maximize
the score of the induced network, with respect to a scoring function, and incrementally
building the resulting network. While the features are added one by one, the search in
the space of DL complex concepts is made through a beam search, employing the ρcl↓
closure of the downward refinement operator ρ↓ described in [17].

For each new complex concept being evaluated, the algorithm creates a new set of
concepts V ′ and finds the optimal structure (under a given set of constraints) E ′ (which,
in the case of terminological naı̈ve Bayesian classifiers, is already defined) and the
corresponding maximum likelihood parameters ΘG′ (which may vary depending on the
assumptions on the nature of the ignorance model), then scores the new network with
respect to a scoring criterion.
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Different Assumptions on the Ignorance Model

Let K = 〈T ,A〉 be a DL KB; under OWA, it is not always possible to know if a
generic DL assertion α is or is not entailed by K (i.e. there may be cases in which
K 6 |=α∧K 6 |=¬α). This allows us to characterize our lack of knowledge about concept-
memberships through the probability distribution of the ignorance model [23]. Given
a generic concept C, a generic individual a and a DL KB K∗, let I be an ignorance
model from which we extract a fragment of K∗, I(K∗) = K (so that ∀α : K |=
α ⇒ K∗ |= α ∧ K∗ |= α 6⇒ K |= α). Let denote NK as a probabilistic model
that, from a DL KB K, calculates the probability that the concept-membership relation
between C and a is unknown. We can say that the ignorance model underlying the
concept-membership relation between a and C in K (with respect to a, K∗ and the
aforementioned probabilistic model) is:

– MCAR (Missing Completely at Random) – when the probability for such concept-
membership to be missing is independent from the knowledge on a available inK∗:
Pr(K 6|= C(a) ∧ K 6|= ¬C(a) | K∗) = Pr(K 6|= C(a) ∧ K 6|= ¬C(a));

– MAR (Missing At Random) – when the probability for such concept-membership
to be missing depends on the knowledge on a available in K:
Pr(K 6|= C(a) ∧ K 6|= ¬C(a) | K∗) = Pr(K 6|= C(a) ∧ K 6|= ¬C(a) | K);

– NMAR (Not Missing At Random, also referred to as IM, Informatively Missing)
– when the probability for such concept-membership to be missing depends on the
knowledge on a available in K∗:
Pr(K 6|= C(a) ∧ K 6|= ¬C(a) | K∗) 6= Pr(K 6|= C(a) ∧ K 6|= ¬C(a) | K).

Algorithm 1 Algorithm for Learning Terminological Bayesian Classifiers
Require: DL KB K = 〈T ,A〉, Concept Start, Beam Width w,

Search depth d, Maximum concept description length maxLen,
Positive, Negative, Neutral training individuals IndC(A);

Ensure: NK = 〈G, ΘG〉,G = 〈V ← {C}, E ← ∅〉;
1: repeat
2: Best← ∅;Beam← {Start};NewBeam← ∅;
3: repeat
4: for c ∈ Beam do
5: for c′ ∈ {ρcl↓ (c) | |c′| ≤ min(|c|+ d,maxLen)} do
6: N ′K ← optimalNetwork(V ∪ {c′}, IndC(A));
7: s′ ← score(N ′K, IndC(A));
8: NewBeam← NewBeam ∪ {〈N ′K, s′〉};
9: end for

10: end for
11: Best← arg max〈N ′K,s′〉(s

′ : 〈N ′K, s′〉 ∈ NewBeam ∪ {Best});
12: Beam← selectFrom(NewBeam,w);NewBeam← ∅;
13: until stopping criterion on Beam;
14: NK ← N ′K : 〈N ′K, s′〉 = Best;
15: until stopping criterion onNK;
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Specifically, in our algorithm, the outer loop (lines 1-15) greedily searches for a
new (complex) concept definition whose addition increases the network’s quality on the
given sample instances (determined by a scoring function score). The search through
the space of concept definitions is performed in the inner loop (lines 3-13) through a
beam search: starting from a beginning concept Start, for each refinement level, all
refinements up to a given length are memorized in a priority queue NewBeam (sorted
according to the score associated to the network generated by adding them to the set
of feature concepts) from which only the k with the highest score are selected, by the
selection function selectFrom, to be refined in the next iteration.

The functions optimalNetwork and score are used, respectively, to find the opti-
mal Bayesian network structure between the nodes in the network (eventually under a
set of constraints, like in the naı̈ve Bayes case or some of its extensions) and for scoring
a classifier (to compare its effectiveness with others). However, those two functions are
sensitive to the assumptions made about the ignorance model.

When the assumed ignorance model is MCAR, we are allowed to use an approach
called available case analysis [15], in which we build an unbiased estimator of the
network parameters, based only on available knowledge. A scoring function we realised
for such case is the network’s log-likelihood on training data, calculated only on positive
and negative training individuals, ignoring the available knowledge about the concept-
membership relations between such individuals and the target concept C, and defined
as:

L(NK | IndC(A)) = log Pr(NK) +
∑

a∈Ind+C(A)

log Pr(C(a) | NK) +
∑

a∈Ind−C(A)

log Pr(¬C(a) | NK);

Another approach we implemented consisted in ranking both positive and negative
training individuals a according to P (C(a) | NK), and then calculating the area un-
der the Precision-Recall curve using different acceptance thresholds.

Under the naı̈ve Bayes assumption, there is no need to perform a search for find-
ing the optimal network, since the structure is already fixed (each node except the target
concept node has only one parent, i.e. the target concept node); otherwise, finding a net-
work structure which is optimal under some criterion (e.g. the BIC score [15]) may re-
quire an exhaustive search in the space of possible structures. However, tree-augmented
naı̈ve Bayesian networks (which allow for a tree structure among feature nodes), it is
possible to efficiently compute the optimal structure employing the method in [12],
making it appealing for real-life applications requiring efficiency and scalability.

In the MAR case, a possible solution for learning models accounting for missing
knowledge is to use the Expectation-Maximization (EM) algorithm, MCMC sampling
or the gradient ascent method [15]. We use EM to learn terminological naı̈ve Bayesian
classifiers from MAR data. In our approach, outlined in Alg. 2, we first heuristically
estimate network’s parameters by only using available data; then, in order to find the
maximum likelihood parameters with respect to both observed and missing knowledge,
we consider individuals whose membership to a particular concept description D is not
known as several fractional individuals belonging, with different weights (correspond-
ing to the posterior probability of their class membership), to both the components D
and ¬D.
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Formally, the EM algorithm for parameters learning explores the space of possible
parameters through an iterative hill-climbing search, converging to a (local) maximum
likelihood estimate of the unknown parameters, where the (log-)likelihood (which we
also use as scoring criterion) is defined as follows:

L(NK | IndC(A)) = log Pr(NK) +
∑

a∈Ind0C(A)

∑

C′∈{C,¬C}
log Pr(C ′(a) | NK) Pr(C ′ | NK)

+
∑

a∈Ind+C(A)

log Pr(C(a) | NK) +
∑

a∈Ind−C(A)

log Pr(¬C(a) | NK);

At each iteration, the EM algorithm applies the following two steps:

– Expectation step – using available data and the current network parameters, cal-
culate a distribution over possible completions for the missing knowledge;

– Maximization step – considering each possible completion as a fully available
data case (weighted by its probability), calculate next parameters using (weighted)
frequency counting.

In our use of the EM algorithm, the E-step calculates the concept-membership pos-
terior probability (inferencing through the network) of each individual whose concept-
membership relation in unknown, thus completing the data through so called expected
counts. Then, the M-step calculates a new estimate of the network’s conditional prob-
ability distributions by using expected counts, maximizing the log-likelihood of both
available and missing data with respect to a network NK.

About finding optimal structures for networks with less restrictions on their struc-
ture (such as tree-augmented naı̈ve BNs or unrestricted BNs) from MAR data, it is
possible to employ the Structural EM (SEM) algorithm [11]. In SEM, the maximiza-
tion step is performed both in the space of structures G and in the space of parameters
ΘG , by first searching a better structure and then the best parameters associated to the
given structure; it can be proven that, if the search procedure finds a structure that is
better than the one used in the previous iteration with respect to e.g. the BIC score, then
the structural EM algorithm will monotonically improve the score.

When knowledge is NMAR, it is generally possible to extend the probabilistic
model to produce one where the MAR assumption holds; e.g. if a feature concept Fi
follows a NMAR ignorance model, with respect to a generic individual a and a DL
KB K, we can consider its observability as an additional variable (e.g. Yi = 0 iff
K 6|= Fi(a) ∧ K 6|= ¬Fi(a), Yi = 1 otherwise) in our probabilistic model, so that
Fi’s ignorance model satisfies the MAR assumption (since its missingness depends on
an always observable variable).

