
OntoDLP: a Logic Formalism for Knowledge
Representation

F. Calimeri2, S. Galizia2, M. Ruffolo1,3, P. Rullo1,2

1Exeura s.r.l. Via P. Bucci 87030 Rende (CS), Italy
{ruffolo,rullo}@exeura.it

2Università della Calabria – Dip. Di Matematica, Via P. Bucci, 87030 Rende (CS),

Italy
{calimeri,galizia,rullo}@unical.it

3ICAR-CNR, Via P. Bucci, 87030 Rende (CS), Italy

ruffolo@icar.cnr.it

Abstract. This paper provides an introduction to knowledge representation
using OntoDLP, a formalism which combines the full computational power of
Disjunctive Logic Programming (DLP) with suitable abstraction mechanisms
for the representation of complex objects and default reasoning. The paper does
not provide a formal definition of the language, rather it is intended as an
informal presentation of its main features.

1 Introduction

Disjunctive Logic Programming (DLP) is an extension of Datalog where
disjunction is allowed in the rules' heads. It is nowadays widely recognized as a
valuable tool for knowledge representation and reasoning [6, 7]. An important merit
of DLP over normal (i.e., disjunction-free) logic programming is its capability to
model incomplete knowledge [4, 15]. Much research work has been done on the
semantics of DLP and several alternative semantics have been proposed (see [7, 9, 8]
for comprehensive surveys). The most widely accepted semantics is the extension of
the stable model semantics of Gelfond-Lifschitz [9] to disjunctive deductive
databases [9, 8]. Stable model semantics for DLP has a very high expressive power as

they allow to capture the complexity class ∑P

2
(i.e., every property which is

decidable in non-deterministic polynomial time with an oracle in NP is expressible).
An interesting extension of DLP by strong and weak constraints has been proposed in
[BUC97, 7], and others are currently object of research.

A number of large scale systems, capable of handling thousands of rules, have
been implemented in the last few years: DLV developed by Leone's group [7, 15],
GnT/SModels developed by Niemelä and Simons [17], XSB developed by Warren et
al. [19], and DeReS developed by Marek and Truszczynski[4]. While XSB and

OntoDLP: a Logic Formalism for Knowledge Representation 331

DeReS support only fragments (i.e., sublanguages) of DLP, DLV and GnT/SModels
support full DLP (in particular, DLP supports also strong and weak constraints [2]).
The high expressiveness of DLP suggests that these systems have high potential for
exploitation in the area of knowledge management. Unfortunately, DLP as such lacks
of suitable abstraction mechanisms needed for the representation and the
manipulation of complex application domains.

Complex-Datalog [11] is an extension of Datalog which includes a number of

object-oriented constructs, namely, object identity, complex schemes, multiple
inheritance. The most salient feature of the language is the way it combines the
computational power of Datalog with the structural complexity of nested relation and
object data models.

Ordered Logic [14, 16] is a non-monotonic reasoning formalism providing support

for default reasoning. The basic mechanism of Ordered Logic (OL for short) comes
from the utilization of true (or classical) negation (i.e., the possibility of explicitly
stating the falsity of atoms) in the context of inheritance hierarchies (which assign
different levels of reliability to rules). An OL program is a set of components
organized into a hierarchical structure. Each component consists of a set of rules
which may have negative heads. Like in the object-oriented approach, properties
(rules) defined for the ``higher'' components in the hierarchy flow down to the
``lower'' ones. Thus, contradicting conclusions may be drawn. A stable model
semantics for OL programs has been proposed in [16].

In this paper we present OntoDLP, a logic based formalism for ontology

specification which extends DLP with the abstraction mechanisms of Complex-
Datalog, the default reasoning capabilities of OL and other suitable abstraction
mechanisms, such as set attributes, to represent complex knowledge. Roughly
speaking, OntoDLP supports the notions of concept, relation and axiom. Concepts are
either classes or instances of the world being modelled. Each concept can be
characterized by a number of attributes and properties (the latter asserting general
facts about concepts). Attribute values, possibly of set type, can be derived through
logical rules. Concept instances can be explicitly stated or inferred by their
definitions.

