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Abstract. We introduce the notion of Semantic Contents of a program. Using
only the semantic contents of a program it is possible to obtain different semantics
based on Answer Set Programming such as the standard definition of answer sets,
W, stable models, minimal generalized answer sets and a new notion similar
to k-minimal stable models. One of our main theorems says that we can have
compositionality in answer sets via its semantic contents. The theorem removes
and makes abstraction of all details specific to answer set programming. Thus, we
obtain a theorem that has its application in other nonmonotonic languages such
as Partial Order Programming. Finally, we present future work about the use of
Semantic Contents for planing and diagnostic in GIS.
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1 Introduction

Answer Set Programming (ASP), also known as A-Prolog, is a logic programming lan-
guage under the answer set semantics defined by Gelfond and Lifschitz in 1987 [GL88].
Currently, in order to expand the applicability of A-Prolog, have been developed several
extensions of A-Prolog such as ASET-Prolog [Gel02], A-POL [NOOQ1], etc. These ex-
tensions add to A-Prolog features like cardinality constraints, weight constraints, weak
constraints, sets, aggregates, consistency-restoring rules|[BG03], Partial Order clauses,
etc. At the same time, the answer sets semantics has been extended itself in different
directions such as the standard definition of answer sets [GL88], minimal generalized
answer sets [KM90,Gel91], W, stable models [ONO1] and a notion which is very sim-
ilar to k-minimal stable models from [OA02].

With the aim of having a mathematical structure that may express in a uniform way
the different semantics mentioned above, we introduce the notion of Semantic Contents
of a program.

We define the Semantic Contents of a program as a set of pairs obtained from the
union of the program and a set of formulas, all of them satisfying certain properties. It
is important to emphasize that we can obtain the Semantic Contents of a program for
every logic that satisfies few basic properties. Hence, our approach can be applied in
other nonmonotonic languages such as Partial Order Programming.
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According to [SHO1], a semantics is defined as compositional if, and only if, in it the
different semantic attributes of each complex expression are a function of the meanings
of its component expressions plus the way they are combined into the complex expres-
sions. Hence, the authors in [SHO1] also present one of the possible meanings of the
principle of compositionality: “the applicability of a semantic attribute A to a complex
expression E is determined by the applicability of all and sundry semantic attributes to
the component expressions of E plus the structure of E in terms of these component
expressions”.

Moreover, in [ABT99a,ABT99b] is presented the interest of having a general prin-
ciple on which both, the language and the meta-language for combining software com-
ponents, have a formal mathematical semantics, thus providing firm foundations for
reasoning about programs and program compositions.

Inspired on these notions about compositionality, one of our main theorems in this
work says that we can have compositionality in answer sets via its semantic contents.

Once we have constructed the Semantic Contents of a program we show how to
find from it —in a uniform way — the variants of answer sets such minimal generalized
answer sets, the standard definition of answer sets, W, stable models, and a notion
which is very similar to k-minimal stable models. It is important to remark that k-
minimal stable models are defined only for disjunctive programs, but the similar notion
introduced in this paper is defined generically for any theory. We also present how the
Semantic Contents and the minimal generalized answer sets of a program are preserved
when we apply the popular transformations from [SBZ01,BDFZ01] for logic programs
used to simplify the structure of programs and reduce their size.

Additionally, we know that Planning and diagnosis are tasks that are carry on by the
public administration. The use of maps plays a fundamental roll in these tasks as a form
of representation, visualization and analysis. Geographic Information Systems (GIS)
is the technology that allows the automatic manipulation of digital maps. However,
due to the large amount of data, operations of diagnostic and planning become very
difficult to deal with. In our future work, we plan to work on a situation related to the
Popocatepetl volcano problem: the creation of evacuation plans to put out of risk people
living in the risk zones. We propose to use the Semantic Contents of a program since it
represents a mathematical structure from which we can obtain in a uniform way, using
only orderings among entries or filters of entries, the different answer set semantics
needed to perform planing and diagnostic.