An alternate solution is recurring to robust Bayesian estimation [20] (RBE), to learn
conditional probability distributions without making any sort of assumption about the
nature of the missing data. RBE finds probability intervals instead of single probability
values, obtained by taking in account all the possible fillings of the missing knowledge;
the width of inferred intervals is therefore directly proportional to the quantity of miss-
ing knowledge considered during the learning process. To score each new induced net-
work, we employ the framework proposed in [26] to compare credal networks, while
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Algorithm 2 Outline for our implementation of the EM algorithm for parameter learn-
ing in a terminological Bayesian classifier assuming the underlying ignorance model is
MAR.
function ExpectedCounts(NK, IndC(A))

1: NK = 〈G, ΘG〉,G = 〈V, E〉;
2: for Xi ∈ V do
3: for 〈xi, πxi〉 ∈ vals(Xi, parents(Xi)) do
4: {n̄(xi, πxi) contains the expected count for (Xi = xi, parents(Xi) = πxi)}
5: n̄(xi, πxi)← 0;
6: end for
7: end for
8: for a ∈ IndC(A) do
9: for Xi ∈ V do

10: for 〈xi, πxi〉 ∈ vals(Xi, parents(Xi)) do
11: {Each expected count n̄(xi, πxi) is obtained summing out the probability assign-

ments to the concept memberships (Xi = xi, parents(Xi) = πxi) for each indi-
vidual, calculated using the background knowledge K and, if they are only partially
known, inferring through the networkNK}

12: n̄(xi, πxi)← n̄(xi, πxi) + Pr(xi, πxi | NK);
13: end for
14: end for
15: end for
16: return {n̄(xi, πxi) | Xi ∈ V, 〈xi, πxi〉 ∈ vals(Xi, parents(Xi))};
function ExpectationMaximization(N 0

K, IndC(A))

1: {The network was first initialized with arbitrary heuristic parameters Θ0
G}

2: N 0
K = 〈G, Θ0

G〉,G = 〈V, E〉;
3: t← 0;
4: repeat
5: {n̄(xi, πxi)} ← ExpectedCounts(NK, IndC(A));
6: for Xi ∈ V do
7: for 〈xi, πxi〉 ∈ vals(Xi, parents(Xi)) do
8: θt+1

G (xi, πxi)← n̄(xi,πxi
)∑

x′
i
∈vals(Xi)

n̄(x′i,πxi
)
;

9: end for
10: end for
11: t← t+ 1;
12: N t

K = 〈G, ΘtG〉;
13: {The EM loop ends when improvements to the network’s log-likelihood go below a cer-

tain threshold}
14: until L(N t

K = 〈G, ΘtG)〉 | IndC(A))− L(N t−1
K = 〈G, Θt−1

G 〉 | IndC(A)) ≤ τ ;
15: return N t

K;
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we do not have implemented yet a method to search for structures other than naı̈ve
Bayesian.

Example 2 (Example of Terminological Naı̈ve Bayesian Classifier using Robust Bayesian
Estimation). The following is a terminological naı̈ve Bayesian classifier using robust
Bayesian estimation for inferring posterior probability intervals in presence of NMAR
knowledge. In this networks, conditional probability tables associated to each node con-
tain probability intervals instead of probability values, each defined by its upper and
lower bound.

[Pr(Female|Father),Pr(Female|Father)]
[Pr(Female|¬Father),Pr(Female|¬Father)]

[Pr(HasChild|Father),Pr(HasChild|Father)]
[Pr(HasChild|¬Father),Pr(HasChild|¬Father)]

Fa := Father

Fe := Female

HC := ∃hasChild.Person

Inference, using such network, can be performed as follows – given a generic indi-
vidual a and given that K |= HC(a), the posterior probability interval that a is a mem-
ber of Fa is represented by the probability interval [Pr(Fa | HC),Pr(Fa | HC)],
where:

Pr(Fa(a)) = Pr(Fa | HC) =
Pr(HC | Fa)Pr(Fa)

Pr(HC | Fa)Pr(Fa) + Pr(HC | ¬Fa)Pr(¬Fa)
;

Pr(Fa(a)) = Pr(Fa | HC) =
Pr(HC | Fa)Pr(Fa)

Pr(HC | Fa)Pr(Fa) + Pr(HC | ¬Fa)Pr(¬Fa)
;

4 Conclusions and Future Work

We presented a Statistical Relational Learning method designed for learning termino-
logical naı̈ve Bayesian classifiers, a ML method based on the naı̈ve Bayes assumption
for estimating the probability that a generic individual belongs to a certain target con-
cept, given its membership relation to an induced set of complex Description Logic
concepts. We gave a characterisation of the lack of knowledge that may be introduced
by the OWA depending on the underlying ignorance model, and handled such missing
knowledge under different assumptions on the nature of missing knowledge itself (i.e.
Missing Completely at Random, Missing at Random or Informatively Missing). In the
future, we aim at estimating computationally the ignorance model followed by each
feature, at developing new methods to exploit the potential information contained in
knowledge’s missingness and evaluate our methods’ effectiveness on real world ontolo-
gies.
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Abstract. We present DISPONTE, a semantics for probabilistic ontolo-
gies that is based on the distribution semantics for probabilistic logic pro-
grams. In DISPONTE each axiom of a probabilistic ontology is annotated
with a probability. The probabilistic theory defines thus a distribution
over normal theories (called worlds) obtained by including an axiom in
a world with a probability given by the annotation. The probability of a
query is computed from this distribution with marginalization. We also
present the system BUNDLE for reasoning over probabilistic OWL DL
ontologies according to the DISPONTE semantics. BUNDLE is based
on Pellet and uses its capability of returning explanations for a query.
The explanations are encoded in a Binary Decision Diagram from which
the probability of the query is computed.

1 Introduction

Representing probabilistic knowledge and reasoning with it is fundamental in
order to realize the full vision of the Semantic Web, due to the ubiquity of un-
certainty in the real world and on the Web [24]. Various authors have advocated
the use of probabilistic ontologies, see e.g. [17], and many proposals have been
put forward for allowing ontology languages, and OWL in particular, to represent
uncertainty.

Similarly, in the field of logic programming, there has been much work on
introducing uncertainty in the programs. Among the various proposals, the dis-
tribution semantics [22] has emerged as one of the most effective approaches and
it underlies many languages such as PRISM [22], ICL [19], Logic Programs with
Annotated Disjunctions [26] and ProbLog [3]. In this semantics a probabilistic
logic program defines a probability distribution over a set of normal logic pro-
grams (called worlds). The distribution is extended to a joint distribution over
worlds and queries; the probability of a query is obtained from this distribution
by marginalization. In general, the problem of integrating logic and probability
has been much studied lately, with proposals such as Markov Logic [20], Multi
Entity Bayesian Networks [12] and Probabilistic Relational Models [10].

In this paper we propose to apply this approach to ontology languages and,
in particular, to the OWL DL fragment, that is based on the description logic
SHOIN (D). However, the approach is applicable in principle to any description
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logic. We called the approach DISPONTE for “DIstribution Semantics for Prob-
abilistic ONTologiEs” (Spanish for “get ready”). The idea is to annotate each
axiom of a theory with a probability and assume that each axiom is indepen-
dent of the others. A probabilistic theory defines thus a distribution over normal
theories (worlds) obtained by including an axiom in a world with a probability
given by the annotation. The probability of a query is again computed from this
distribution with marginalization.

We also present the system BUNDLE for “Binary decision diagrams for Un-
certain reasoNing on Description Logic thEories” that performs inference over
probabilistic OWL DL ontologies. BUNDLE uses the inference techniques de-
veloped for probabilistic logic programs under the distribution semantics [8,21]
and, in particular, the use of Binary Decision Diagrams (BDDs) for encoding
explanations to queries and for computing their probability.

BUNDLE is based on the Pellet reasoner [23] for OWL DL and exploits its
capability of returning explanations for queries in the form of a set of sets of
axioms from which BUNDLE builds a BDD for computing the probability. In
this way we provide an effective reasoning system for DISPONTE.

The paper is organized as follows. Section 2 describes the distribution seman-
tics for logic programs while Section 3 presents DISPONTE. Section 4 illustrates
BUNDLE and Section 5 discusses current limitations of DISPONTE and BUN-
DLE. Section 6 describes related works while Section 7 concludes the paper.

2 The Distribution Semantics in Probabilistic Logic
Programming

The probabilistic logic programming languages based on the distribution se-
mantics differ in the way they define the distribution over logic programs. Each
language allows probabilistic choices among atoms in clauses. Let us consider
ProbLog [3] which is the language with the simplest syntax. A ProbLog pro-
gram T is composed of a normal logic program TC and a set of probabilistic
facts TP . Each probabilistic fact is of the form pi :: Fi. where pi is a probability
(i.e. pi ∈ [0, 1]) and Fi is a atom. This means that every grounding of Fi is a
Boolean random variable that assumes true value with probability pi and false
with probability 1− pi.

Let us call TF the set of atoms obtained by removing the probabilistic an-
notation from the probabilistic facts. Let us consider the case in which TC ∪ TF
does not contain function symbols so that its Herbrand base is finite. Let us call
ground(T ) the grounding of a normal program T . Since there are no function
symbols, ground(TC ∪TF ) is finite and so is the grounding ground(TF ) obtained
by grounding the probabilistic atoms with constants from the Herbrand universe
of TC ∪ TF . So each probabilistic fact Fi has a finite set of groundings.

A substitution is a set of couples V/c where V is a variable and c is a constant.
A substitution θj is applied to a logic atom F , indicated with Fθj , by replacing
the variables in the substitution with constants. A substitution θj is grounding
for logic atom F if Fθj is ground. Suppose that a grounding is obtained with
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the substitution θj : Fiθj corresponds to a Boolean random variable Xij that is
independent of the others.

Example 1. The following ProbLog program T encodes a very simple model of
the development of an epidemic or pandemic:

C1 = epidemic : −flu(X), epid(X), cold.
C2 = pandemic : −flu(X), \+ epid(X), pand(X), cold.
C3 = flu(david).
C4 = flu(robert).
F1 = 0.7 :: cold.
F2 = 0.6 :: epid(X).
F3 = 0.3 :: pand(X).
This program models the fact that if somebody has the flu and the climate

is cold there is the possibility that an epidemic or a pandemic arises. We are
uncertain whether the climate is cold but we know for sure that David and
Robert have the flu. epid(X) and pand(X) can be considered as ”probabilistic
activators” of the effects in the head given that the causes (flu(X) and cold)
are present. \+ epid(X) means the negation of epid(X).

Fact F1 has only one grounding so there is a single Boolean variable X11. Fact
F2 has two groundings, epid(david) and epid(robert) so there are two Boolean
random variables X21 and X22. F3 also has two groundings so there are two
Boolean random variables X31 and X32.