Concepts can be partially ordered by four types of built-in relations: Isa,
InstanceOf, PartOf and MoreReliableThan, the latter used to express the comparative
“credibility” of concepts. These relations can be exploited to generate taxonomic
structures among concepts. When a property is defined for a concept, it holds for all
its sub-concepts, unless overwritten by more specific properties. Multiple inheritance
is supported.

Other kinds of (non-taxonomic) relations can be specified as well to relate
concepts to each other within an ontology.

Axioms are used to express the semantics of both concepts and relations. An
axiom is either a (possibly disjunctive) logic rule, or a strong constraint (used to state
inviolable conditions) or a weak constraint (used to express desiderata). Rules may

332 F. Calimeri et al.

have negative heads (true negation); negation by failure (in rule bodies) is also
allowed. Axioms can be used for several different purposes, such as
o defining the properties of concepts
o defining derived concepts and relations
o specifying the cardinality constraints of relations
o stating the algebraic properties of relations (like symmetry, transitivity, etc.), etc.

The semantics of OntoDLP relies on the notion of stable model and uses a three-

valued logic where each fact can be either true, false or undefined (maybe fact); as we
will se, the proposed semantics is very intuitive for the purpose of modeling
inheritance-based reasoning tasks.

OntoDLP is currently being implemented as a front-end of the disjunctive logic
programming system DLV.

2 Concepts, relations and axioms

In this section we build a simple ontology that represents people, places they leave
in and hobbies they enjoy.

2.1 Concepts

We start by defining the concepts we are modelling:
• place
• person has attributes

name: string
age: integer
father: person
spouse: person
lives: place

end;
• hobby has attributes

name: string
end;

• city ISA {place}, PartOf {country}, has attributes
name: string
people: integer

end;
• country ISA {place},has attributes

name: string
capital: city

end;

OntoDLP: a Logic Formalism for Knowledge Representation 333

As we can see, all concepts above, except for place, are characterized by a number
of attributes of different types; for instance, person owns several attributes, some of
which of simple type, namely, name and age, and other of class type, namely, father
and spouse of type person, and lives of type place. The concept city is defined as
being a place (city is a subclass of place) and a part of a country. Likewise,
country is a place.

We point out that, besides explicit attributes, each concept owns a special hidden

attribute, that we call self, used to assign a unique, immutable identity to each
instance. As an example, a possible instance (or individual) of the concept person is
the following:

 Person(p1, Mario, 34, p3, p5, c2)

where p1 is the unique object identifier of the instance (it is the value of the

attribute self), p3 and p5 are the object identifiers of the father and the spouse of p1,
respectively, and c2 is the object identifier of the city where p1 lives (note that the
values of the attribute lives, of type place, are either cities or countries).

2.2 Relations

Concepts can be related through either taxonomic or non-taxonomic relations; for
example, the concept Country above is related to Place through the ISA relation and
City to Country through the PART-OF relation.

Next we define two non-taxonomic relations, namely, lives and enjoys:

• lives (psn: person, plc: place)
• enjoys (psn: person, hby: hobby)

So we can say that a person lives in a place (a city or a country) and that people

enjoy hobbies.

2.3 Axioms

In general, axioms are used to either specify constraints, or define properties, or
provide an intensional, declarative definition of classes, relations and attributes.

Constraints
To start, let us assume that place is a concept for which instances are not allowed;

we express this condition by the constraint

← Place(self:X)

334 F. Calimeri et al.

expressing that, for each X, Place(self:X) must be false.

Another condition that we want to enforce in our ontology is the SYMMETRY of

the marriage relation (expressed through the attribute spouse of person) -- i.e., it
cannot happen that a person X has spouse Y, Y has spouse Z and X and Z are
different individuals:

← person(self:X, spouse:Y), person(self:Y, spouse:Z), X <> Z

Finally, the following axiom is used to state the CARDINALITY constraint on the

relation lives according to which each person lives in exactly one place:

← lives(person:X, place:Y), lives(person:X, place:Z), Z <> Y

Besides the above explicit constraints, there are some that are implicit, such as:

o the ISA relation is a PARTIAL ORDER (as any other built-in relation):

• Path(X,Y) ← ISA(X,Y)
• Path(X,Y) ← ISA(X,Z), Path(Z,X)
• ← Path(X,X)

o a concept cannot be both a class and an instance

← class(X), instance(X)

o only classes can appear in the ISA relation

← ISA(X,Y), Instance(X)
← ISA(X,Y), Instance(Y)

Properties
Properties are used to assert general facts about concepts; for an instance, we may

want to express that persons are mortal:

Person has properties
 { mortal()← }

As we will see in Section 3, properties hold for all instances, subclasses and

PART-OF related classes, unless explicitly negated.