The paper is structured as follows. We start with background material needed to
understand the definition of Semantic Contents. Next, we introduce the definition of
Semantic Contents and give one of our main theorems about compositionality. Next,
we show how we can find variants of answer sets from Semantic Contents and how
we can apply some transformation to logic programs and the semantic contents of a
program is preserved. Finally, we present future work related to reason on geographic
data and our conclusions.
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2 Background

We use the language of propositional logic in order to describe rules within logic pro-
grams. Formally we consider a language built from an alphabet consisting of

atoms: po, p1, . .. connectives: A, V, —, L

auxiliary symbols: *(’, )7, “.".

Where A, V, — are 2-place connectives and _L is a 0-place connective. Formulas are
defined as usual in logic. The formula —F" is introduced as an abbreviation of F' — L,
and F' < @ as an abbreviation of (F — G) A (G — F). A theory is a finite set of
propositional formulas.

Asignature £ is afinite set of atoms. We assume a fixed set in this paper. FORM (L)
is the set of formulas in that can be constructed from L. If F" is a formula then the sig-
nature of F', denoted as L, is the set of atoms that occur in F. A literal is either an
atom a (a positive literal) or a negated atom —a (a negative literal).

Given a set of formulas F, we define =F = {=F | F € F}. Wewrite X C Y to
denote that X C Y and X # Y. Given a set of literals S, pos(S) denotes the set of
positive literals in S and neg(S) denotes the set of negative literals in S. Given a set of
formulas S, we write literals(S) to denote the set of literals in .S. We assume the use
of intuitionistic logic in all the paper.

The set of theorems of P (namely the set {« : P F «a}, is denoted as th(P)). For a
given set of sets of formulas R, we write K (R) to denote the set of formulas that belong
to every set in R. For two given sets of formulas M and P we write P IFy M if P is
consistent and P proves every element in M in intuitionistic logic.

A finite set of formulas P is consistent [Men87] if there is no a formula A such that
both A and —A are theorems of P. A finite set of formulas P is said to be complete
[Men87] if, for any closed formula A of P, either P - A or P I —A. A finite set of
formulas P’ is said to be an extension of a finite set of formulas P [Men87] if every
theorem of P is a theorem of P'. A finite set of formulas P is said to be deductively
closed if for every formula A such that P IF; A then A € P.

If P is a program then a generalized answer set [KM90,Gel91] is an answer set
M(A) of PUA where A C Aand A isasetof atoms; M(A;) < M(Az) if A; C As.
An answer set is a minimal if it is minimal with respect to this ordering.

We adopt the characterization of answer sets as the one given in [ONA03]. Namely,
M is an answer set of P iff PU—~M U -~-M Ik M.

3 Semantic Contents

With the aim of having a mathematical structure useful to express from it in a uniform
way different semantics, in these section we introduce the notion of Semantic Contents
of a program.

Definition 1. Let P be a program (with a finite set of formulas), we define the seman-
tic contents, denoted by SC(P), as a set of pairs < S,T > satisfying the following
properties:
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1. T'is a deductively closed consistent extension of P(abbreviated as dcc extension of
P)w.rt. L,

2. Sisasetof formulas that SU P + T and

3.VS8'CS, S"UPKT.

The set S is called an abductive and the set 7" is called a scenario. If SC' is a semantic
contents, then SCs := {X :< X,Y >€ SC}and SCr := {Y < X,Y >e SC}.
Note that if P is inconsistent then SC' is the empty contents. We write SC to denote
the set of atoms that occur in SC. We have the following trivial lemmas.

Lemma 1. Let P be a program over a signature £. Then th(P) = K(SCr(P)).

Lemma 2. Let P, and P, two programs over a signature £. Then th(P; U P) :=
K(SCi1, NSCay).

From the second lemma mentioned above and by the abuse of notation, we write
K(SCy,8Cs) := K(SCy, N SCs,.), where SCy and SC, are two semantic contents.
We also write SCr(SCy, SC5) to denote SC1, N SCs,..

Now we define an operator + between semantic contents.

Definition 2. Let SC; and SC5 two semantic contents. Then SC1 + SCs is a set of
pairs of the form < A\ K(SC,,SC,),T > such that T € SCr(SC;,SC>) and
< AT >e SC.

Itis easy to prove that if we choose < A, T >€ SC, in definition 2 then the defined
SC4 + SC5 does not change.

