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Abstract. This paper provides an introduction to knowledge representation 
using OntoDLP, a formalism which combines the full computational power of 
Disjunctive Logic Programming (DLP) with suitable abstraction mechanisms 
for the representation of complex objects and default reasoning. The paper does 
not provide a formal definition of the language, rather it is intended as an 
informal presentation of its main features. 

1   Introduction 

Disjunctive Logic Programming (DLP) is an extension of Datalog where 
disjunction is allowed in the rules' heads. It is nowadays widely recognized as a 
valuable tool for knowledge representation and reasoning [6, 7]. An important merit 
of DLP over normal (i.e., disjunction-free) logic programming is its capability to 
model incomplete knowledge [4, 15]. Much research work has been done on the 
semantics of DLP and several alternative semantics have been proposed (see [7, 9, 8] 
for comprehensive surveys). The most widely accepted semantics is the extension of 
the stable model semantics of Gelfond-Lifschitz [9] to disjunctive deductive 
databases [9, 8]. Stable model semantics for DLP has a very high expressive power as 

they allow to capture the complexity class ∑P

2
(i.e., every property which is 

decidable in non-deterministic polynomial time with an oracle in NP is expressible). 
An interesting extension of DLP by strong and weak constraints has been proposed in 
[BUC97, 7], and others are currently object of research. 

A number of large scale systems, capable of handling thousands of rules, have 
been implemented in the last few years: DLV developed by Leone's group [7, 15], 
GnT/SModels developed by Niemelä and Simons [17], XSB developed by Warren et 
al. [19], and DeReS developed by Marek and Truszczynski[4]. While XSB and 
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DeReS support only fragments (i.e., sublanguages) of DLP, DLV and GnT/SModels 
support full DLP (in particular, DLP supports also strong and weak constraints [2]). 
The high expressiveness of DLP suggests that these systems have high potential for 
exploitation in the area of knowledge management. Unfortunately, DLP as such lacks 
of suitable abstraction mechanisms needed for the representation and the 
manipulation of complex application domains.  

 
Complex-Datalog [11] is an extension of Datalog which includes a number of 

object-oriented constructs, namely, object identity, complex schemes, multiple 
inheritance. The most salient feature of the language is the way it combines the 
computational power of Datalog with the structural complexity of  nested relation and 
object data models.  

 
Ordered Logic [14, 16] is a non-monotonic reasoning formalism providing support 

for default reasoning. The basic mechanism of Ordered Logic (OL for short) comes 
from the utilization of true (or classical) negation (i.e., the possibility of explicitly 
stating the falsity of atoms) in the context of inheritance hierarchies (which assign 
different levels of reliability to rules). An OL program is a set of components 
organized into a hierarchical structure. Each component consists of a set of rules 
which may have negative heads. Like in the object-oriented approach, properties 
(rules) defined for the ``higher'' components in the hierarchy flow down to the 
``lower'' ones. Thus, contradicting conclusions may be drawn. A stable model 
semantics for OL programs has been proposed in [16].  

 
In this paper we present OntoDLP, a logic based formalism for ontology 

specification which extends DLP with the abstraction mechanisms of Complex-
Datalog, the default reasoning capabilities of OL and other suitable abstraction 
mechanisms, such as set attributes, to represent complex knowledge. Roughly 
speaking, OntoDLP supports the notions of concept, relation and axiom. Concepts are 
either classes or instances of the world being modelled. Each concept can be 
characterized by a number of attributes and properties (the latter asserting general 
facts about concepts). Attribute values, possibly of set type, can be derived through 
logical rules. Concept instances can be explicitly stated or inferred by their 
definitions.  

Concepts can be partially ordered by four types of  built-in relations: Isa, 
InstanceOf, PartOf and MoreReliableThan, the latter used to express the comparative 
“credibility” of concepts. These relations can be exploited to generate taxonomic 
structures among concepts. When a property is defined for a concept, it holds for all 
its sub-concepts, unless overwritten by more specific properties. Multiple inheritance 
is supported. 

Other kinds of (non-taxonomic) relations can be specified as well to relate 
concepts to each other within an ontology.  