In order to present the distribution semantics, let us first give some definitions.
An atomic choice is a selection of a value for a grounding of a probabilistic
fact F and is represented by the triple (Fi, θj , k) where θj is a substitution
grounding Fi and k ∈ {0, 1}. A set of atomic choices κ is consistent if (Fi, θj , k) ∈
κ, (Fi, θj ,m) ∈ κ ⇒ k = m, i.e., only one truth value is selected for a ground
fact. A composite choice κ is a consistent set of atomic choices. The probability
of composite choice κ is P (κ) =

∏
(Fi,θj ,1)∈κ pi

∏
(Fi,θj ,0)∈κ(1 − pi). A selection

σ is a total composite choice (one atomic choice for every grounding of every
probabilistic fact). A selection σ identifies a normal logic program wσ called a
world in this way: wσ = TC ∪ {Fiθj |(Fi, θj , 1) ∈ σ}. The probability of wσ is
P (wσ) = P (σ) =

∏
(Fi,θj ,1)∈κ pi

∏
(Fi,θj ,0)∈κ(1 − pi). Since ground(TF ) is finite

the set of worlds is finite: WT = {w1, . . . , wm} and P (w) is a distribution over
worlds:

∑
w∈WT

P (w) = 1. A world wσ is compatible with a composite choice κ
if κ ⊆ σ

We can define the conditional probability of a query Q given a world as
P (Q|w) = 1 if w |= Q and 0 otherwise. This allows to define a joint distribution
of the query and the worlds P (Q,w) by using the product rule of the theory of
probability: P (Q,W ) = P (Q|w)P (w). The probability of Q can then be obtained
from the joint distribution by the sum rule (marginalization over Q):

P (Q) =
∑

w∈WT

P (Q,w) =
∑

w∈WT

P (Q|w)P (w) =
∑

w∈WT :w|=Q
P (w) (1)

In Example 1, T has 5 Boolean random variables and thus 32 worlds. The query
epidemic is true in 5 of them and its probability is P (epidemic) = 0.588.
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It is often unfeasible to find all the worlds where the query is true so inference
algorithms find instead explanations for the query [8,21] , i.e. composite choices
such that the query is true in all the worlds that are compatible with them . For
example, κ1 = {(F2, {X/david}, 1), (F1, {}, 1)} is an explanation for the query
epidemic and so is κ2 = {(F2, {X/robert}, 1), (F1, {}, 1)}.

Each explanation κ identifies a set of worlds, those that are compatible with
it, and a set of explanations K identifies the set ωK of worlds compatible with
one of its explanations (ωK = {wσ|κ ∈ K,κ ⊆ σ}). A set of explanations K is
covering for a query Q if every world in which Q is true is in ωK . For example,
K = {κ1, κ2} is covering for the query epidemic.

The probability of a query can thus be computed from a covering set of
explanations for the query by computing the probability of the Boolean formula

B(Q) =
∨

κ∈K

∧

(Fi,θj ,1)∈κ
Xij

∧

(Fi,θj ,0)∈κ
¬Xij (2)

For Example 1, the formula is B(epidemic) = X11 ∧X21 ∨X11 ∧X22.
Explanations however, differently from possible worlds, are not necessarily

mutually exclusive with respect to each other, so the probability of the query can
not be computed by a summation as in (1). In fact computing the probability
of a DNF formula of independent Boolean random variables is a #P-complete
problem [25]. The method that was found to be the most efficient up to now
consists in building a Binary Decision Diagram for the formula and using a
dynamic programming algorithm on the BDD [8,21]. A BDD is a rooted graph
that has one level for each variable. Each node n has two children, a 0-child and
a 1-child. The leaves store either 0 or 1. Given values for all the variables, a
BDD can be used to compute the value of the formula by traversing the graph
starting from the root, following the edges corresponding to the variables values
and returning the value associated to the leaf that is reached. The BDD for
Example 1 is shown in Figure 1.

X21 n1

X22 n2

X11 n3

1 0

Fig. 1. BDD for Example 1.

A BDD performs a Shannon expansion of the Boolean formula f(X), so
that if X is the variable associated to the root level of a BDD, the formula
f(X) can be represented as f(X) = X ∧ fX(X) ∨ ¬X ∧ f¬X(X) where fX(X)
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(f¬X(X)) is the formula obtained by f(X) by setting X to 1 (0). Now the two
disjuncts are mutually exclusive and the probability of f(X) can be computed as
P (f(X)) = P (X)P (fX(X))+(1−P (X))P (f¬X(X)) Figure 2 shows the function
Prob that implements the dynamic programming algorithm for computing the
probability of a formula encoded as a BDD.

Fig. 2. Function Prob: computation of the probability of a Boolean formula encoded
as a BDD with root node.

1: function Prob(node)
2: if node is a terminal then
3: return value(node) . value(node) is either 0 or 1
4: else
5: let X be v(node) . v(node) is the variable associated to node
6: return Prob(child0(node)) ·(1− P (X))+Prob(child1(node))·P (X)
7: end if
8: end function

Languages with non-binary choices such as Logic Programs with Annotated
Disjunctions can be handled by encoding the choices with binary variables [21].

3 The DISPONTE Semantics for Probabilistic Ontologies

DISPONTE assigns a semantics to probabilistic ontologies following the ap-
proach of the distribution semantics for probabilistic logic programs. It defines
a probability distribution over non-probabilistic ontologies called worlds. This
probability distribution is extended to a joint distribution of the worlds and a
query and the probability of the query is obtained by marginalization.

The probabilistic ontologies we consider associate to each axiom of the on-
tology a Boolean random variable that indicates whether the axiom is present
in a world. A probabilistic ontology is thus a set of annotated axioms of the form

pi :: Ai (3)

or of unannotated axioms of the form Ai, for i = 1, . . . , n, where pi is the
probability with which axiom Ai is included in a world. Let us call OA the set
{A1, . . . , An} and Xi the Boolean random variable associated to axiom Ai. Each
Xi is independent of every Xj with i 6= j. The probability of each Xi of being
true is pi. If the pi :: annotation is omitted for an axiom, we assume that the
axiom is certain, i.e., that it has probability 1.

A world w is obtained by sampling a value for Xi for every axiom Ai of OA
and by including Ai in w if Xi = 1. Since the random variables for the different
axioms are independent, the probability P (w) of w is obtained as:

P (w) =
∏

Ai∈w
pi

∏

Aj∈OA\w
(1− pj)
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Given a query Q to O, we can define its conditional probability of being true
given a world P (Q|w) in the following intuitive way: P (Q|w) = 1 if w |= Q and
P (Q|w) = 0 if w 6|= Q.

The probability P (Q) can be obtained from the joint distribution of the query
and the worlds by the sum rule:

P (Q) =
∑

w

P (Q,w) =
∑

w

P (Q|w)P (w) =
∑

w:w|=Q
P (w)

Similarly to the case of probabilistic logic programming, the probability of a
query Q given a probabilistic ontology O can be computed by first finding the
explanations for Q in O. An explanation in this context is a subset of axioms of
O that is sufficient for entailing Q. Typically minimal explanations are sought
for efficiency reasons. All the explanations for Q must be found, corresponding
to all ways of proving Q. Let EQ be set of explanations and e be an explanation
from EQ. The probability of Q can be obtained by computing the probability of
the DNF formula

F (Q) =
∨

e∈EQ

∧

Ai∈e
pi

Example 2. This example is inspired by Examples 3.1, 4.1, 4.2 and 4.3 of [15] that
describe a probabilistic ontology about cars. We know for sure that a SportCar
is a Car to which a max speed greater than 245Km/h is associated:

SportsCar v Car u ∃max speed. ≥245Km/h (4)

We also know that a Car is a subset of the class of vehicles HasFourWheels
with probability 0.9:

0.9 :: Car v HasFourWheels (5)

Please note that this does not mean that a member of the class Car is a member
of HasFourWheels with probability 0.9, see Section 5. johns car is an instance
of SportsCar with probability 0.8:

0.8 :: johns car : SportsCar (6)

We want to know what is the probability P (Q1) of axiom Q1 = johnsCar :
HasFourWheels being true. Q1 has a single explanation containing the axioms
(4), (5) and (6). Since (4) is certain, P (Q1) is 0.8× 0.9 = 0.72.

Example 3. Let us consider another example, inspired by the people+pets on-
tology proposed in [18]. We know that kevin is a DogOwner with probability
0.6 and a CatOwner with probability 0.6:

0.6 :: kevin : DogOwner; (7)
0.6 :: kevin : CatOwner. (8)
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Moreover we know for sure that DogOwner and CatOwner are subclasses of
PetOwner

DogOwner v PetOwner (9)
CatOwner v PetOwner (10)

Then the query axiom Q2 = kevin : PetOwner has two explanations, one com-
posed of the axioms (7) and (9) and the other composed of the axioms (8) and
(10). Since (9) is certain, the probability of the first explanation is 0.6. Simi-
larly, the probability of the second explanation is again 0.6. If we associate the
Boolean random variable X1 to (7) and X2 to (8), the query axiom is true if
the formula X1 ∨ X2 is true. Thus, P (Q2) = P (X1 ∨ X2). Since X1 and X2

are independent, we get P (Q2) = 0.6 + 0.6 − 0.6 × 0.6 = 0.84. As you can see,
the fact that kevin is an instance of both DogOwner and CatOwner increases
the probability that he is an instance of PetOwner: if he were an instance of
DogOwner only, its probability of being a PetOwner would be 0.6 and similarly
if he were an instance of CatOwner only.

Now suppose that we known that PetOwner is a subclass of Ecologist with
probability 0.7:

0.7 :: PetOwner v Ecologist (11)

The query axiom Q3 = kevin : Ecologist has again two explanations, one
composed of axioms (7), (9) and (11) and the other composed of the axioms
(8), (10) and (11). Since (9) is certain, the probability of the first explana-
tion is 0.4 × 0.6 = 0.24. Similarly, the probability of the second explanation is
0.5 × 0.6 = 0.3. If we associate the Boolean random variable X3 to (11), Q3 is
a consequence of the theory if X1 ∧X3 ∨X2 ∧X3 is true. A BDD that can be
built for this formula is the one shown in Figure 1 after replacing variable X21

with X1, variable X22 with X2 and variable X11 with X3.
The probability of node n3 computed by Prob is 0.7×1+0.3×0 = 0.7. The

probability of node n2 is 0.6× 0.7 + 0.4× 0 = 0.42 and the probability of node
n1 (and of Q3) is 0.6× 0.7 + 0.4× 0.42 = 0.588.