The following theorem affirms that we can have compositionality in answer sets via
its semantic contents. It is important to remark that this theorem holds for every logic
that satisfies few basic properties.

Theorem 1. For every pair of programs P, and P,, SC(P, U P,) = SC(P) +
SC(Py).

Now, the following lemma will be used to justify reductions of programs.

Lemma 3. Let P and P’ be two programs such that P is equivalentto P’. Then P and
P’ have the same semantic contents.

4 Finding variants of answer setsfrom semantic contents

We show how to obtain different semantics based on Answer sets such as: minimal
generalized answer sets, the standard definition of answer sets, TV, stable models and a
notion similar to &£-minimal stable models. All this is done by using only the semantic
contents of a program.

We start by defining a model and the semantics of a program P over a signature £
in terms of ASCgr(P), where ASCg(P) is a selected set of pairs from the semantic
contents of P w.r.t. R a subset of L.
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Definition 3. Let SC(P) be the semantic contents of a program P, R be a subset of
L and ASCgr(P) := {< X,Y >€ SC : X C (RU-L U -~L)}. We define the
following:

1. M is a partial model of ASCg(P) if exists < X,Y >e& ASCg(P) such that
M = literals(Y).

2. M isamodel of ASCgr(P) if M is a partial model of ASCg(P) and literals(M)
is complete.

3. A semantics of a program P, denoted as SEM (P), as a set of partial models of
ASCR(P).

Hence we have the following corollary of lemma 3.

Corollary 1. Let P and P’ be two programs such that P is equivalent to P’. Then P
and P’ have the same semantics.

We have the following trivial lemma about how to obtain the answer sets of a pro-
gram using its semantic contents.

Lemma4. Let P be a program and M a model of ASCy(P). Then pos(M) is an
answer set of P iff there is a pair of the form < Z,Y >e ASCy(P) such that M =
literals(Y).

Now, consider that we are given a set of atoms EA C £ that we call explicit ab-
ductibles.

We define an ordering among entries of semantic contents as follows: Given a se-
mantic contents SC, e € SC,e' € SC, we define e <g4 €' if one of following cases
occur:

1. 6'T Cer
2. er is complete, e is complete, pos(es) C EA, pos(els) C EA, pos(es) C
pos(es).

Note that < g4 is a strict order over SC.
Now, we use the ordering among entries of the semantic contents of a program to
obtain the minimal generalized answer sets of a program.

Lemmab. Let P be a program, EA C £ and M be a model of ASCg4(P). Then
pos(M) is a minimal generalized answer set of P w.r.t. EA iff exists X such that <
X,th(M) > is a minimal entry in ASCg4(P) w.rt. the ordering <g4 and M is
complete.

Now, we have the following corollary of lemma 5. It shows the relationship between
our definition of minimal generalized answer set and the definition of W, stable model
given in [ONO1].

Corollary 2. Let P be a program, EA C £ and M be a model of ASCg4(P). Then
pos(M) is a minimal generalized answer set of P w.r.t. EA iff pos(M) corresponds to
a W, stable model of P.
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We have shown how to obtain two of the semantics based on Answer sets: the min-
imal generalized answer sets and W stable models. This was possible thanks to the
definition of an ordering among entries of the semantic contents.

Now, we use the definition 3 of a partial model in order to construct the definition of
a partial answer set in terms of its semantic contents. Partial answer sets is a semantics
similar to k-minimal stable models [OAOQ2].

Definition 4. Let P be a program and M a partial model of ASCy(P). Then M is a
partial answer set of P iff is false that exists M, a partial model of ASCy(P), such
that [M'| > |M|.

The following lemma shows that our definition of partial answer sets naturally re-
flects its relationship with the definition of answer sets.

Lemma6. Let P be a program and M C L. If P is stable consistent (P has at least
one answer set) then M is an answer set of P iff M is a partial answer set of P.

The following example, shows how our definition of partial answer sets agrees with
the definition of answer sets when the program is stable consistent.

Example 1. Let P be the program:

a + —b.
e + —d.
d < —e.