Axioms are used to express the semantics of both concepts and relations. An 
axiom is either a (possibly disjunctive) logic rule, or a strong constraint (used to state 
inviolable conditions) or a weak constraint (used to express desiderata). Rules may 
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have negative heads (true negation); negation by failure (in rule bodies) is also 
allowed. Axioms can be used for several different purposes, such as  
o defining the properties of concepts  
o defining derived concepts and relations  
o specifying the cardinality constraints of relations 
o stating the algebraic properties  of relations (like symmetry, transitivity, etc.), etc. 

 
The semantics of OntoDLP relies on the notion of stable model and uses a three-

valued logic where each fact can be either true, false or undefined (maybe fact); as we 
will se, the proposed semantics is very intuitive for the purpose of modeling 
inheritance-based reasoning tasks.  

OntoDLP is currently being implemented as a front-end of the disjunctive logic 
programming system DLV. 

2   Concepts, relations and axioms 

In this section we build a simple ontology that represents people, places they leave 
in and hobbies they enjoy.  

2.1   Concepts 

We start by defining the concepts we are modelling: 
• place 
• person has attributes 

name: string  
age: integer  
father: person  
spouse: person  
lives: place 

end; 
• hobby has attributes 

name: string 
end; 

• city ISA {place}, PartOf {country}, has attributes 
name: string  
people: integer 

end; 
• country ISA  {place},has attributes 

name: string  
capital: city  

end; 
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As we can see, all concepts above, except for place, are characterized by a number 
of  attributes of different types; for instance, person owns several attributes, some of 
which of simple type, namely, name and age, and other of class type, namely, father 
and spouse of type person, and lives of type place. The concept city is defined as 
being a place (city is a subclass of place) and a part of  a country. Likewise, 
country is a place. 

 
We point out that, besides explicit attributes, each concept owns a special hidden 

attribute, that we call self, used to assign a unique, immutable identity to each 
instance. As an example, a possible instance (or individual) of the concept person is 
the following: 

 
     Person(p1, Mario, 34, p3, p5, c2) 
 
where p1 is the unique object identifier of the instance (it is the value of the 

attribute self), p3 and p5 are the object identifiers of the father and the spouse of  p1, 
respectively, and c2 is the object identifier of the city where p1 lives (note that the 
values of the attribute lives, of type place, are either cities or countries). 

2.2   Relations 

Concepts can be related through either taxonomic or non-taxonomic relations; for 
example, the concept Country above is related to Place through the ISA relation and 
City to Country through the PART-OF relation.  

 
Next we define two non-taxonomic relations, namely, lives and enjoys: 
 

• lives (psn: person, plc: place) 
• enjoys (psn: person, hby: hobby) 

  
So we can say that a person lives in a place (a city or a country) and that people 

enjoy hobbies.  

2.3   Axioms 

In general, axioms are used to either specify constraints, or define properties, or 
provide an intensional, declarative definition of classes, relations and attributes.  

 
Constraints 
To start, let us assume that place is a concept for which instances are not allowed; 

we express this condition by the constraint 
 
← Place(self:X) 
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expressing that, for each X, Place(self:X) must be false.   
 
Another condition that we want to enforce in our ontology is the SYMMETRY of 

the marriage relation (expressed through the attribute spouse of person) -- i.e., it 
cannot happen that a person X has spouse Y, Y has spouse Z and X and Z are 
different individuals:  

 
← person(self:X, spouse:Y), person(self:Y, spouse:Z), X <> Z  
 
Finally, the following axiom is used to state the CARDINALITY constraint on the 

relation lives according to which each person lives in exactly one place: 
 
←  lives(person:X, place:Y), lives(person:X, place:Z), Z <> Y 
 
Besides the above explicit constraints, there are some that are implicit, such as: 
 

o the ISA relation is a PARTIAL ORDER (as any other built-in relation): 
 

• Path(X,Y) ← ISA(X,Y)  
• Path(X,Y) ← ISA(X,Z), Path(Z,X) 
• ← Path(X,X) 

 
 

o a concept cannot be both a class and an instance 
 

← class(X), instance(X) 
 

o only classes can appear in the ISA relation  
 

← ISA(X,Y), Instance(X)  
← ISA(X,Y), Instance(Y) 

 
Properties 
Properties are used to assert general facts about concepts; for an instance, we may 

want to express that persons are mortal: 
 
Person has properties 
      { mortal()← } 
 
As we will see in Section 3, properties hold for all instances, subclasses and 

PART-OF related classes, unless explicitly negated. 
 