4 The BUNDLE System

BUNDLE computes the probability of a query Q given a probabilistic ontology
O that follows the DISPONTE semantics. BUNDLE exploits an underlying on-
tology reasoner that is able to return all explanations for a query. One of these
system is Pellet [23] that is a complete OWL-DL reasoner. Pellet takes as input
an OWL ontology in various formats, including the RDFXML language.

In order to assign probabilities to axioms, we exploit the possibility given by
OWL1.1 of declaring an annotation property for axioms. We thus annotate the
axioms with the XML tag bundle:probability whose value should be a real
number in [0,1].
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BUNDLE takes as input two RDFXML files, one containing the ontology
and one containing the annotations. For Example 3, the ontology file contains
the following definition of PetOwner:

<owl:Class rdf:about="#PetOwner">
<rdfs:subClassOf>

<owl:Class rdf:about="#Ecologist" />
</rdfs:subClassOf>

</owl:Class>

The annotation file contains the annotation for the above axiom in the following
form:

<owl11:Axiom>
<rdf:subject rdf:resource="#PetOwner"/>
<rdf:predicate rdf:resource="&rdfs;subClassOf"/>
<rdf:object rdf:resource="#Ecologist"/>
<bundle:probability>0.6</bundle:probability>

</owl11:Axiom>

BUNDLE first uses the annotation file for building a data structure PMap
that associates axioms with their probability. In order to do so, axioms are
first converted to strings. We use the Manchester syntax to obtain a string
representation of an axiom.

Then BUNDLE uses the Explain function of Pellet to compute explanations
for a query axiom. BUNDLE thus accepts all the forms of query axioms that
are accepted by Pellet’s Explain function, namely subclass, instance, property
value, theory inconsistency and class unsatisfiability.

Pellet returns the explanations for the query in the form of a set of sets of
axioms. Then BUNDLE performs a double loop over the set of explanations and
over the set of axioms in each explanation in which it builds a BDD representing
the set of explanations. To manipulate BDDs we used the JavaBDD library1

that provides a Java interface to the major BDD libraries such as CUDD2.
Outside the outer loop, two data structures are initialized: V arAxAnn is an

array that maintains the association between Boolean random variables (whose
index is the array index) and axioms together with their probability, and BDD
represents the set of explanations. BDD is initialized to the BDD representing
the zero Boolean function. Then the outer loop is entered in which BDDE is
initialized to the BDD representing the one Boolean function. In the inner loop
the axioms of an explanation are considered one by one. Each axiom is first
looked up in PMap to get its probability. If NULL is returned this means that
this is a certain axiom and it does not need to be considered anymore. Then
the axiom is searched for in V arAxAnn to see if it has already been assigned
a random variable. If not, a cell is added to V arAxAnn to store the axiom
with its probability. At this point we know the axiom’s position i in V arAxAnn
1 http://javabdd.sourceforge.net/
2 http://vlsi.colorado.edu/~fabio/CUDD/
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and so the index of its Boolean variable Xi. We obtain a BDD representing
Xi = 1 and we conjoin it with BDDE. At the end of the inner loop the BDD for
the current explanation, BDDE, is disjoined with BDD. After the two cycles,
function Prob of Figure 2 is called over BDD and its result is returned to the
user.

BUNDLE has been implemented in Java and will be available for download
from http://sites.unife.it/bundle. It has been successfully tested on vari-
ous examples, including those of Section 3.

5 Discussion

The probabilistic knowledge that can be expressed with the DISPONTE seman-
tics is epistemic by nature, namely it represents degrees of belief in the axioms
rather that statistical information. While this is reasonable for many axioms, for
subclass and subproperty axioms one may want to express statistical informa-
tion, for example with a probabilistic subclass axiom p :: A v B one may want
to express the fact that a random individual of A has probability p of belonging
to B. The DISPONTE semantics, instead, interpret the axioms as stating that
A v B is true with probability p. The difference is that, if two individuals i and j
belong to class A, the probability that they both belong to B in the DISPONTE
semantics is p while with a statistical interpretation is p × p. Thus statistical
information can be used to define a degree of partial overlap between classes.
Extending DISPONTE to take account of this case is possible, it requires to
define a probability distribution over models rather than over theories.

However, to reason with such knowledge, the inference engine must be modi-
fied in its inference procedure and cannot be used as a black box as in BUNDLE.
In fact, BUNDLE assigns a single Boolean random variable to the axiom A v B,
while with a statistical interpretation a different Boolean random variable must
be assigned to each assertion that an individual of class A belongs to class B.
We leave this extension for future work.

Another limitation of BUNDLE is the use of the OWL 1.1 Axiom construct
to specify probabilities. This seems to restrict the kind of axioms on which
probabilities can be placed, since the object of the RDF triple does not allow
complex class expressions. However this limitation can be overcome by defining a
new class which is equivalent to the complex class expression and using the new
class name in the RDF triple. In the future we plan to investigate the possibility
of annotating the axioms directly in the ontology file.

As regards the complexity of reasoning on DISPONTE, it is equal to the com-
plexity of the underlying description logic plus the #P complexity of computing
the probability of a DNF formula of independent Boolean random variables, as-
suming the cost of keeping track of explanations during inference is negligible.
Thus, the problem of inference in DISPONTE remains decidable if it was so in
the underlying description logic.
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6 Related Work

Our work differs from previous work in many respects. [6] proposed an exten-
sion of the description logic ALC that is able to express statistical information
on the terminological knowledge such as partial concept overlapping. Similarly,
[11] presents a probabilistic description logic based on Bayesian networks that
deals with statistical terminological knowledge. As illustrated in Section 5, cur-
rently we are not able to express statistical terminological knowledge but it is
possible to extend the semantics to do so. Differently from us, [6,11] do not
allow probabilistic assertional knowledge about concept and role instances. [7]
allows assertional knowledge about concept and role instances together with sta-
tistical terminological knowledge and combines the resulting probability distri-
butions using cross-entropy minimization. In the future we plan to compare the
DISPONTE semantics extended with statistical information with this approach.

[4] proposed a probabilistic extension of OWL that admits a translation into
Bayesian networks. The semantics that is proposed assigns a probability distri-
bution P (i) over individuals, i.e.

∑
i P (i) = 1, and assigns a probability to a class

C as P (C) =
∑
i∈C P (i), while we assign a probability distribution over theo-

ries. PR-OWL [2,1] is an upper ontology that provides a framework for building
probabilistic ontologies. It allows to use the first-order probabilistic logic MEBN
[12] for representing uncertainty in ontologies. The use of a full fledged first-order
probabilistic logic distringuishes this work from ours, where we tried to provide
a minimal extension to description logics.

A different approach to the combination of description logic with probability
is taken by [5,13,14] where the authors use probabilistic lexicographic entailment
from probabilistic default reasoning. The logics proposed in these papers allow
both terminological probabilistic knowledge as well as assertional probabilistic
knowledge about instances of concepts and roles. PRONTO [9] is one of the
systems that allows to perform inference in this semantics.

Similary to [7], the terminological knowledge is interpreted statistically while
the assertional knowledge is interpreted epistemically by assigning degrees of
beliefs to assertions, thus differing from our current treatment of terminological
knowledge. Moreover it also allows to express default knowledge about con-
cepts that can be overridden in subconcepts and whose semantics is given by
Lehmann’s lexicographic default entailment.

These works are based on Nilsson’s probabilistic logic [16] where a proba-
bilistic interpretation Pr defines a probability distribution over the set of in-
terpretations I. The probability of a logic formula φ according to Pr, denoted
Pr(φ), is the sum of all Pr(I) such that I ∈ I and I |= φ.

A probabilistic knowledge base K is a set of probabilistic formulas of the
form φ ≥ p. A probabilistic interpretation Pr satisfies φ ≥ p iff Pr(φ) ≥ p. Pr
satisfies K, or Pr is a model of K, iff Pr satisfies all F ∈ K. We say φ ≥ p is a
tight logical consequence of K iff p is the infimum of Pr(φ) subject to all models
Pr of K. Computing tight logical consequences from probabilistic knowledge
bases can be done by solving a linear optimization problem.
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Nilsson’s probabilistic logic differs from the distribution semantics: while a
probabilistic knowledge base in Nilsson’s logic may have multiple models that
are probabilistic interpretations, a probabilistic program under the distribution
semantics has a single model that defines a single distribution over interpreta-
tions. Also, while in Nilsson’s logic we want to compute the lowest p such that
Pr(φ) ≥ p holds for all Pr, in the distribution semantics we want to compute p
such that P (φ) = p. Nilsson’s logic complexity is lower than the #P complexity
of the distribution semantics.

In fact Nilsson’s logic allows weaker conclusions than the distribution se-
mantics. For example, consider a probabilistic program composed of 0.4 :: a. and
0.5 :: b. and a probabilistic knowledge base composed of a ≥ 0.4 and b ≥ 0.5. The
distribution semantics allows to say that P (a∨b) = 0.7, while with Nilsson’s logic
the lowest p such that Pr(a ∨ b) ≥ p holds is 0.5. This is due to the fact that in
the distribution semantics the probabilistic atoms are considered independent,
which allows to make stronger conclusions. However, note that this does not
restrict expressiveness as you can specify with the distribution semantics any
joint probability distribution over the atoms of the Herbrand base interpreted
as Boolean random variables, possibly introducing new random facts if needed.

Alternative approaches to modeling imperfect and incomplete knowledge in
ontologies are based on fuzzy logic. A good survey of these approaches is pre-
sented in [15].

7 Conclusions

We have presented the semantics DISPONTE for probabilistic ontologies that
is inspired by the distribution semantics of probabilistic logic programming. We
have also presented the system BUNDLE that is able to compute the probability
of queries from an uncertain OWL DL ontology.