Derived Classes and Relations
A DERIVED CLASS or RELATION is one that is intensionally defined by a

suitable set of logic rules. Next we report some examples.

OntoDLP: a Logic Formalism for Knowledge Representation 335

Man() ISA person
{
 Man (self: X) ← person(self: X, sex:Y), Y=”male”
 }

Woman() ISA person
{
 Woman (self: X) ← person(self: X, sex:Y), Y=”female”
 }

Here, each of the above classes is defined by a logic rule that provides a formal

definition of its meaning and is used to automatically infer its instances. We further
express that Person is a GENERALIZATION of both Man and Woman; this
generalization must be TOTAL (there is no person who is neither a man nor a
woman) and DISJOINT (a person is not both a man and a woman):

← Person(self:X), not Man(self:X), not Woman(self:X).

← Man(X), Female(X)

As another example of derived class, consider the following definition of “cheerful

person” as a person who enjoys at least three hobbies:

Cheerful-Person (numOfHobbies: integer) ISA {person}

 {
 Busy-Person (self: X, numOfHobbies: Z) ← person(self: X),
 %count(Y:enjoys(X,Y)} = Z,

Z>=3
 }

Note that the body of the above rule contains a special predicate (AGGREGATE

predicate) used to count the number of hobbies enjoyed by person X.

As an example of derived relation, consider the following specification:

father_in_law (son: person, father:person)

{
 father_in_law(X,Y) ← person(self:X, spouse: person(father:Y))
}

Here the definition consists of a unique rule stating that if Y is the father of the

spouse of X then Y is the father in law of X. We point out as the structure
person(father:Y) (called “class term” in Complex-Datalog) allows us to declaratively
navigate the instances of person.

336 F. Calimeri et al.

It is easy to see how we can define (derived) classes (or relations) as UNION,

DIFFERENCE, INTERSECTION of other classes (or relations); to see an example,
consider the classes

o Student ISA Person has attributes

registration#: string
enrolled: faculty

end;

o Worker ISA Person has attributes
salary: integer
company: string

end;

from which we derive the class Student-Worker as their INTERSECTION:

Student-Worker ISA { Student, Worker}

 { Student-Worker(self:X) ← Student(self:X), Worker(self:X) }.

Notice that, although no specific attribute is explicitly stated, Student-Worker

inherits all the attributes of both Student and Worker (that, in turn, inherit those of
Person).

Finally, we use DISJUNCTION to provide the definition of the derived class

MinMarried whose set S of instances is the minimal set of persons such that, for
each two persons who are married, at least one in S:

MinMarried() ISA person

{ MinMarried(X) V not_MinMarried(X) ← person(X)

 ← person(self:X, spouse:Y), not MinMarried(X), not MinMarried(Y)

 ⇐ MinMarried(X)
 }

Here we have a DISJUNCTIVE logic program defining the concept MinMarried;

the disjunctive rule

MinMarried(X) V not_MinMarried(X) ← person(X)

partitions the set of persons into two subsets, MinMarried and not_MinMarried,

i.e., it guesses a possible solution; the strong constraint

OntoDLP: a Logic Formalism for Knowledge Representation 337

 ← person(self:X, spouse:Y), not MinMarried(X), not MinMarried(Y)

checks the guess, that is, verifies the statement “X and Y are married and none of

them belong to MinMarried” to be false; finally, the WEAK CONSTRAINT

 ⇐ MinMarried(X)

minimized the number of persons that belong to MinMarried. It holds that each

stable model of this program is a possible set of instances of MinMarried.