Derived Classes and Relations 
A DERIVED CLASS or RELATION is one that is intensionally defined by a 

suitable set of logic rules. Next we report some examples. 
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Man() ISA person 
{     
    Man (self: X) ← person(self: X, sex:Y), Y=”male”                                                                         
  } 
 
Woman() ISA person 
{     
    Woman (self: X) ← person(self: X, sex:Y), Y=”female”                                                                         
 } 
 
Here, each of the above classes is defined by a logic rule that provides a formal 

definition of its meaning and is used to automatically infer its instances. We further 
express that Person is a GENERALIZATION of both Man and Woman; this 
generalization must be TOTAL (there is no person who is neither a man nor a 
woman) and DISJOINT (a person is not both a man and a woman):  

 
← Person(self:X), not Man(self:X), not Woman(self:X). 
 
← Man(X), Female(X) 
 
As another example of derived class, consider the following definition of “cheerful 

person” as a person who enjoys at least three hobbies: 
 
Cheerful-Person (numOfHobbies: integer) ISA {person} 
 
 {     
    Busy-Person (self: X, numOfHobbies: Z) ← person(self: X),  
                                                                             %count(Y:enjoys(X,Y)} = Z, 

Z>=3 
  } 
 
Note that the body of the above rule contains a special predicate (AGGREGATE 

predicate) used to count the number of hobbies enjoyed by person X.  
 
As an example of derived relation, consider the following specification: 
 
father_in_law (son: person, father:person)  

  
{    
      father_in_law(X,Y) ←  person(self:X, spouse: person(father:Y)) 
} 

 
Here the definition consists of a unique rule stating that if Y is the father of the 

spouse of X then Y is the father in law of X. We point out as the structure 
person(father:Y)  (called “class term” in Complex-Datalog) allows us to declaratively 
navigate the instances of person. 
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It is easy to see how we can define (derived) classes (or relations) as UNION, 

DIFFERENCE, INTERSECTION of other classes (or relations); to see an example, 
consider the classes 

 
o Student ISA Person has attributes  

registration#: string  
enrolled: faculty 

end; 
  

o Worker ISA Person has attributes  
salary: integer  
company: string  

end; 
 
from which we derive the class Student-Worker as their INTERSECTION: 
 
Student-Worker ISA { Student, Worker} 
 
     { Student-Worker(self:X) ← Student(self:X), Worker(self:X)    }. 
 
Notice that, although no specific attribute is explicitly stated, Student-Worker 

inherits all the attributes of both Student and Worker (that, in turn, inherit those of 
Person).  

 
Finally, we use DISJUNCTION to provide the definition of the derived class 

MinMarried whose set S of instances is the minimal set of persons such that, for 
each two persons who are married, at least one in S: 

 
MinMarried() ISA person 
 
{     MinMarried(X) V not_MinMarried(X) ← person(X) 
 
     ← person(self:X, spouse:Y), not MinMarried(X), not MinMarried(Y)  
 
     ⇐ MinMarried(X)     
 } 
 
Here we have a DISJUNCTIVE logic program defining the concept MinMarried; 

the disjunctive rule  
 

MinMarried(X) V not_MinMarried(X) ← person(X) 
 
partitions the set of persons into two subsets, MinMarried and not_MinMarried, 

i.e., it guesses a possible solution;  the strong constraint  
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        ← person(self:X, spouse:Y), not MinMarried(X), not MinMarried(Y) 
 
checks the guess, that is, verifies the statement “X and Y are married and none of 

them belong to MinMarried” to be false; finally, the WEAK CONSTRAINT  
 
      ⇐ MinMarried(X)     
 
minimized the number of persons that belong to MinMarried. It holds that each 

stable model of this program is a possible set of instances of MinMarried. 
 