In the future, we plan to extend DISPONTE to take into account statistical
terminological knowledge and improve the way in which the input to BUNDLE
is specified.
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2 Escola Politécnica, Universidade de São Paulo,
Av. Prof. Mello Morais 2231, São Paulo - SP, Brazil

katerevoredo@uniriotec.br,eduardo.ol@gmail.com,fgcozman@usp.br

Abstract. Predicting potential links between nodes in a network is a
problem of great practical interest. Link prediction is mostly based on
graph-based features and, recently, on approaches that consider the se-
mantics of the domain. However, there is uncertainty in these predictions;
by modeling it, one can improve prediction results. In this paper, we pro-
pose an algorithm for link prediction that uses a probabilistic ontology
described through the probabilistic description logic crALC. We use an
academic domain in order to evaluate this proposal.

1 Introduction

Many social, biological, and information systems can be well described by net-
works, where nodes represent objects (individuals), and links denote the rela-
tions or interactions between nodes. Predicting a possible link in a network is
an interesting issue that has recently gained attention, due to the growing inter-
est in social networks. For instance, one may be interested on finding potential
friendship between two persons in a social network, or a potential collaboration
between two researchers. Thus link prediction [12, 20] aims at predicting whether
two nodes (i.e. people) should be connected given that we know previous infor-
mation about their relationships or interests. A common approach is to exploit
the network structure, where numerical information about nodes is analyzed
[12, 20, 9]. However, knowledge about the objects represented in the nodes can
improve prediction results. For instance consider that the researchers Joe and
Mike do not have a publication in common, thus they do not share a link in a
collaboration network. Moreover, graph features do not indicate a potential link
between them. However, they have published in the same journal and they both
teach the same course in their respectively universities. This information can be
an indication of a potential collaboration between them. Given this, approaches
that are based on the semantics related to the domain of the objects represented
by the nodes [21, 18] have been proposed. In some of them, an ontology modeling
the domain and the object interests were used in the prediction task.

However, there is uncertainty in such predictions. Often, it is not possible
to guarantee the relationship between two objects (nodes). This is maybe due
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to the fact that information about the domain is incomplete. Thus, it would
be interesting if link prediction approaches could handle the probability of a
link conditioned on the information about the domain. In our example, knowing
that the probability of the relationship between Joe and Mike conditioned on
the knowledge of them publishing in the same journal and teaching the same
course is high implies a link between them in the network; otherwise, a link is
not suggested. In graph-based approaches, probabilistic models learned through
machine learning algorithms were used for link prediction. Some examples of
probabilistic models are Probabilistic Relational Model (PRM) [6], Probabilistic
Entity Relationship Model (PERM) [7] and Stochastic Relational Model (SRM)
[22]. On approaches based on semantic we claim that ontologies must be used
to model the domain. Therefore, to model uncertainty, probabilistic approaches,
such as probabilistic ontologies, must be considered.

An ontology can be represented through a description logic [2], which is typi-
cally a decidable fragment of first-order logic that tries to reach a practical bal-
ance between expressivity and complexity. To encode uncertainty, a probabilistic
description logic (PDL) must be contemplated. The literature contains a number
of proposals for PDLs [8, 10, 19, 13]. In this paper we adopt a recently proposed
PDL, called Credal ALC (crALC) [4, 16, 5], that extends the popular logic ALC
[2]. In crALC one can specify sentences such as P (Professor|Researcher) = 0.4,
indicating the probability that an element of the domain is a Professor given
that it is a Researcher. These sentences are called probabilistic inclusions. Exact
and approximate inference algorithms that deal with probabilistic inclusions
have been proposed [4, 5], using ideas inherited from the theory of Relational
Bayesian Networks (RBN)[11].

In this paper, we propose to use a probabilistic ontology defined with the
PDL crALC for semantic link prediction.

The paper is organized as follows. Section 2 reviews basic concepts of PDLs
and crALC. Section 3 presents our algorithm for semantic link prediction through
the PDL crALC. Experiments are discussed in Section 4, and Section 5 con-
cludes the paper.

2 Probabilistic Description Logics and crALC

Description logics (DLs) form a family of representation languages that are typi-
cally decidable fragments of first order logic (FOL) [2]. Knowledge is expressed
in terms of individuals, concepts, and roles. The semantic of a description is
given by a domain D (a set) and an interpretation ·I (a functor). Individuals
represent objects through names from a set NI = {a, b, . . .}. Each concept in the
set NC = {C,D, . . .} is interpreted as a subset of a domain D. Each role in the
set NR = {r, s, . . .} is interpreted as a binary relation on the domain.

Several probabilistic descriptions logics (PDLs) have appeared in the litera-
ture. Heinsohn [8], Jaeger [10] and Sebastiani [19] consider probabilistic inclusion
axioms such as PD(Professor) = α, meaning that a randomly selected object is a
Professor with probability α. This characterizes a domain-based semantics: prob-

88



abilities are assigned to subsets of the domain D. Sebastiani also allows inclusions
such as P (Professor(John)) = α, specifying probabilities over the interpretations
themselves. For example, one interprets P (Professor(John)) = 0.001 as assigning
0.001 to be the probability of the set of interpretations where John is a Professor.
This characterizes an interpretation-based semantics.

The PDL crALC is a probabilistic extension of the DL ALC that adopts an
interpretation-based semantics. It keeps all constructors of ALC, but only allows
concept names on the left hand side of inclusions/definitions. Additionally, in
crALC one can have probabilistic inclusions such as P (C|D) = α or P (r) = β
for concepts C and D, and for role r. If the interpretation of D is the whole
domain, then we simply write P (C) = α. The semantics of these inclusions is
roughly (a formal definition can be found in [5]) given by:

∀x ∈ D : P (C(x)|D(x)) = α,

∀x ∈ D, y ∈ D : P (r(x, y)) = β.

We assume that every terminology is acyclic; no concept uses itself. This as-
sumption allows one to represent any terminology T through a directed acyclic
graph. Such a graph, denoted by G(T ), has each concept name and role name
as a node, and if a concept C directly uses concept D, that is if C and D appear
respectively in the left and right hand sides of an inclusion/definition, then D
is a parent of C in G(T ). Each existential restriction ∃r.C and value restriction
∀r.C is added to the graph G(T ) as nodes, with an edge from r and C to each
restriction directly using it. Each restriction node is a deterministic node in that
its value is completely determined by its parents.

Example 1. Consider a terminology T1 with concepts A,B,C,D. Suppose
P (A) = 0.9,B v A,C v B t ∃r.D, P (B|A) = 0.45, P (C|B t ∃r.D) = 0.5, and
P (D|∀r.A) = 0.6. The last three assessments specify beliefs about partial overlap
among concepts. Suppose also P (D|¬∀r.A) = ε ≈ 0 (conveying the existence of
exceptions to the inclusion of D in ∀r.A). Figure 1 depicts G(T ).

Fig. 1. G(T ) for terminology T in Example 1 and its grounding for domain D = {a, b}.
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The semantics of crALC is based on probability measures over the space of
interpretations, for a fixed domain. Inferences, such as P (Ao(a0)|A) for an ABox
A, can be computed by propositionalization and probabilistic inference (for exact
calculations) or by a first order loopy propagation algorithm (for approximate
calculations) [5].

3 Link Prediction by using crALC
In this section we describe how to apply the PDL crALC for semantic link
prediction. We borrowed some syntax from the graph-based approach where
each node (a person in a social network) is represented by A,B,C, and we are
interested in defining whether a link between A and B is suitable given there is
no link between these nodes. Interests between the nodes are modeled through a
probabilistic ontology represented by the PDL crALC. The prediction link task
can be described as:

Given:
• a network defining relationship between objects;
• an ontology represented by crALC describing the domain of the objects;
• the ontology role that defines the semantic of the relationship between

objects;
• the ontology concept that describes the network objects.

Find:
• a revised network defining relationship between objects.

The proposed algorithm for link prediction receives a network of a specific
domain. For instance, in a collaboration network the nodes represent researchers
and the relationship can have the semantic ”has a publication with” or ”is ad-
vised by”. Therefore, the ontology represented by crALC describes the domain
of publications between researchers, having concepts like Researcher, Publication,
StrongRelatedResearcher and NearCollaborator and roles like hasPublication,
hasSameInstitution and sharePublication. This ontology can be learned automat-
ically through a learning algorithm as the ones proposed in [15, 17]. Thus, the
nodes represent instances of one of the concepts described in the PDL crALC
and the semantic of the links is described by one of the roles in the PDL crALC.
These concept and role must be informed as inputs to the proposed algorithm.
The link prediction algorithm is described in Algorithm 1.

The algorithm starts looking for all pairs of instances of the concept C defined
as the concept that provides the semantic for the network nodes. For each pair
it checks whether the corresponding nodes exist in the network (this can be
improved by exploring graph-based properties). If not the probability of the
link is calculated through the probability of the defined role conditioned on
evidence. The evidence is provided by the instances of the ontology. As many
instances the ontology have the better is the inference performed. The inference
is performed through the Relational Bayesian network build from ontology O. If
the probability inferred is greater than a threshold then the corresponding link
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Require: a network N , an ontology O, the role r( , ) representing the semantic of
the network link, the concept C describing the objects of the network and a
threshold.

Ensure: a revised network Nf
1: define Nf as N
2: for all pair of instances (a, b) of concept C do
3: if does not exist a link between nodes a and b in the network N then
4: infer probability P (r(a, b)|evidences) using the RBN created through the

ontology O
5: if P (r(a, b)|evidences) > threshold then
6: add a link between a and b in network Nf
7: end if
8: end if
9: end for

Algorithm 1: Algorithm for link prediction through crALC.

is added to the network. Alternatively, when the threshold to be considered is
not known a priori, a rank of the inferred links based on their probability is done
and the top-k, where k would be a parameter, are chosen.