Derived Attributes
Axioms can be used to derive attribute values as well; to see this point, let us

extend the class Person by the attribute has_ancestors defined as having SETS of
persons as possible values:

person has attributes

name: string
age: integer
father: person
mother: person
spouse: person
lives: place
has_ancestors: setOf(person)

end;

The values for has_ancestors are derived using the following axioms:

has_ancestor(X,Y) ← person(self:X, father:Y)
has_ancestor(X,Y) ← person(self:X, mother:Y)
has_ancestor(X,Y) ← has_ancestor(X,Z), has_ancestor(Z,Y)
has_ancestors(X,<Y>) ← has_ancestor(X,Y).

The latter rule above associates with each person X the set <Y> of his ancestors --

grouping set ([3], [16]).

As another example, consider the class faculty

faculty has attributes

name: string;
has_enrolled: setOf(student)
last_enrolled: student;

end;

where both has_enrolled and last_enrolled are derived attributes . In particular,
has_enrolled associates with each faculty the respective set of enrolled students:

338 F. Calimeri et al.

has_enrolled(X,<Y>) ← student(self:Y, enrolled:X).

Likewise, the attribute last_enrolled (i.e., the student with the greatest registration

number) is derived as follows:

Last_enrolled(X,Y) ← student(self:X, enrolled:Y, registration#:Z), not
 exists_bigger_reg#(Z,Y)

Bigger_reg#(X,Y) ← student(self:Z, registration#: W, enrolled:Y), W>X.

3 A simple hierarchy

The following example shows an ontology consisting of a simple hierarchy of
living beings.

• LIVING_BEING

 { mortal()← }
– ANIMAL isa LIVING_BEING

– MAMMAL isa ANIMAL
• CARNIVORE isa MAMMAL

 { eats(animal) ← }
o LION isa CARNIVORE

• HERBIVORE isa MAMMAL
 { eats(plant) ←

o GIRAFFE instanceof HERBIVORE
 { eats(leaf) ← }

o COW instanceof HERBIVORE
– BIRD isa ANIMAL

 { flies()← }
• PENGUIN instanceof BIRD

 { ¬flies() }
• EAGLE instanceof BIRD

– PLANT isa LIVING_BEING
– LEAF partof PLANT
– GRASS isa PLANT

Here we have a number of concepts related by the built-in relations Isa, PartOf
and InstanceOf; we note that these concepts have no (explicit) attributes and are
defined through some properties, such as mortal(), associated with Living_Being,
eats(animal), specified for Carnivore, and others.

OntoDLP: a Logic Formalism for Knowledge Representation 339

We enrich the specification of our ontology by adding the following
DISJOINTNESS axioms:

← ISA*(X, animal), ISA*(Y, plant), X=Y
← InstanceOf(X, animal), InstanceOf(Y, plant), X=Y

expressing that Animal and Plant are disjoint classes (ISA* is used to denote the

transitive closure of Isa). Likewise, we can state that Carnivore, Herbivore and Bird
are disjoint too.

We next provide an intuitive semantics of hierarchies by using our running

example. The keywords for this semantics are INHERITANCE and DEFAULT
REASONING. Indeed, properties defined for a concept are inherited by its sub-
concepts, unless explicitly negated (to this end we use TRUE NEGATION). For an
instance, the property eats(herbivore, plant) is inherited by both giraffe and cow, so
that both eats(giraffe, plant) and eats(cow, plant) hold. However, we apply the
principle that specific pieces of information are more reliable than generic ones. So, if
we ask “what does giraffe eat?” the answer will be “leaf” (eats(giraffe, leaf) is more
specific than eats(giraffe, plant)), while the question “what does cow eats?” will be
answered by “plant” (indeed, no specific information is available for the concept
cow). Inherited information can be exploited in several ways. For an instance, if we
ask whether giraffe eats plants, the answer will be YES. More interestingly, if we ask
if cows eat grass, the answer will be MAYBE. This is because the fact eats(cow,
grass) is not in contradiction with the general knowledge eats(cow, plant), but we
have no evidence about its truth. So, we are in presence of a fact that is neither true
nor false -- it is undefined (maybe fact). Likewise, eats(cow, leaf) will have answer
MAYBE.