We can verify that {e,~d, —a}, {—e,d,—a}, {—a},{e,~d,-b,a}, {—e,d,—b,a},
{=b,a},{e,~d}, {—e,d} are the partial models of ASCy(P). However, only {e,—d,
-b,a}, {—e,d,—b,a} are partial answer sets of P. Furthermore, we can verify that
these partial answer sets are the answer sets of P, according to Lemma 6.

Now, we present a program that only has partial answer sets.

Example 2. Let P be the program:

a + —b.
C < —C.

{a} and {—b, a} are the partial models of ASCy(P) but the only partial answer set
of P is {—b, a}. We can verify that P does not have answer sets.

In spite of k-minimal stable models and partial answer sets are similar, it is impor-
tant to remark that k-minimal stable models are defined only for disjunctive programs
and partial answer sets are defined generically for any theory.
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4.1 Reductions of programs

Now we will study some popular transformations that can be applied to logic programs.

From lemma 3, we can validate that the semantics contents of a program is pre-
served when we apply one of the following transformations [SBZ01] for logic pro-
grams: RED~ or SUB or DSuc or TAUT.

Moreover, we can show how RED* and Dloop transformations [BDFZ01] can be
applied to a program P and the minimal generalized answer sets of the program P are
preserved. We highlight the fact that the set of explicit abductibles, EA C L, is included
in the following definitions in a strategic way in order to take them into account when
RED or Dloop transformations are applied.

Definition 5. Let P be a program. Let EA a subset of L p. The RED™ transformation
replace arule A < B, =B~ by A + B*,~(B~ N HEAD(P) N EA).

Definition 6. Let P be a program. Let EA a subset of Lp. Let unf(P) = Lp \
MM (Definite(P U EA)). Then we define
Dloop(P) = {A + B*,~B~ € P | B* nunf(P) = 0}.

Lemma 7. Let P and P’ be two programs. Let EA a set of explicit abductibles. If P’
is obtained of P by an application of Dloop or RED* then P and P’ have the same
minimal generalized answer sets w.r.t. E'A.

5 Futurework: Planing and diagnostic in GIS problems using
Semantic Contents

We know that A-Prolog is used for planning, diagnosing, consistency checking, and
other tasks. Particularly, in [BG02] is shown how a "diagnostic module” finds possi-
ble explanations of observations when the union of a program and the corresponding
observations is inconsistent ( i.e. the program does not possess an answer set). How-
ever, checking consistency and finding a diagnosis as in [BG02] implies several prob-
lems. One of these problems is that we do not have way to declaratively specify pref-
erences between possible diagnoses by performing extra observations. To avoid this
problem, in [BGO3] is expanded A-Prolog by consistency-restoring rules with pref-
erences (cr-rules). Cr-rules programs are closely related to abductive logic programs
[KM90,Gel91]. Moreover, the semantics of cr-rules programs is given by the notion of
minimal generalized answer set. Cr-rules use minimal generalized answer sets in order
to select the sets of cr-rules needed to restore consistency of a program. Additionally, to
apply cr-rules to restore the consistency of a program is necessary to know the possible
causes of inconsistency. However, it is not always possible to know which are all the
possible causes of inconsistency. Hence, we propose to use partial answer sets to infer
from a program the biggest amount of knowledge in order to give support to define a
new possible cause of inconsistency. Finally, this new cause of inconsistency can be
added to the program to restore consistency using the cr-rules.

On the other hand, planning and diagnosis are tasks that are carry on by the public
administration. The use of maps plays a fundamental roll in these tasks as a form of
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representation, visualization and analysis. Geographic Information Systems (GIS) is
the technology that allows the automatic manipulation of digital maps. However, due to
the large amount of data, operations of diagnostic and planning become very difficult to
deal with. In our future work, we plan to work on a situation related to the Popocatepetl
volcano problem: the creation of evacuation plans to put out of risk people living in the
risk zones. Nowadays, the government has defined evacuation routes but we think that if
the evacuation plan fails we could give a diagnosis to explain the reason of failure. Then
we could plan an alternative evacuation route. Moreover if we have several evacuation
routes we could select any of them using any kind of preference.

We propose to use the Semantic Contents of a program since it represents a math-
ematical structure from which we can obtain in a uniform way, using only orderings
among entries or filters of entries, the different answer set semantics needed to perform
planing and diagnostic. Among the different answer set semantics needed we have:
answer sets, partial answer sets and minimal generalized answer sets.