4 Preliminary Results

Experiments were run over a collaborative network of researchers. Data was ga-
thered from the Lattes curriculum platform 3, the public repository for Brazilian
curriculum researchers. In this platform, every researcher has a unique Lattes
code that allows one to link to other researchers according to: shared publica-
tions, advising tasks, and examination board participations. Given this collabo-
rative network we are interested in predicting further links among researchers in
order to either promote further collaborations (suitable co-workers to research
tasks would be suggested) or gather information about research groups. Due
to form-filling errors there are many missing links among researchers; thus, we
are unable to completely state co-working relationships using only the Lattes
platform.

To tackle link prediction we firstly have collected information about 1200
researchers and learned a probabilistic ontology [15, 17], represented by the PDL
crALC, for modeling their research interests. A simplified probabilistic ontology

3 http://lattes.cnpq.br/

91



is given by:

P (Publication) = 0.3
P (Board) = 0.33
P (sharePublication) = 0.22
P (wasAdvised) = 0.05
P (hasSameInstitution) = 0.14
P (sameExaminationBoard) = 0.31

ResearcherLattes ≡ Person
u(∃hasPublication.Publication
u∃advises.Person u ∃participate.Board)

P (PublicationCollaborator | Researcher u ∃sharePublication.Researcher) = 0.91
P (SupervisionCollaborator | Researcher u ∃wasAdvised.Researcher) = 0.94
P (SameInstitution | Researcher u ∃hasSameInstitution.Researcher) = 0.92
P (SameBoard | Researcheru

∃sameExaminationBoard.Researcher) = 0.92
P (NearCollaborator | Researcher u ∃sharePublication.∃hasSameInstitution.

∃sharePublication.Researcher) = 0.95
FacultyNearCollaborator ≡ NearCollaborator

u ∃sameExaminationBoard.Researcher

P (NullMobilityResearcher | Researcher u ∃wasAdvised.
∃hasSameInstitution.Researcher) = 0.98

StrongRelatedResearcher ≡ Researcher
u (∃sharePublication.Researcher u
∃wasAdvised.Researcher)

InheritedResearcher ≡ Researcher
u (∃sameExaminationBoard.Researcher u
∃wasAdvised.Researcher)

In this probabilistic ontology concepts and probabilistic inclusions denote mu-
tual research interests. For instance, a PublicationCollaborator inclusion refers to
Researchers who shares a Publication, thus relates two nodes (Researcher) in a col-
laboration graph. Therefore, the concept Researcher and the role sharePublication
are inputs to the algorithm we proposed in Algorithm 1.

To perform inferences and therefore to obtain link predictions, a proposition-
alization step (a resulting relational Bayesian network) is required.

In addition, a collaboration graph, based on shared publications, was also
defined. Statistical information was computed accordingly. Figure 2 depicts col-
laborations among 303 researchers. Several relationships and clusterings can also
be observed.

If we carefully inspect this collaboration graph (Figure 3 shows a subgraph
obtained from Figure 2) we could be interested, for instance, in predicting links
among researchers from different groups.

Thus, in Figure 3 one could further investigate whether a link between re-
searcher R (red octagon node) and the researcher B (blue polygon node) is
suitable. In order to infer this, the probability of a possible link between R and
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Fig. 2. Collaboration graph among researchers.

B is calculated, P (link(R,B)|E), where E denotes evidence about researchers
such as publications, institution, examination board participations and so on.
The role sharePublication is the one defining the semantic of the links in the
graph. Therefore, it is through it that we must calculate P (link(R,B)|E). Since
the concept PublicationCollaborator is defined by the role sharePublication and
considering as evidence Researcher(R) u ∃hasSameInstitution.Researcher(B) one
can infer P (link(R,B)|E) through:
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Fig. 3. Collaboration subgraph.

P (PublicationCollaborator(R) |Researcher(R)
u∃hasSameInstitution.Researcher(B)) = 0.57.

If we took a threshold of 0.60, the link between R and B would not be
included.

One could gain more evidence, such as information about nodes that in-
directly connect these two groups (Figure 3), denoted by I1, I2. The inference
would be

P (PublicationCollaborator(R) |Researcher(R)
u∃sharePublication(I1).∃sharePublication(B)
u∃sharePublication(I2).∃sharePublication(B)) = 0.65.

Because more information was provided the probability inferred was different.
The same threshold now would preserve the link.

Other inferences are possible by considering the suggestion of links between
surrounding nodes, i.e. nodes directly linked to the two nodes R and B , denoted
by R1, . . . , Rk, and B1, . . . , Bn respectively. For each i = 1, ..., k and j = 1, ..., n,
calculates P (link(Ri, Rj)|E) and P (link(Bi, Bj)|E).
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As a rule, if we are interested in discovering whether A and B could be linked,
probabilistic inference P (link(A,B)) should be performed.

In a more general framework, graph information could be useful to deal with a
large number of link predictions. Note that graph adjacency allow us to address
probabilistic inference for promising nodes. In a naive approach, each pair of
nodes in the collaboration graph would be evaluated so, multiple probabilistic
relational Bayesian inference calls would be required.

On the other hand, if graph-based information is used, such naive scheme
could be improved. In our approach, two nodes are probabilistically evaluated
if there is a path between them (number of incoming/outgoing edges, number
of mutual friends, node distances are also considered). Thus, numerical graph-
based information guides the inference process in the relational Bayesian network
(linked to the probabilistic ontology). In addition, other candidates sharing any
kind of evidence are also evaluated, i.e., interests based features (linked to onto-
logical knowledge) allow us to further explore link prediction.

Alternatively, by completing an overall link predicting task we can devise
further functionalities to the resulting collaboration network. The resulting graph
can be considered as being a probabilistic network, i.e., probabilities inferred for
each link could be denote strenght of the relationship.

5 Conclusion

We have presented an approach for predicting links that resorts both to graph-
based and ontological information. Given a collaborative network, e.g., a social
network, we encode interests and graph features through a crALC probabilistic
ontology. In order to predict links we resort to probabilistic inference. Prelimi-
nary results focused on an academic domain, and we aimed at predicting links
among researchers. These preliminary results showed the potential of the idea.

Previous combined approaches for link prediction [3, 1] have focused on ma-
chine learning algorithms [14]. In such schemes, numerical graph-based features
and ontology-based features are computed; then both features are input into a
machine learning setting where prediction is performed. Differently from such
approaches, in our work we adopt a generic ontology (instead of a hierarchi-
cal ontology, expressing only is-a relationships among interests). Therefore, our
approach uses more information about the domain to help the prediction.
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Abstract. In this paper we outline a shared knowledge representation
based on RDF. It can be used in a distributed multi-tenant environment
to store design knowledge. These RDF-graphs incorporate all necessary
information to instantiate Bayesian network representations of certain
problem solving cases, which are used to support the conceptual design
tasks carried out by a salesperson during lead qualification.

1 Introduction

In industries that offer customized goods and services, which meet their cus-
tomer’s individual business needs, vendors are often required to employ a con-
sultative sales strategy called “solution selling” (cf. [7]). It comprises mainly four
interdependent processes carried out on a per project basis: requirements defini-
tion, customization and integration, deployment, and post-deployment support.
The groundwork for these processes is laid by the vendor’s sales force screening
for potential customers (leads) and assessing their willingness and ability to buy
a solution. This task is termed “lead qualification”. Lead qualification in solution
selling industries is highly dependent on a salesperson’s individual knowledge of
a lead’s (problem) situation, of goods and services offered by the vendor and its
partners, and of how certain bundles of goods and services may be used for prob-
lem solving; we term this design knowledge. But especially external salespersons
are not directly involved in product development at the employing vendor, and
thus may have narrow insights on how their work affects downstream processes.
Experiences from other salespersons may not be considered due to limited report-
ing or inconsequent knowledge reuse. And limited possibilities or rigid policies for
inter-organizational communication may exclude design insights from partnering
organizations. To overcome these shortcomings in intra- and inter-organizational
design knowledge reuse, we’ve implemented a shared design knowledge reposi-
tory based on the Function-Behavior-Structure (FBS) framework [4] and use it
for services which support the design activities during lead qualification.

Xue and Xu [8] suggest a web-accessible distributed database to store design
knowledge based on the FBS notation. Like other models that operationalize the
FBS framework [2, 6], they follow an entity-relationship approach. However, it
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would require a significant knowledge engineering effort to continuously main-
tain a design model that builds on a highly detailed and formal knowledge rep-
resentation (KR), where innovative yet uncertain design beliefs may be left out.
Probability theory can provide an adequate framework to model uncertainties in
design decisions [5]. Encouraging approaches that represent probabilistic belief
networks by means of semantic models exist in other domains [9, 10]. But to the
author’s knowledge, there exist no Semantic Web representations of the FBS
framework that incorporate uncertainty information, and can be managed in a
multi-tenant environment. In [3] we defined a Bayesian Network (BN) represen-
tation of the FBS model, termed FBS-BN, which encodes design knowledge as
probability tables. In the following we outline its shared storage in a distributed
RDF-Store.

2 Design Knowledge Representation and Storage

A FBS-BN represents a configurational design space for a specific problem-
solving situation in form of a Bayesian Network. Discrete random variables are
used to describe possible design object configurations in light of the customer’s
demands. Every variable is associated with a certain component of the design ob-
ject to serve as characterizing attribute. There are three different variable types:
Function variables (F ) represent the purpose for which a solution is designed
for, i.e. goals and constraints of the customer. Structure variables (S) represent
possible offerings, i.e. product and service bundles that can be provided by the
vendor. Behaviors are mediating concepts between Functions and Structures rep-
resenting the actual solution, i.e. how products and services are meant to achieve
goals and fulfill constraints. There are three subtypes of Behavior variables: Be
variables describe the solution as expected by the customer; their value is de-
rived from Function variables. Bs variables represent the solution as offered by
the vendor; their value is derived from Structure variables. And Bc variables
are used for comparing the match of Be and Bs. The design knowledge about
how Functions, Behaviors and Structures affect each other is encoded in form
of conditional probability distributions (CPDs). These CPDs represent a set of
propositions of the form “if concept X is in state x then another concept Y is
(or should be) in state y”. The associated probabilities express the degree of
belief that a proposition holds. Possible relations are F → Be (Function expects
Behavior), S → Bs (Structure exhibits Behavior), and implications within a
variable group (F → F , Be→ Be, Bs→ Bs, and S → S).