Inheritance of properties can be blocked by using true (classical) negation. In our
ontology, the general property fly(bird) is overwritten by the negative fact
¬flies(penguin) (here, ¬ is the classical negation symbol); so, the query flies(penguin)
will be answered NO, while flies(eagle) is true.

QUERY EXPECTED ANSWER COMMENTS
?- mortal(X) X = living being
?- mortal(animal) YES
?_eats(herbivore,X) X = plant
?_eats(giraffe,X) X = leaf A more specific

information prevails on
a general one

?_eats(cow,X) X = plant Eats(plant) is
inherited by animal and
no more specific
information holds for
cow

?_eats(cow,grass) MAYBE Grass Isa Plant and
no more specific

340 F. Calimeri et al.

information is available;
so, it might be true

?_eats(cow,leaf) MAYBE Leaf partOf Plant and
no more specific
information is available;
so, it might be true

?_eats(X,grass) X = herbivore-MAYBE
?_eats(giraffe,plant) YES
?_eats(carnivore,bird) MAYBE
?_flies(X) X = bird
?_flies(penguin) NO True negation is used

to override general
information

?_flies(eagle) TRUE

Table 1. Intuitive semantics of inheritance

4 Multiple inheritance

Here we show an example of multiple inheritance where contradicting pieces of
knowledge are inherited; this is a typical case of non-monotonic reasoning, where
adding new knowledge may invalidate the previous one.

The example models a financial consultancy where two experts, Expert1 and

Expert2, are asked to advise an investor. Briefly:

1. Expert1 suggests to buy shares when the bull rules over the stock market. More
precisely, he suggests to buy “dynamic” stocks, using the money gained selling
“defensive” ones. In case of bear ruling, he advises to buy Treasury bonds and
defensive titles.

2. Expert2 suggests, when the bear rules, not to buy any kind of shares, but taking
only Treasury bonds.

3. Both Expert1 and Expert2 think that, if the potential investor is not available to
risk, it is preferable not to buy shares.

4. In the end, the investor: if the budget is below a certain threshold, say c1, he does
not buy anything; he can risk only if

o The budget is above the threshold c1
o He is already covered enough by Treasury bonds.

The assumption is that Expert1 and Expert2 are equally trustable; however, we

consider the investor’s opinion to be decisive for the final decision.
We note that there exists a conflict among different opinions: when the bear rules,

Expert1 suggests defensive shares, while Expert2 advises against buying any kind of
shares.

OntoDLP: a Logic Formalism for Knowledge Representation 341

Next we show the OntoDLP encoding. For the sake of simplicity, we split stocks
into two categories, dynamic and defensive:

Stock(dynamic)
Stock(defensive).

EXPERT1
{
 Buy(X) ← bull, stock(X), X = dynamic.

Sell(X) ← bull, stock(X), X = defensive.
Buy(bond) ← bear.
Buy(X) ← bear, stock(X), X = defensive.
⇐ not open_to_risk, titolo(X), buy(X).

}

EXPERT2
{

 ¬ buy(X) ←bear, stock(X).
 buy(bond) ← bear

⇐ not open_to_risk, titolo(X), buy(X).
}

INVESTOR
{
 ¬ buy(X) ← stock(X), budget(Y), Y < c1.
 Open_to_risk ← budget(X), X >= c1, investment_bond(Y), Y > c2.
}

These concepts are partial-ordered by MoreReliableThan (<) as follows: Investor <

Expert1, Investor < Expert2.

The rules associated with each concept above state the respective knowledge about

the application domain. In particular, the weak constraint

 ⇐ not open_to_risk, titolo(X), buy(X),

which is common to both experts, encodes point 3 above according to which it is

preferable not to buy shares if the investor is not open to risk; that is, it states a
condition that should preferably be satisfied, but not necessarily.

SOLUTIONS: let’s ponder about the following cases

1) Hypothesis: budget < c1, bull: the budget is below the threshold, so the investor
idea (do not buy anything) wins against all the rest; so, OntoDLP offers a single

342 F. Calimeri et al.

solutions, in which the following facts are true: not open_to_risk, not
buy(defensive), not buy(dynamic), sell(defensive).