In addition, we know that knowledge employed in GIS analysis is fragmented into
different sources. In [Raf00] is presented an approach useful to reason on the data con-
tained in a GIS: language MUTACLP. This language joins the advantages of Temporal
Annotated Constraint Logic Programming in handling temporal information, with the
ability to structure and compose programs. The pieces of temporal information are given
by temporal annotations whereas spatial data are represented by using constraints in the
style of the constraint databases approach. In [Raf00] was adopted the approach pro-
posed by Brogi et al [ABT99a,ABT99b], which is centered on the definition of a family
of meta-level composition operations over definite logic programs. However, since Mu-
TACLP lacks of negation, this language has a limited expressiveness. Hence, we think
that we could obtain the Semantic Contents of a MuTACLP program, the Semantic
Contents of an A-Prolog program and then apply compositionality in semantic contents
in order to integrate the semantics of the two approaches. In this way, we could integrate
the spatio-temporal representation of MUTACLP and the expressiveness of A-Prolog in
order to take advantage of both approaches to reason and represent GIS information. At
the same time, inspired in [Raf00] we plan to take advantage of the compositionality in
semantic contents to perform GIS analysis.

6 Conclusions

In order to have a mathematical structure useful to express from it in a uniform way the
different answer set semantics, in these paper we have introduced the notion of Semantic
Contents of a program. It is important to emphasize that we can obtain the Semantic
Contents of a program for every logic that satisfies few basic properties. Inspired on
different notions about compositionality, one of our main theorems in this work says
that we can have compositionality in answer sets via its semantic contents. The theorem
removes and makes abstraction of all details specific to answer set programming. Thus,
we obtain a theorem that has its application in other nonmonotonic languages such as
Partial Order Programming.

Once we have constructed the Semantic Contents of a program we show how to find
from it —in a uniform way — the variants of answer sets such minimal generalized answer
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sets, the standard definition of answer sets, W, stable models, and partial answer sets
which is a notion similar to k-minimal. It is important to remark that k-minimal stable
models are defined only for disjunctive programs, but in this paper partial answer sets
are defined generically for any theory. We also want to remark that our definition of
partial answer sets is different from the definition of partial stable model semantics
introduced in [Prz91].

We also present how the Semantics Content or the minimal generalized answer sets
of a program are preserved when we apply the popular transformations from [SBZ01,BDFZ01]
for logic programs used to simplify the structure of programs and reduce their size.
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7 Appendix: Proofs.

Proof of Theorem 1.

Let K(SCl, 502) = K(SC(Pl), SC(PQ)), SCl = SC(Pl) and SCQ = SC(PQ)
Let< X,Y > SC(PLUP,). Then XU(P,UP) F Y andVX' C X, X'U(PLUP) I/
Y.Hence (X UPR)UP FYand X NP, = {.

Thus, AP' C P, such that < X U P',Y >€ SCp (The reader can verify that: if
P CPthenXUP UP FY.NowifdX’' C X suchthat X' UP' UP, Y then
X'UP,U P, Y but this contradicts the hypothesis). Since Y € SCr(P1)NSCr(P2)
thenY € SCr(SC1, SC5). Hence < (XUP')\K(SC1,S5C5),Y >€ SC;+SC,. But
K(SC1,5C3) F P2,s0< X\K(5C1,5C3),Y > SC1+S5C,. But K(SC4,SC2)N
X=0,s0< X,Y > SC; + SC>.

Now, suppose < X,Y >€ SC; + SC>. Also suppose that < X, Y >¢ SC(P; U P»)
(to prove by contradiction).

Hence 3X’suchthat X = X'\ K (SC;,SC>)and < X', Y >€ SC; (andso X'UP; +
Y"). Thus by set properties X' C X U K(SC;, SC>) and by monotonicity (in logic)
XUK(SCl,SCQ)Upl FY,butPLUP, - K(SCl,SCQ) Hence XUP,UP Y.
Now, by < X,Y >¢ SC(P; U P») we have 3 cases:

(1) Y is not a dec extension of P, U P». S0, Y ¢ SCr(SCy,SC;1) andso < X, Y >¢
SC1 + SC5, a contradiction.