To support the assessment of information in lead qualification, a support
service should highlight those concepts that are yet uncertain and thus need
further investigation. Therefore we generate a case-specific FBS-BN to charac-
terize the current problem-solving situation. Changes in a node’s prior can be
used to represent explicit design decisions (evidence), i.e. assigning a relatively
high probability to a state would express its preference over other states. Im-
plicit design decisions are then given by Bayesian inference in form of probability
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estimates for the hidden nodes. Building on this, we highlight (yet) uncertain
concepts by rating every hidden node with an uncertainty measure (e.g. [3]).
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Fig. 1. Architecture of Proposed Distributed Knowledge Based System

For using FBS-BN representations across different participating organiza-
tions, we employ a RDF-based shared design KR to store the needed variable,
CPD, and design object component definitions. All applications interoperate
via this KR. Principally we consider two types of client-side application roles,
namely knowledge engineering and knowledge reuse applications. While knowl-
edge engineering applications provide an interface to manage the KR, knowledge
reuse applications use it to support designing tasks in problem solving situations
(cf. Fig. 1). The KR is stored in a distributed RDF-store is based on S3DB [1].
S3DB provides a sophisticated framework for graph-based permission manage-
ment. Rather than using coarse all or nothing policies, S3DB allows an organiza-
tion, department or individual to share certain parts of their design knowledge
with designated users. Moreover, S3DB offers a meta-model for cooperatively
defining TBoxes and ABoxes for RDF-graphs.

To facilitate the hierarchical formalization of design knowledge on different
levels of complexity we employ a formalism for iterative reification: We start
from a simple relational model for design object component classes and their
individuals. Component classes can be linked with “canBeRelatedTo” relations
to denote that they are dependent “somehow”. These relations then frame pos-
sibilities for “isRelatedTo” relations on instance layer. The first step in clarifying
these yet anonymous relations is done by providing FBS-concepts as characteriz-
ing attributes for component classes and connect them via expects, exhibits and
implicates relations (FBS-relations). These associations determine how the de-
sign object components are actually interrelated with each other. In the second
step, FBS-concepts are operationalized as discrete variables by specifying a set
of possible variable states (or attribute values), which results in a description of
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the attribute network as configurational variable space. Building on these vari-
ables we reificate attribute associations, i.e. we provide a detailed explication of
expects, exhibits and implicates relations in form of conditional probability ta-
bles. Lastly variable and CPD definitions can be used as templates for FBS-BN
instantiation.

3 Conclusion and Future Work

We have outlined a Semantic Web KR of the FBS framework based on RDF,
which can be managed in a distributed multi-tenant environment. It is used
to employ FBS-BN-based uncertainty reasoning for lead qualification support.
Currently we are implementing two prototype applications, and look forward to
test their impact on lead qualification performance empirically.

Acknowledgement This work was partially funded by the German Federal
Ministry for Education and Research (BMBF, contract 17N0409). The authors
would like to thank Sabine Janzen, Andreas Filler and Tobias Kowatsch for
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Abstract. The position paper provides a brief summary of log-linear
description logics and their applications. We compile a list of five re-
quirements that we believe a probabilistic description logic should have
to be useful in practice. We demonstrate the ways in which log-linear
description logics answer to these requirements.

1 Introduction

Uncertainty is pervasive in the real world and reasoning in its presence one of the
most pressing challenges in the development of intelligent systems. It is therefore
hard to imagine how the Semantic Web could succeed without the ability to
represent and reason under uncertainty. Nevertheless, purely logical approaches
to knowledge representation and reasoning such as description logics have proven
useful in providing the formal backbone of the Semantic Web. There is not only
a large body of important work on the logical and algorithmic properties of
such languages but also highly optimized tools that are successfully employed
in meaningful applications. Still, the need to model uncertainty persists. Two
prominent examples where the processing of uncertainty is crucial are (a) data
integration (schema and instance alignment) and (b) ontology learning. In both
cases, algorithms usually generate confidence values for particular axioms. In
ontology matching, for instance, string similarity measures are often used to
find confidence values for equivalence axioms between concepts and properties,
respectively.

There have been attempts to combine logic and probability in various ways.
Resulting approaches are probabilistic formalism for description logics [4, 5, 2,
6, 8] and, more generally, statistical relational languages [3]. The former are
important theoretical contributions but have not been adopted by practitioners.
We believe this is primarily due to the computational complexity of probabilistic
inference, the rather involved way of expressing uncertainties syntactically, and
the lack of implementations. Statistical relational approaches, on the other hand,
have been successfully applied to numerous real-world problems but they do not
explicitly take into account the notion of coherency and consistency which is
crucial in the context of the Semantic Web.
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Name Syntax Semantics

top > ∆I

bottom ⊥ ∅
nominal {a} {aI}

conjunction C uD CI ∩DI

existential restriction ∃r.C {x ∈ ∆I |∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}
GCI C v D CI ⊆ DI

RI r1 ◦ ... ◦ rk v r rI1 ◦ ... ◦ rIk ⊆ rI
Table 1. The description logic EL++ without nominals and concrete domains.

Based on these observations (and biases), and with the more concrete ap-
plications of ontology learning and matching in mind, we have compiled the
following wish list for a probabilistic description logic.

1. The system must be usable by individuals knowledgeable only in Semantic
Web languages and tools such as OWL and Protégé;

2. It must be possible to express uncertainty in form of degrees of confidence
(real-valued weights) and not necessarily in form of precise probabilities.
Real-world problems such as ontology matching and learning require this;

3. The user should not have to worry about inconsistent and incoherent input
to the probabilistic reasoner. All types of inconsistencies are handled by the
probabilistic reasoner and not the user;

4. Two types of queries should be supported under uncertainty: (a) The “most
probable ontology” query and (b) the probability of (conjunctions) of axioms
query; and

5. The worst-case complexity should not exceed that of probabilistic graphical
models such as Markov and Bayesian networks. While inference in these
models is generally NP-hard, numerous highly efficient algorithms exist and
can be employed in the context of probabilistic DLs.

These five requirements are captured by log-linear description logics [7]. We
provide a brief overview of log-linear description logics and discuss how this
family of probabilistic logics answers to the outlined requirements.

2 Log-Linear Description Logics

Log-linear description logics integrate description logics with probabilistic log-
linear models. Detailed technical and empirical results are available [7] and are
mostly omitted in this position paper. The syntax of log-linear description logics
is taken from the underlying description logic. However, it is possible to assign
real-valued weights to axioms. Here, we focus on the log-linear description logic
based on EL++ [1] without concrete domains (see Table 1) which we denote as
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EL++-LL. EL++ captures the expressivity of numerous ontologies in the biomed-
ical sciences and other domains, and it is the description logic on which the web
ontology language profile OWL 2 EL is based. More formally, a EL++-LL on-
tology C = (CD, CU) is a pair consisting of a deterministic EL++ CBox (set of
axioms) CD and an uncertain CBox CU = {(c, wc)} which is a set of pairs (c, wc)
with each c being a EL++ axiom and w a real-valued weight assigned to c. While
the deterministic CBox contains axioms that are known to be true the uncer-
tain CBox contains axioms for which we only have a degree of confidence. Every
axiom can either be part of the deterministic or the uncertain CBox but not of
both.

The semantics of log-linear DLs is based on joint probability distributions
over coherent EL++ CBoxes and similar to that of Markov logic [9]. The weights
of the axioms determine the log-linear probability distribution. For a EL++-
LL CBox (CD, CU) and a EL++ CBox C′ over the same set of basic concept
descriptions and role names, we have that

P (C′) =





1
Z exp

(∑
{(c,wc)∈CU:C′|=c} wc

) if C′ is coherent
and C′ |= CD;

0 otherwise

where Z is the normalization constant of the log-linear probability distribution.
The semantics of the log-linear description logic leads to probability distri-

butions one would expect under the open world semantics of description logics.

Example 1. Let Student and Professor be two classes and let CD = ∅ and CU =
{〈Student v Professor, 0.5〉, 〈StudentuProfessor v⊥, 0.5〉}. Then1, P ({Student v
Professor, StudentuProfessor v⊥}) = 0, P ({Student v Professor}) = Z−1 exp(0.5),
P ({Student v Professor, Professor v Student}) = Z−1 exp(0.5), P ({Student u
Professor v⊥}) = Z−1 exp(0.5), P ({Professor v Student}) = Z−1 exp(0), and
P (∅) = Z−1 exp(0) with Z = 3 exp(0.5) + 2 exp(0).

We distinguish two types of probabilistic queries. The maximum a-posteriori
(MAP) query: “Given a EL++-LL CBox, what is a most probable coherent EL++

CBox over the same concept and role names?”; and the conditional probability
query: “Given a EL++-LL CBox, what is the probability of a conjunction of ax-
ioms?” We believe that the first type of query is useful since it infers the most
probable coherent ontology from one that contains axioms with confidence val-
ues. The MAP query, therefore, has immediate applications in ontology learning
and matching.