2) Hypothesis: budget >= c1, investment in bond <= c2, bull: the investor has
enough money to buy; Expert1 suggests, since the bull rules, to buy dynamic
stocks and sell defensive ones; Expert2 has no opinion. So, again, a single
solution: { not open_to_risk, buy(dynamic), sell(defensive) }.

3) Hypothesis: budget >= c1, investment in bond <= c2, bear: the investor has
enough money to buy, but cannot risk; since bear rules, both Expert1 and
Expert2 suggest to buy bonds. In addition, Expert1 suggests defensive stocks
while Expert2 suggests not to buy any. Anyway, since the investor is not open to
risk, both experts think it is preferable not to buy stocks (weak constraint); so the
Expert2’s opinion (do not buy) overcomes Expert1’s one; here, we point out how
the weak constraint supports one of two potential contradicting solutions. There
is, again, another single solution, in which the true facts are: {not open_to_risk,
buy(bond), not buy (defensive), not buy(dynamic) }..

4) Hypothesis: budget >= c1, investment in bond > c2, bear: the investor can buy,
and he’s open to risk. Both Expert1 and Expert2 suggest bonds. Expert1 suggests
also defensive stocks, while Expert2 suggests not to buy stocks at all. There is a
clash, not solvable (they are trustable, both), so that the only true fact is
buy(bond) (note that buy(defensive) is undefined).

5 Synonyms

An ontology can be regarded as a “controlled vocabulary” where a concept or a
relation may have several different names, one of which is the preferred one. Thus,
we can define the following equivalence relation

Synonyms (concept_name: concept, synonym: concept)

associating to each concept its synonyms within the ontology. The following are

possible instances:

Synonyms (place, spot)
Synonyms (spot, site).

6 Conclusions

In this paper we have given an informal presentation of a logic-based formalism
for ontology specification. This formalism, called OntoDLP (where DLP stands for
Disjunctive Logic Programming), supports abstraction mechanisms for the
specification of concepts, relations and axioms. Concepts have a schema whose
attributes may be of type concept. Relations are either taxonomic (Isa, InstanceOf,
PartOf and MoreReliableThan that are built-in) or non-taxonomic (user-defined).
Axioms are logic rules that are used to specify the semantics of concepts and relations

OntoDLP: a Logic Formalism for Knowledge Representation 343

(properties of concepts, cardinality constraints and algebraic properties of relations,
etc.).

OntoDLP supports very complex reasoning tasks based on the following basic
features:

o Concepts, relations and axioms
o Disjunction in the head of rules: as shown in [8, 15], disjunction provides the

language with a very high expressive power
o Constraints of two types: strong and weak [BUC97, 7]; the former are used to

state conditions that must be satisfied, while the latter supports the specification
of desiderata

o Classical negation, used to explicitly state negative information; as shown in [8],
classical negation can be used within hierarchies to override inherited
information

o Default reasoning, i.e., the (multiple) inheritance of properties from concepts to
sub-concepts based on mechanisms whereby more specific (reliable) information
prevails on general one.

Such features make OntoDLV a powerful language for ontology specification.

The semantics of OntoDLP is based on stable models (to handle disjunction)

where facts can be either true, false or undefined (maybe); as we have seen, a three-
value logic is very intuitive for the purpose of modeling inheritance-based reasoning.

OntoDLP is currently being implemented as an extension of the disjunctive logic

programming system DLV [7] to take into account extra-logic constructs (hierarchies,
inheritance, etc.)

References

1. J. Bouaud, B. Bachimont, J. Charlet and P. Zweigembaum,
“Methodological principles for structuring an ontology” In ACM Press,
editor, Proc. of IJCAI95 Workshop: Basic Ontological Issues in
Knowledge Sharing, 1995.

2. F. Buccafurri, N. Leone and P. Rullo, "Strong and Weak Constraints in
Disjunctive Datalog", Proceedings of the 4th International Conference
on Logic Programming and Non-Monotonic Reasoning (LPNMR'97),
J. Dix, U. Furbach and A. Nerode editors, 1265 pp. 2-17, Springer
Verlag, (Jul) 1997.