Derived Attributes  
Axioms can be used to derive attribute values as well; to see this point, let us 

extend the class Person by the attribute has_ancestors defined as having SETS of 
persons as possible values: 

 
person  has attributes 

name: string 
age: integer  
father: person 
mother: person  
spouse: person  
lives: place 
has_ancestors: setOf(person) 

end; 
 
The values for has_ancestors are derived using the following axioms: 
 

has_ancestor(X,Y) ← person(self:X, father:Y) 
has_ancestor(X,Y) ← person(self:X, mother:Y) 
has_ancestor(X,Y) ← has_ancestor(X,Z), has_ancestor(Z,Y) 
has_ancestors(X,<Y>) ← has_ancestor(X,Y). 

 
The latter rule above associates with each person X the set <Y> of his ancestors -- 

grouping set  ([3],  [16]). 
 
As another example, consider the class faculty  
 
faculty has attributes 

name: string; 
has_enrolled: setOf(student) 
last_enrolled: student; 

end; 
 
where both has_enrolled and last_enrolled are derived attributes . In particular,  
has_enrolled associates with each faculty the respective set of enrolled students:  
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has_enrolled(X,<Y>) ← student(self:Y, enrolled:X). 
 
Likewise, the attribute last_enrolled (i.e., the student with the greatest registration 

number) is derived as follows: 
 

Last_enrolled(X,Y) ← student(self:X, enrolled:Y, registration#:Z), not    
                                     exists_bigger_reg#(Z,Y) 
 
Bigger_reg#(X,Y) ← student(self:Z, registration#: W, enrolled:Y), W>X. 

3   A simple hierarchy 

The following example shows an ontology consisting of a simple hierarchy of 
living beings.  

 
• LIVING_BEING 

                 { mortal()← } 
– ANIMAL isa LIVING_BEING 

– MAMMAL isa ANIMAL 
• CARNIVORE isa MAMMAL 

                                               { eats(animal) ← } 
o LION isa CARNIVORE 

• HERBIVORE isa MAMMAL 
                                              { eats(plant) ←      

o GIRAFFE instanceof HERBIVORE 
                                                  { eats(leaf) ← } 

o COW instanceof HERBIVORE 
– BIRD isa ANIMAL 

                               { flies()← } 
• PENGUIN instanceof BIRD 

                                      { ¬flies() }  
• EAGLE instanceof BIRD 

– PLANT isa LIVING_BEING 
– LEAF partof PLANT 
– GRASS isa PLANT 

 
 

Here we have a number of concepts related by the built-in relations Isa, PartOf 
and InstanceOf; we note that these concepts have no (explicit) attributes and are 
defined through some properties, such as mortal(), associated with Living_Being, 
eats(animal), specified for Carnivore, and others.  
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We enrich the specification of our ontology by adding the following 
DISJOINTNESS axioms: 

 
← ISA*( X, animal), ISA*(Y, plant), X=Y  
← InstanceOf(X, animal), InstanceOf(Y, plant), X=Y 

 
expressing that Animal and Plant are disjoint classes (ISA* is used to denote the 

transitive closure of Isa). Likewise, we can state that Carnivore, Herbivore and Bird 
are disjoint too. 

                           
We next provide an intuitive semantics of hierarchies by using our running 

example. The keywords for this semantics are INHERITANCE and DEFAULT 
REASONING. Indeed, properties defined for a concept are inherited by its sub-
concepts, unless explicitly negated (to this end we use TRUE NEGATION). For an 
instance, the property eats(herbivore, plant) is inherited by both giraffe and cow, so 
that both eats(giraffe, plant) and eats(cow, plant) hold. However, we apply the 
principle that specific pieces of information are more reliable than generic ones. So, if 
we ask “what does giraffe eat?” the answer will be “leaf” (eats(giraffe, leaf) is more 
specific than eats(giraffe, plant)), while the question “what does cow eats?” will be 
answered by “plant” (indeed, no specific information is available for the concept 
cow). Inherited information can be exploited in several ways. For an instance, if we 
ask whether giraffe eats plants, the answer will be YES. More interestingly, if we ask 
if cows eat grass, the answer will be MAYBE. This is because the fact eats(cow, 
grass) is not in contradiction with the general knowledge eats(cow, plant), but we 
have no evidence about its truth. So, we are in presence of a fact that is neither true 
nor false -- it is undefined (maybe fact). Likewise, eats(cow, leaf) will have answer 
MAYBE. 