Probabilistic inference in log-linear description logics seems daunting at first,
considering the combinatorial complexity of the problem. It turns out, however,
that both the MAP and the conditional probability query can be computed
efficiently for ontologies with thousands of known and uncertain axioms [7]. The
worst-case complexity of both queries is equivalent to the worst-case complexity
of the analogous queries in Markov and Bayesian networks (requirement 5).
1 We omit trivial axioms that are present in every classified CBox such as Student v >

and Student v Student.
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3 Log-Linear Description Logics in Practice

ELOG is a log-linear description logic reasoner developed at the University of
Mannheim. A detailed description, the source code, and example ontologies are
available at its webpage2. ELOG directly loads ontologies expressed in OWL 2
EL. The assignment of confidence values to axioms is made with the annotation
property “confidence.” Consider the following example ontology zoo.owl:

SubClassOf(

Annotation(<http://URI/ontology#confidence> "0.5"^^xsd:double)

<http://zoo/Penguin>

<http://zoo/Bird>

)

DisjointClasses(

<http://zoo/Bird>

<http://zoo/Mammal>

)

Here, the subclass axiom is assigned the confidence value 0.5 and the disjointness
axiom is considered true since it is not annotated. Therefore, the subclass axiom
is part of the uncertain CBox and the disjointness axiom is part of the deter-
ministic CBox. Considering that annotations can simply be added with popular
ontology editors such as Protégé or using the OWL API3, log-linear description
logics fulfill requirements 1 and 2. In addition, the annotated axioms do not
have to be consistent or coherent in any way because ELOG computes the prob-
abilistic queries with respect to the joint probability distribution over coherent
ontologies. Thus, ELOG also fulfills requirement 3.
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Abstract. This position paper proposes an interactive approach for de-
veloping information extractors based on the ontology definition process
with knowledge about possible (in)correctness of annotations. We discuss
the problem of managing and manipulating probabilistic dependencies.

1 Introduction

(Too) much data is still inaccessible for data processing, because it is unstruc-
tured, textually embedded in documents, webpages, or text fields in databases.
Information extraction (IE) is a technology capable of extracting entities, facts,
and relations. IE helps to turn the web into a real ‘web of data’ [BHBL09].

In the Neogeography-project [HvK11b], we focus on named entity extraction
(NEE) from database text fields and short messages. NEE typically consists of
phases like recognition (which phrases are named entities), matching and enrich-
ment (lookups in reference databases and dictionaries possibly adding informa-
tion), and disambiguation (to which real-world object does a phrase refer).

Because natural language is highly ambiguous and computers are still inca-
pable of ‘real’ semantic understanding, NEE (and IE in general) is a highly im-
perfect process. For example, it is ambiguous how to interpret the word “Paris”:
it could be a first name, a city, etc. Even resolving it to a city, a lookup in
GeoNames1 learns that there are numerous other places called “Paris” besides
the capital of France. In [HvK11a], we found that around 46% of toponyms2 have
two or more, 35% three or more, and 29% four or more references in GeoNames.

Although many probabilistic and fuzzy techniques abound, some aspects of-
ten remain absolute: extraction rules absolutely recognize and annotate a phrase
or not, only a top item from a ranking is chosen for a next phase, etc. We envision
an approach that fundamentally treats annotations and extracted information
as uncertain throughout the process. We humans happily deal with doubt and
misinterpretation every day, why shouldn’t computers?

We envision developing information extractors ‘Sherlock Holmes style’ —
“when you have eliminated the impossible, whatever remains, however improba-
ble, must be the truth” — by adopting the principles and requirements below.
– Annotations are uncertain, hence we process both annotations as well as

information about the uncertainty surrounding them.
1 http://www.geonames.org
2 A toponym is any name that refers to a location including, e.g., names of buildings.
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Paris Hilton stayed in the Paris Hilton
a1 a2 a3 a4 a5 a6 a7

a8 a9 a10
a11 a12a12 a13

a14 a15
a16 a17

a18
a19

a20
a21

a22
a23

a24
a25

a26
a27

a28

(a) All possible annotations for the example sentence

Person
Toponym

City

dnc

dnc isa

dnc = "does not contain"

(b) Small example ontology

Fig. 1. Example sentence and NEE ontology

– We have an unconventional conceptual starting point, namely not “no an-
notations” but “there is no knowledge hence anything is possible”. Fig.1(a)
shows all possible annotations for an example sentence for one entity type.

– A developer gradually and interactively defines an ontology with positive and
negative knowledge about the correctness of certain (combinations of) anno-
tations. At each iteration, added knowledge is immediately applied improv-
ing the extraction result until the result is good enough (see also [vKdK09]).

– Storage, querying and manipulation of annotations should be scalable. Prob-
abilistic databases are an attractive technology for this.
Basic forms of knowledge are the entity types one is interested in and dec-

larations like τ1 —dnc— τ2 (no subphrase of a τ1-phrase should be interpreted
as τ2, e.g, Person —dnc— City). See Fig.1(b) for a small example. We also en-
vision application of background probability distributions, uncertain rules, etc.
We hope these principles and forms of knowledge also allow for more effective
handling of common problems (e.g., “you” is also the name of a place; should
“Lake Como” or “Como” be annotated as a toponym).

2 Uncertain annotation model

An annotation a = (b, e, τ) declares a phrase ϕb
e from b to e to be interpreted

as entity type τ . For example, a8 in Fig. 1(a) declares ϕ = “Paris Hilton” from
b = 1 to e = 2 to be interpreted as type τ = Person. An interpretation I = (A,U)
of a sentence s consists of an annotation set A and a structure U representing the
uncertainty among the annotations. In the sequel, we discuss what U should be,
but for now view it as a set of random variables (RVs) R with their dependencies.

Rather unconventionally, we don’t start with an empty A, but with a ‘no
knowledge’ point-of-view where any phrase can have any interpretation. So our
initial A is {a | a = (b, e, τ) ∧ τ ∈ T ∧ ϕb

e is a phrase of s} where T is the set of
possible types.

With T finite, A is also finite. More importantly, |A| = O(klt) where k = |s|
is the length of s, l is the maximum length phrases considered, and t = |T |.
Hence, A grows linearly in size with each. In the example of Fig.1(a), T =
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∅

a∧b

a∧¬b

b∧¬a

0.48

0.12

0.32

0.08

(a) Annotations a and b independent with
probabilities P (a) = 0.6 and P (b) = 0.8

∅ a∧¬b

b∧¬a

0.23

0.62

0.15

(b) a and b conditioned to be mutually
exclusive (a ∧ b not possible)

Fig. 3. Defining a and b to be mutually exclusive means conditioning the probabilities.

{Person, Toponym, City} and we have 28 · |T | = 84 annotations. Even though we
envision a more ingenious implementation, no probabilistic database would be
severely challenged by a complete annotation set for a typical text field.

3 Knowledge application is conditioning

We explain how to ‘apply knowledge’ in our approach by means of the example
of Fig.1, i.e., with our A with 84 (possible) annotations and an ontology only
containing Person, Toponym, and City. Suppose we like to add the knowledge
Person —dnc— City. The effect should be the removal of some annotations and
adjustment of the probabilities of the remaining ones.

annotations
b e type . . . wsd

a1
1 1 1 Person . . . {x1

1 = 1}
a2
1 1 1 City . . . {x2

1 = 1}
a1
8 1 2 Person . . . {x1

8 = 1}
. . . . . . . . . . . .

world set
x v P

x1
1 0 0.4

x1
1 1 0.6

x2
1 0 0.7

x2
1 1 0.3

x1
8 0 0.2

x1
8 1 0.8

. . . . . . . . .

Fig. 2. Initial annotation set stored in a
probabilistic database (MayBMS-style)

An initial promising idea is to store
the annotations in an uncertain rela-
tion in a probabilistic database, such
as MayBMS [HAKO09]. In MayBMS,
the existence of each tuple is deter-
mined by an associated world set de-
scriptor (wsd) containing a set of RV
assignments from a world set table (see
Fig.2). RVs are assumed independent.
For example, the 3rd annotation tuple
only exists when x1

8 = 1 which is the case with a probability of 0.8. Each an-
notation can be seen as a probabilistic event, which are all independent in our
starting point. Hence, we can store A by associating each annotation tuple aj

i

with one boolean RV xj
i . Consequently, the database size is linear with |A|.

Adding knowledge such as Person—dnc—City means that certain RVs become
dependent and that certain combinations of RV assignments become impossible.
Let us focus on two individual annotations a2

1 (’“Paris” is a City) and a1
8 (“Paris

Hilton” is a Person). These two annotations become mutually exclusive. The
process of adjusting the probabilities is called conditioning [KO08]. It boils down
to redistributing the remaining probability mass. Fig.3 illustrates this for a = a2

1

and b = a1
8. The remaining probability mass is 1 − 0.48 = 0.52. Hence, the
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distribution of this mass over the remaining possibilities is P (a ∧ ¬b) = 0.12
0.52 ≈

0.23, P (b ∧ ¬a) = 0.32
0.52 ≈ 0.62, and P (∅) = P (¬a ∧ ¬b) = 0.08

0.52 ≈ 0.15.

A first attempt is to replace x2
1 and x1

8 with one fresh three-valued RV x′ with
the probabilities just calculated, i.e., wsd(a2

1) = {x′ = 1} and wsd(a1
8) = {x′ = 2}

with P (x′ = 0) = 0.15, P (x′ = 1) = 0.23, and P (x′ = 2) = 0.62. Unfortunately,
since annotations massively overlap, we face a combinatorial explosion. For this
rule, we end up with one RV with up to 22·28 = 256 ≈ 7 · 1016 cases.

Solution directions What we are looking for in this paper is a structure that is
expressive enough to capture all dependencies between RVs and at the same time
allowing for scalable processing of conditioning operations. The work of [KO08]
represents dependencies resulting from queries with a tree of RV assignments.
We are also investigating the shared correlations work of [SDG08].

4 Conclusions

We envision an approach where information extractors are developed based on
an ontology definition process for knowledge about possible (in)correctness of
annotations. Main properties are treating annotations as fundamentally uncer-
tain and interactive addition of knowledge starting from a ‘no knowledge hence
everything is possible’ situation. The feasibility of the approach hinges on effi-
cient storage and conditioning of probabilistic dependencies. We discuss this very
problem, argue that a trivial approach doesn’t work, and propose two solution
directions: the conditioning approach of MayBMS and the shared correlations
work of Getoor et al.
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