[3] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur and C.
Zaniolo, “The LDL System Prototype”, IEEE TKDE, vol. 2, nr. 1, 1990

[4] P. Cholewinsky, A. Marek, V. W. Mikitiuk and M. Truszczynski,
“Computing with default logic”, Journal of Artificial Intelligence,
112(1-2) pp. 105-146, 1999.

[5] DAML+OIL. Specification. In www.daml.org/2001/03/daml+oil-

http://www.daml.org/2001/03/daml+oil-index.htm

344 F. Calimeri et al.

index.htm, 2001.
[6] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello, “A

Deductive System for Non-Monotonic Reasoning”, Proc. of the 4th
International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR'97), J. Dix, U. Furbach and A. Nerode, editors,
1265, pp.364-375, Springer, LNAI 1997.

[7] W. Faber and G. Pfeifer, “DLV homepage”, (www.dlvsystem.com),
since 1996.

[8] M. Gelfond and V. Lifschitz, “Classical Negation in Logic Programs
and Disjunctive Databases”, New Generation Computing, 9 pp. 365-
385, 1991.

[9] M. Gelfond, and V. Lifschitz, “The Stable Model Semantics for Logic
Programming”, In 5fth Logic Programming Symposium, pp. 1070-1080,
Cambridge Mass, MIT Press, 1988.

[10] G. Gottlob, “Complexity and Expressive Power of Disjunctive Logic
Programming”, Proceedings ILPS '94, pp. 23-42, MIT Press, 1994.

[11] S. Greco, N. Leone, P. Rullo, “COMPLEX: An Object-Oriented Logic
Programming System”, IEEE Transaction on Knowledge and Data
Engineering, 4(4), (Aug) 1992.

[12] N. Guarino, “Formal ontology, conceptual analysis and knowledge
representation”, International Journal of Human-Computer Studies,
43(5/6) pp. 625-640, Special issue on The Role of Formal Ontology in
the Information Technology, 1995.

[13] N. Guarino and C. Welty, “A formal ontology of properties”, In
Knowledge Engineering and Knowledge Management: Methods,
Models and Tools. Int. Conf. EKAW’2000, R. Dieng and O. Corby,
editors pp. 97-112. Springer-Verlag, 2000.

[14] E. Laenens and D. Vermeir, “A Fixpoint Semantics for Ordered Logic”,
Journal of Logic and Computation, 1(2) pp. 159-185, (Dec) 1990.

[15] N. Leone, P. Rullo and F. Scarcello, “Disjunctive stable models:
Unfounded sets, fixpoint semantics and computation”, Information and
Computation, 135(2) pp. 69-112, (June) 1997.

[16] N. Leone and P. Rullo, "Ordered Logic Programming with Sets",
Journal of Logic and Computation, 3(6) pp. 621-642, (Dec) 1993.

[17] I. Niemelä and P. Simons, “Smodels - An Implementation of the Stable
Model and Well-Founded Semantics for Normal LogicPrograms”, Proc.
of the 4th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR'97), 1997.

[18] N. Noy, “Tutorial on Ontology Engineering”, Int. Semantic Web
Working Symp. (SWWS’2001), www.
Semanticweb.org/SWWS/program/tutorials/tutorial1/2001.

[19] P. Rao, K. Sagonas, T. Swift, D.S. Warren and J. Friere, “XSB: A
system for efficiently computing well-founded semantics”, Proc. of the
4th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR'97), J. Dix, U. Furbach, and A.
Nerode, editors, 1265, pp. 430-440, Springer, LNAI, 1997.

http://www.daml.org/2001/03/daml+oil-index.htm
http://www.dlvsystem.com/

OntoDLP: a Logic Formalism for Knowledge Representation 345

[20] W. Swartout, R. Patil, K. Knight and T. Russ, “Toward distributed use
of large-scale ontologies”, Spring Symposium Series on Ontological
Engineering, pp. 33-40, Stanford, AAAI Press, 1997.

[21] F. van Harmelen and I. Horrocks, “FAQs on OIL: the Ontology
Inference Layer”, IEEE Intelligent Systems 15(6) pp. , 69-72, 2000.