Inheritance of properties can be blocked by using true (classical) negation. In our 
ontology, the general property fly(bird) is overwritten by the negative fact 
¬flies(penguin) (here, ¬ is the classical negation symbol); so, the query flies(penguin) 
will be answered NO, while flies(eagle) is true. 

 
QUERY EXPECTED ANSWER COMMENTS 
?- mortal(X) X = living being  
?- mortal(animal) YES  
?_eats(herbivore,X) X = plant   
?_eats(giraffe,X) X = leaf A more specific 

information prevails on 
a general one  

?_eats(cow,X) X = plant Eats(plant) is 
inherited by animal and 
no more specific 
information holds for 
cow 

?_eats(cow,grass) MAYBE Grass Isa Plant and 
no more specific 
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information is available; 
so, it might be true 

?_eats(cow,leaf) MAYBE Leaf partOf Plant and 
no more specific 
information is available; 
so, it might be true 

?_eats(X,grass) X = herbivore-MAYBE  
?_eats(giraffe,plant) YES  
?_eats(carnivore,bird) MAYBE  
?_flies(X) X = bird  
?_flies(penguin) NO True negation is used 

to override general 
information 

?_flies(eagle) TRUE  
 
Table 1. Intuitive semantics of inheritance 

4   Multiple inheritance 

Here we show an example of multiple inheritance where contradicting pieces of  
knowledge are inherited; this is a typical case of non-monotonic reasoning, where 
adding new knowledge may invalidate the previous one.  

 
The example models a financial consultancy where two experts, Expert1 and 

Expert2, are asked to advise an investor. Briefly: 
 

1. Expert1 suggests to buy shares when the bull rules over the stock market. More 
precisely, he suggests to buy “dynamic” stocks, using the money gained selling 
“defensive” ones. In case of bear ruling, he advises to buy Treasury bonds and 
defensive titles. 

2. Expert2 suggests, when the bear rules, not to buy any kind of shares, but taking 
only Treasury bonds. 

3. Both Expert1 and Expert2 think that, if the potential investor is not available to 
risk, it is preferable not to buy shares. 

4. In the end, the investor: if the budget is below a certain threshold, say c1, he does 
not buy anything; he can risk only if 

o The budget is above the threshold c1 
o He is already covered enough by Treasury bonds. 

 
The assumption is that Expert1 and Expert2 are equally trustable; however, we 

consider the investor’s opinion to be decisive for the final decision. 
We note that there exists a conflict among different opinions: when the bear rules, 

Expert1 suggests defensive shares, while Expert2 advises against buying any kind of 
shares. 
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Next we show the OntoDLP encoding. For the sake of simplicity, we split stocks 
into two categories, dynamic and defensive: 

 
Stock(dynamic) 
Stock(defensive). 
 
EXPERT1 
{ 
 Buy(X) ← bull, stock(X), X = dynamic. 

Sell(X) ← bull, stock(X), X = defensive. 
Buy(bond) ← bear. 
Buy(X) ← bear, stock(X), X = defensive. 
⇐ not open_to_risk, titolo(X), buy(X). 

} 
 
EXPERT2 
{ 
 
 ¬ buy(X) ←bear, stock(X). 
 buy(bond) ← bear 

⇐  not open_to_risk, titolo(X), buy(X). 
}  
 
INVESTOR 
{ 
 ¬ buy(X) ← stock(X), budget(Y), Y < c1. 
 Open_to_risk ← budget(X), X >= c1, investment_bond(Y), Y > c2. 
} 
 
These concepts are partial-ordered by MoreReliableThan (<) as follows: Investor < 

Expert1, Investor < Expert2. 
 