(2) Y is a dcc extension of P, U Py, but X U P, U P> I/ Y. However we have already
shown X U P, U P, + Y, a contradiction.

(3) Suppose X U P, U P, Y, Y isadccextension of P; U P, and X does not satisfies
third property of definition 1. Now we have two subcases:

(@) X NK(SCy,SCs) # 0. But by construction of SC; + SCs, all pairs < X', Y’ >€
SC; + SOy, satisfy that X' N K(SCy,SC2) = (. Hence < X, Y >¢ SC; + SCs,
contradiction.

(b) XNK(SC;,SCs) = 0. So, we assume that 3X’ C X suchthat X'UP,UP, Y.
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Then (X' UP,) U P Y. Hence 3X", X" C X' U P, such that < XY >e SCi.
So< X"\ K(SC1,S5C5),Y >€ SCy + SCs.
We know X" C X U P» and so by set properties X" \ K(SC1,SC2) C (X U P2) \
K(SC:1,5C,). Thatis, X" \ K(SC;,SC) C X \ K(SC1,SC>). To prove that the
contention is strict, take e € X and e ¢ X'. Then by hypothesis (case b), we conclude
thate ¢ X". We also know that e ¢ K(SC4,SC>). Hencee ¢ X" \ K(SC4,SC>)
bute € X \ K(SCy,SC>). So, X" \ K(5Cy,SC>) ¢ X \ K(5C4,SC5>). Since
XNK(SC,SC5) = Bthen X"\ K(SCy,S5C2) C X. Implying that < X,V >¢
SC1 + SC5, contradiction.

So, in all cases we arrived to a contradiction. O

Proof of Lemma 5.

Let M be a model of ASCg4(P). Suppose that pos(M) is a minimal generalized
answer set of P w.r.t. EA that implies that 3A C E A such that pos(M) is an answer
setof AU P and AA' C A such that A" U P has an answer set of P.

Hence P U A U —pos(M) U ——pos(M) by pos(M) then P U A U neg(M) U
—=pos(M) k1 pos(M)Uneg(M). Let N be the minimal subset of neg(M)U——pos(M)
such that PU AU N Iy pos(M) U neg(M).

Clearly < AU N, th(M) > is an entry of ASCg4(P) (Proof by contradiction of
AA" € AU N such that A" U P Ity th(M) : Suppose that 3A" € A U N such that
A'"U P by th(M). Suppose A’ := A, U Al where A, := {z € A:z € L} and
Ay = {z € A:z € L} then we have A%, U Ay U P Ik th(M). Hence P U A,
has an answer set, contradiction).

Now we prove (by contradiction) that the entry is minimal. Lete :=< AUN, th(M) >.
Suppose that exists e’ such that e’ <g 4 e then we have two cases:

1) er C e then e is inconsistent, contradiction.

2) er is complete, e/ is complete, pos(es) C EA, pos(els) C EA,pos(es) C pos(el).
Then P U pos(e's) Uneg(ey) Ik e Hence P U pos(e's) has an answer set, contradic-
tion.

Now, suppose that exists X such that < X, th(M) > isaminimal entry in ASC(P)
w.r.t. the ordering < g 4 such that M is complete and pos(X) C EA.

Then X Cc LU-LU-~Land PU X Ik th(M).

Hence PU X Ik M.

Then P U pos(X) Uneg(X) Ib1 pos(M) Uneg(M).

Then P U pos(X) Uneg(M) Ikt pos(M) Uneg(M).

Then P U pos(X) Uneg(M) U ——pos(M) Ity pos(M) Uneg(M).

Let A = pos(X). Then PU AU neg(M) U ~—pos(X) Ik1 pos(M).

Hence pos(M) is an answer set of P U A such that A C EA. We prove (by contra-
diction) that pos(M) is a minimal generalized answer set of P w.r.t. EA. Suppose that
JA" C A such that P U A’ has an answer set (then exists an M’ such that pos(M')
is an answer set of P U A'). Hence P U A’ U neg(M') U —=—pos(M') IF1 pos(M").
Then exists < A" U X,th(M') > ASCga(P) where A" C Aand A C EA then
A’ C EA. Contradiction. O