The rules associated with each concept above state the respective knowledge about 

the application domain. In particular, the weak constraint 
 

   ⇐   not open_to_risk, titolo(X), buy(X), 
 
which is common to both experts, encodes point 3 above according to which it is 

preferable not to buy shares if the investor is not open to risk; that is, it states a 
condition that should preferably be satisfied, but not necessarily. 

 
SOLUTIONS: let’s ponder about the following cases 
 

1) Hypothesis: budget < c1, bull: the budget is below the threshold, so the investor 
idea (do not buy anything) wins against all the rest; so, OntoDLP offers a single 
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solutions, in which the following facts are true: not open_to_risk, not 
buy(defensive), not buy(dynamic), sell(defensive). 

2) Hypothesis: budget >= c1, investment in bond <= c2, bull: the investor has 
enough money to buy; Expert1 suggests, since the bull rules, to buy dynamic 
stocks and sell defensive ones; Expert2 has  no opinion. So, again, a single 
solution: { not open_to_risk, buy(dynamic), sell(defensive) }. 

3) Hypothesis: budget >= c1, investment in bond <= c2, bear: the investor has 
enough money to buy, but cannot risk; since bear rules, both Expert1 and 
Expert2 suggest to buy bonds. In addition, Expert1 suggests defensive stocks 
while Expert2 suggests not to buy any. Anyway, since the investor is not open to 
risk, both experts think it is preferable not to buy stocks (weak constraint); so the 
Expert2’s opinion (do not buy) overcomes Expert1’s one; here, we point out how 
the weak constraint supports one of two potential contradicting solutions. There 
is, again, another single solution, in which the true facts are: {not open_to_risk, 
buy(bond), not buy (defensive), not buy(dynamic) }.. 

4) Hypothesis: budget >= c1, investment in bond > c2, bear: the investor can buy, 
and he’s open to risk. Both Expert1 and Expert2 suggest bonds. Expert1 suggests 
also defensive stocks, while Expert2 suggests not to buy stocks at all. There is a 
clash, not solvable (they are trustable, both), so that the only true fact is 
buy(bond) (note that buy(defensive) is undefined).  

5    Synonyms 

An ontology can be regarded as a “controlled vocabulary” where a concept or a 
relation may have several different names, one of which is the preferred one. Thus, 
we can define the following equivalence relation  

 
Synonyms (concept_name: concept, synonym: concept) 

 
associating to each concept its synonyms within the ontology. The following are 

possible instances: 
 

Synonyms (place, spot) 
Synonyms (spot, site). 

6   Conclusions 

In this paper we have given an informal presentation of a logic-based formalism 
for ontology specification. This formalism, called OntoDLP (where DLP stands for 
Disjunctive Logic Programming), supports abstraction mechanisms for the 
specification of concepts, relations and axioms. Concepts have a schema whose 
attributes may be of type concept. Relations are either taxonomic (Isa, InstanceOf, 
PartOf and MoreReliableThan that are built-in) or non-taxonomic (user-defined). 
Axioms are logic rules that are used to specify the semantics of concepts and relations 
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(properties of concepts, cardinality constraints and algebraic properties of relations, 
etc.).  

OntoDLP supports very complex reasoning tasks based on the following basic 
features: 

 
o Concepts, relations and axioms 
o Disjunction in the head of rules: as shown in [8, 15], disjunction provides the 

language with a very high expressive power 
o Constraints of two types: strong and weak [BUC97, 7]; the former are used to 

state conditions that must be satisfied, while the latter supports the specification 
of desiderata  

o Classical negation, used to explicitly state negative information; as shown in [8], 
classical negation can be used within hierarchies to override inherited 
information 

o Default reasoning, i.e., the (multiple) inheritance of properties from concepts to 
sub-concepts based on mechanisms whereby more specific (reliable) information 
prevails on general one. 

 
Such features make OntoDLV a powerful language for ontology specification. 
 
The semantics of OntoDLP is based on stable models (to handle disjunction) 

where facts can be either true, false or undefined (maybe); as we have seen, a three-
value logic is very intuitive for the purpose of modeling inheritance-based reasoning. 

 
OntoDLP is currently being implemented as an extension of the disjunctive logic 

programming system DLV [7] to take into account extra-logic constructs (hierarchies, 
inheritance, etc.) 
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